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Chapter 1

Synchronization propensity in

networks of dynamical systems:

a purely topological indicator

Stefano Fasani1, Sergio Rinaldi1,2

Abstract

Synchronization in networks of identical dynamical systems is enhanced

by the number of manifolds in which synchrony of groups of systems is

conserved or reinforced. Since the number of these invariant manifolds de-

pends only on the coupling architecture of the network, it can be proposed

as a purely topological indicator of synchronization propensity. The pro-

posal is empirically validated through the detailed study of an ecological

application.

1.1 Introduction

All properties of networks of N interacting dynamical systems depend, in

general, upon network topology, coupling strength and local dynamics, and

the most challenging problem is to identify the dependence upon topol-

ogy (Strogatz, 2001; Boccaletti et al., 2006). This is what we do here by

suggesting a purely topological indicator for estimating the propensity of

the network to synchronize, namely to have all systems or groups of them

behaving in unison at least intermittently if not permanently (Pikovsky

et al., 2003). This indicator is particularly useful for detecting the impact

of changes in the coupling architecture: for example, it could be used to
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establish if the randomization of a regular network (see Fig.1.1) enhances

or reduces the chances of synchronization, independently upon local dy-

namics and coupling strength. Our analysis differs from previous ones (Wu

and Chua, 1996; Pecora and Carroll, 1998; Belykh et al., 2005) which refer

only to the special case in which all systems behave in unison (complete

synchronization). The proposed topological indicator is based on the num-

ber S of partitions (here called synchronous) of the nodes of the network

satisfying a special topological relationship.

The reason for suggesting this indicator is purely theoretical and based

on the fact that all synchronous partitions are in one-to-one correspondence

with invariant manifolds in state space in which groups of systems behave

in unison (this is often called cluster or concurrent synchrony). Properties

of these invariant manifolds have been discussed in Belykh et al. (2000);

Pham and Slotine (2007); Belykh et al. (2008) yet without stressing the

relationship with network topology. If the state of the network is in one

of these manifolds, synchronization can not be lost (and can actually be

strengthened), while if the state of the network approaches the manifold

and remains close to it for a while then synchronization shows up only

temporarily. Thus, the greater is S, the higher are the chances to be in (or

be attracted by) a permanent or intermittent synchronous regime.

This study suggests, in a sense, what might be intuitively expected,

(a) (b)

(c) (d)

Fig. 1.1 Networks with 10 identical systems and different coupling architectures. Net-
works (b),(c),(d) are obtained from (a) by randomly rewiring m = 1, 2, 3 connections.
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namely that regular networks (for which S turns out to be high) can more

easily support synchrony than other networks. However, the problem is

not as simple as one could imagine, because perceiving if S is high or low

by a simple inspection of the coupling architecture is very difficult, if not

impossible.

1.2 Synchronous partitions

Consider a network of N identical dynamical systems described by

ẋh(t) = f(xh(t)) +D
∑

k∈N

chk(xk(t)− xh(t)), h ∈ N (1.1)

where N = {1, 2, . . . , N}, is the set of systems, xh is the n-dimensional

state vector of system h, f(·) is the function describing the local dynamics

ẋ = f(x) of each system when isolated, chk = ckh is equal to 1 when systems

h and k are connected and 0 otherwise, and D is a non-zero n× n matrix.

When D is diagonal, model (1.1) allows one to deal with the majority of

applications involving diffusion of energy, populations, and matters (Stro-

gatz, 2001; Boccaletti et al., 2006; Pikovsky et al., 2003). In such a case

the diagonal elements of D are standard diffusion rates.

System (1.1) is usually associated with an undirected graph in which

the set of nodes is N and the arcs are systems connections.

We now consider partitions Π = {π1, π2, . . . , πp} of the set N where

πi is a subset of the nodes of the graph, i.e. a group of systems in the

network. Among all possible partitions, S of them, here called synchronous

partitions, satisfy the following topological condition:

nh1πj
= nh2πj

∀h1, h2 ∈ πi ∀(i, j) : i 6= j (1.2)

where nhlπj
indicates the number of arcs connecting a node hl of a set πi

with a disjoint set of nodes πj . In words, a partition Π = {π1, π2, . . . , πp}

is synchronous if for all pairs of groups of nodes, all nodes of the first group

are connected with the same number of arcs to the second group. For

example, condition (1.2) is satisfied in the partition of Fig.1.2a but not in

that of Fig.1.2b.

We can now prove the following

Theorem 1.1. If Π = {π1, π2, . . . , πp} is a synchronous partition, the man-

ifold

xh1
= xh2

∀h1, h2 ∈ πi ∀i ∈ {1, 2, . . . , p} (1.3)
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is an invariant manifold of system (1.1).

Proof. Consider a generic point (xh = x(i) ∀h ∈ πi ∀i) of manifold

(1.3) as initial state at time t0 of system (1.1). Thus, for h ∈ πi we have

ẋh(t0) = f(x(i)) +D
∑

k∈N−πi

chk(xk(t0)− x(i))

= f(x(i)) +
∑

j 6=i

nhπj
D(x(j) − x(i)).

But condition (1.2) says that nhπj
for h ∈ πi does not depend on h, so that

ẋh(t0) is the same for all h ∈ πi. This means that the solution of (1.1)

remains in manifold (1.3) which is therefore invariant.

�

In words, Theorem 1.1 says that if the state of the network belongs at

a given time to manifold (1.3), characterized by the synchrony of groups

of systems, then this synchrony is conserved forever and possibly enhanced

because the states of two different groups of systems might asymptotically

converge one to each other. This is why partitions satisfying condition (1.2)

have been called synchronous.

