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I. Introduction

In earlier IIASA WP's [1,2], algorithms to determine the

optimal control of a water reservoir network with stochastic

inflows and nonlinear utilities have been proposed. Both

studies [lJ and [2J utilize a dynamic programming-type approach,

coupled with approximations of one type or another, in order

to yield a computational algorithm in which the bulk of the

calculation is carried out by efficient (and rapid) network

flow algorithms. The purpose of this note is to present a

synthesis of the work [1,2J and to spell out the precise steps

of an algorithm in sufficient detail to enable a computer pro-

gram to be constructed.

2. Basic Problem

Before considering our algorithm, let us briefly review

the basic water reservoir control problem. We are given m

reservoirs connected in some type of network configurations by

various branches (rivers, tributaries, etc.). At the beginning

of each time period t, reservoir i contains an amount of water

s., i = 1,2, •.. ,m and various demands for water for irrigation,
~

flood control, drinking, navigation, etc. are placed upon the

system. The problem is to determine the amount of water u. ,
~

i = 1,2, •.• ,m, to be released from each reservoir in order that
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some measure of utility of the water released is maximized,

subject to various constraints. For a single stage process,

this problem is not too difficult; however, the real problem

is complicated by being a multistage process with the added

feature of having stochastic inflow at each reservoir at each

time due to rainfall and underground water run-off. In addi-

tion, the various utility functions for each reservoir are

often nonlinear, thereby precluding any direct application of

linear programming procedures. Consequently, other approaches

are required.

In order to formulate our problem in mathematical terms,

let

s. (t) = amount of water available in reservoir i at
1

time t,

u. (t) = amount of water released from reservoir i at
1

time t,

ri(t) = external inflow to reservoir i at time t

(stochastic quantity), i = 1,2, ••. ,m, t = O,l, ••• ,T.

Clearly, the dynamics of each reservoir are described by the

equation

s. (t+l)
1

= s.(t) - u.(t) + r.(t) +
111

L B.u. (t)
j £1. J J

1

(1 )

where I. is the subset of {1,2, ... ,m} consisting of those
1

reservoirs which input water to reservoir i, and B. represents
J

the fraction of water released from reservoir j which is absorbed

by the network before it reaches reservoir i, a < 8. < 1,
J

i=1,2, ••. ,m.
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Let us assume that there is a certain cost associated with

having an amount of water s. available at reservoir i. Follow­
1

ing [lJ, we assume this cost is expressible by the convex func-

tion ¢. (s.), i = 1,2, ••• ,m, i.e. The total objective function
1 1

is

(2 )

Since the quantities ri(t) in (1) are random variables with

distribution functions dG. (r), our optimization problem may be
1

formulated as

min €[J]

over all control sequences {ul(t) , •.. ,um(t), t = 0,1,. ,.,T-l},

where set) and u(t) are related by (1) and the constraints

lJ. (t) < u. (t) < s. (t)
1 - 1 - 1

(3 )

are satisfied. Here e denotes the expected value relative to

the distribution function dG. (r), while the quantities lJ. (t)
1 1

represent certain minimal demands for water which must be met

by release from reservoir i, i = 1,2, .•. ,m.

We tackle this problem by dynamic programming. Let

ft(sl, ••• ,sm) = expected value of J when the process

has T-t time periods remaining, is in

state (sI, ..• ,sm) and an optimal policy

is pursued, t = 0,1, ... ,T.



-4-

Then it is an easy application of the principle of optimality

to see that f t satisfies the functional equation

min

11. (t) < u. (t) < s. (t)
1 1 - 1

i=1,2, ... ,m

1:3. u.
J J

s 2 - u 2 + r 2 + L:: S .u . , ... , )] dG (r)
jE:I J J

<

t = 0,1, ... , T-l (4 )

3. ~pproximations

(5)

Our next objective is to make approximations in Eg. (4)

so that it will be possible to utilize network flow algorithms

to effect the minimization over the u's for fixed values of

sl,.·.,sm' r l ,· ,.,rm· This means that both the individual

reservoir costs cp. (s.) and the "next stage" return
1 1

f t +l (a l ,a 2 , ... ,am) must be judiciously approximated. The heart

of our methods is in the selection of approximations for these

quantities that not only preserve accuracy, but also enable us

to apply network flow techniques for solution of the minimiza-

tion over the u's.

The first approximation is to replace the individual

reservoir costs by piecewise linear functions. Since we have
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assumed each ~. is a convex function of its argument with
1

~. (0) = 0, we have
1

<p. (5.) =
1 1

S.
1

o < s. < s. (1)
1 - 1 (6)

(1 )
S.

1
< S.

1
< s. (2)

1

Hence, in each segment of the form s. (j)
1

< S.
1

< (j+l)s. ,
1

the function ~. is linear.
1

Our second approximation is in "policy space", i.e. we

guess an operating policy UO(sl" .. ,sm i t) and use this policy

to determine a return function from the relations (4) and (5).

This is a type of approximation well-suited to taking advantage

of experience and "seat-of-the-pants" operating rules for

reservoir systems. In addition, it can be shown that the

algorithm described below will monotonically improve (in the

sense of the criterion (2» the current policy as the iteration

procedure progresses. Thus, we have a systematic method for

improving any existing policy.

Having fixed an approximation to the policy u, our last

L:
jEI

m

approximation is to the optimal

f t +l (Sl - u l (sl'" ,sm;t) + r l +

sm - u (sl""'s ;t) + rm m m +

value function

L: (3.u.(sl""'s it),
J J mjEll

(3.u.(sl""'s ;t»). By virtue
J J m

of the criterion (2) and the structure of the ~., it is not
1

difficult to see that the function ft+l(·, •.. ,o) should be
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separable in its arguments, i.e.

, (7 )

where the functions y. will be convex relative to the variable
1

s. (here we use a. = s. - u.(sl'."'s it) + r. + ,L:B.u.(sl' ... 's it).
1 1 11m 1 J JJ m

Again, we may approximate the y's by piecewise linear functions,

thereby giving f t +l (., ... ,.) the desired linear structure.

Clearly, the previous approximation to the ¢. will be used to
1

approximate fT(al, ••• ,am), while for t < T - 1, approximation

algorithms in the DYGAM program may be employed.

4. The Algorithms

We shall present two alternative algorithms in this section.

The first will be based directly upon the policy space idea

presented above, while the second is based upon ideas introduced

in [2J. In both cases, the primary objective is to reduce the

calculation to a level at which almost all the work is done by

the efficient network flow algorithms.

Alternative I (Policy Space Iteration)

The steps in this algorithm are the following:

1. Approximate the functions ¢. (s.) by piecewise linear
1 1

functions as in (6);

2. oGuess an initial policy u (sl"" ,sm;t) for all

sl' ... ,sm' t = 0rl, ••• ,T-l;

3. Determine the approximate optimal value functions

f~(sl' ..• ,sm) by iterating the relation (4) for t = 0,1, ••• ,T-l,

using the initial function (5);
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4. Approximate each function f~(al, ••• ,am) by piecewise

linear functions of al, •.. ,am as in (7);

1Determine the up-dated policy estimate u (sl, •.• ,sm;t)

as that function which minimizes

B.u., ••. ,s
J J m

- u + r +m m

Notice that for each fixed set of values for sl, .•• ,sm'

r l , ... ,rm, t, this is a network flow problem. This step is

carried out for all t = 0,1, ... ,T-l, and all sl,s2, •.• ,sm.

(Remark: For computational purposes, it may be better to let

the si vary only over the regions (sl'O' ... 'O), (0,s2'0' ... '0),

... , (O,O, ..• ,O,s ) and then interpolate the values of Ul(sl' .•• 's )m m

for non-lattice points). Having obtained the next policy u l ,

return to step 3 and continue until convergence.

Alternative II:

In this approach (which follows [2J), we note that the

*optimal release policy {u. (t), t = O,l, .•• ,T-l, T = 1,2, ••• ,m}
1

*is equivalent to knowledge of the optimal levels {so (t)}. Hence,
1

we reformulate the problem in terms of water levels only. That

ft(Sl<tl' ... 'Sm<t» = J[JI ~k(Sk<t»)

f t +l (Sl (t+l) , ••• , sm (t+l») ] dG (r)
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when the optimal policy is used at time t, or, equivalently,

when we have optimal water levels at time t+l (here the random

quantities r. are implicitly included in the term s. (t+l)).
1 1

The problem, of course, is that the optimal levels s. (t+l)
1

(for fixed r.) are not known and must be determined. To
1

accomplish this task, the following algorithm is proposed:

o. Let t = T-l and approximate ft+l(Sl(t+l) , •.. ,Sm(t+l))

= I ¢. (s. (t+l)) as in (6);
. 1 1 11=

1.

2.

3.

Fix a value of the water levels, say Sl (t), .•. ,sm(t);

Fix a value of the random parameters r. (t);
1

Solve the network-flow problem of minimizing

over all ll. (t) < u. (t) < S. (t), where s. (t+l) is given by (1);
1 - 1 - 1 1

4. Change the random variables to new levels and repeat

steps 2-4, forming expected values according to the probability

distribution dG(r);

5. Change to a new set of water levels S. (t) and repeat
1

step 3 until all levels have been considered;

6. Approximate the function ft(sl' ... ,sm) by a piecewise

multilinear form (using DYGAM subpackage), let t + t ~ 1,

and return to step 1.

Remarks

i) At step 1, in view of the separable form of the objec~

tive function, it will again probably be best to use only water

levels of the form (51 ,0, ..• ,0), (0,5 2 , ... ,0), etc. This will
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save on computing time by cutting down the number of cases, while

still yielding sufficient information to make the approxima-

tion in step 6 accurate if the s. grid is fine enough;
1

ii) In the approximation of step 6, some experimentation

will probably be necessary to determine how many pieces should

be taken in the "piecewise" multilinear form. The usual trade-

off between fewer pieces and high-order terms vs. more pieces

and lower order approximations needs to be examined. Generally

speaking, however, it is preferable to take several low-order

pieces.
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