In principle, there could exist manifolds preserving synchrony different

from those pointed out by Theorem 1.1. Fortunately, this possibility is

ruled out by the following

Theorem 1.2. If a manifold with groups of synchronous systems of the

form (1.3), where Π = {π1, π2, . . . , πp} is a partition of N , is invariant,

then Π is a synchronous partition.

Proof. When the system starts at time t0 in the invariant manifold (1.3),

the state vectors of all the systems of the same group πi are identical, so

that two different systems h1 and h2 belonging to the same group πi are

described by

ẋh1
(t0) = f(x(i)) +D

∑

j 6=i

nh1πj
(x(j) − x(i))

ẋh2
(t0) = f(x(i)) +D

∑

j 6=i

nh2πj
(x(j) − x(i))

But ẋh1
(t0) must be equal to ẋh2

(t0) because manifold (1.3) is invariant,

so that
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(a)

(b)

Fig. 1.2 The partition in (a) is synchronous while the partition in (b) is not synchronous

∑

j 6=i

(nh1πj
− nh2πj

)(Dx(j) −Dx(i)) = 0 .

Since this condition must hold for any arbitrary vector (Dx(j) −Dx(i)) in

the range of D, which is at least one-dimensional because D 6= 0, we must

have nh1πj
− nh2πj

= 0 ∀j 6= i which is, indeed, condition (1.2).

�

Thus, S represents the number of manifolds in which synchrony is pre-

served (if not enhanced). S can be computed by an algorithm that checks if

the topological condition (1.2) is satisfied for each partition. A Matlab ver-

sion of this algorithm that takes advantage of an incremental construction

of the possible partitions using a tree structure and a prune strategy which

prematurely discards families of partitions that early violate condition (1.2)

is available on request.
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1.3 Topological indicators of synchronization propensity

All forms of synchrony of system 1.1 depend on network topology (matrix

[chk]), local dynamics (function f) and dispersal (matrix D). Functions

that depend only on topology and capture the probability that a particular

form of synchrony is present, when local dynamics and dispersal belong

to a suitably defined admissible class, are called topological indicator of

synchronization propensity. In this section we first review the three known

topological indicators of synchronization propensity and then present a new

one based on the notion of synchronous partitions discussed in the previous

section.

The first topological indicator denoted by (a) in the following, has been

proposed byWu and Chua (see Wu and Chua (1996)) and refers to complete

synchrony, namely to the case where all systems in the network behave in

unison and return to this peculiar collective behavior after any small per-

turbation. The topological indicator (a) is theoretically justified when the

admissible local dynamics are characterized by Master Stability Functions

(Pecora and Carroll, 1998), which are negative above a threshold value ε.

In fact, under these conditions, the completely synchronous regime is stable

for small perturbations provided

λ2 >
ε

d
(1.4)

where d =
√

d21 + . . .+ d2n and λ2 is the minimum non-zero eigenvalue

of the connectivity matrix (Pecora and Carroll, 1998) (We recall that the

connectivity matrix is a zero row sum matrix in which gij , i 6= j, is equal

to −1 if systems i and j are coupled and equal to 0 otherwise, whereas gii
is the degree of system i, namely the number of systems directly coupled

with i). Since λ2 depends on topology, while ε and d depend on local

dynamics and dispersal and are therefore randomly selected within their

admissible sets, we can summarize condition (1.4) by saying that topologies

with higher values of λ2 have higher probabilities of giving rise to complete

synchronization in (1.1).

The second topological indicator, denoted by (b), also refers to local

stability of the completely synchronous state, but the set of admissible

local dynamics is not constrained to the functions f with Master Stability

Functions negative above a threshold ε. Indeed, the property required

for the Master Stability Functions is weaker, namely to be negative in an

interval (ε, ε). Under these assumptions, it can be proved (Pecora and

Carroll, 1998) that the stability condition of the completely synchronous
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state is

λ2

λN

>
ε

ε
(1.5)

where λN is the maximum eigenvalue of the connectivity matrix. Thus,

ε/ε being a random variable selected within the admissible sets, we can

conclude that topologies with higher values of λ2/λN have higher chances

to give rise to complete synchrony.

The third topological indicator of synchronization propensity, denoted

by (c), still refers to the completely synchronous state, but pretends that

the network returns to it after any perturbation and not only after small

perturbations. This property (global stability) can be studied using suitable

Liapunov functions, as done in Belykh et al. (2005), and the final result is

that the completely synchronous state has higher chances to be globally

stable if the inverse of the highest sum of the lengths of all shortest paths

in the network passing through the same arc is higher.

The fourth topological indicator of synchronization propensity, denoted

by (d) in the following, is the one we propose in this paper. It is radically

different from the three other indicators (a), (b) and (c) because it does

not refer only to complete synchrony but also to weak forms of synchrony,

like partial (cluster) synchrony and intermittent synchrony. Since the prob-

ability of being in a state of weak synchrony certainly increases with the

number of manifolds where partial synchrony is preserved (if not enhanced),

on the basis of the two theorems reported in the previous section we can

propose the number S of synchronous partitions as topological indicator of

synchronization propensity.

In order to compare the four indicators we have just described, we can

consider the regular network of Fig.1.1a and the families of networks ob-

tained from it by randomly rewiring m = 1, 2, 3 connections, with the aim

of determining if this randomization increases or decreases the chances of

synchronization. In the following section we will go into more details on

this problem by making reference to a specific ecological application.

For the network in Fig.1.1a, corresponding to m = 0, the four indica-

tors can be easily computed (the value of the indicator (d) computed with

our algorithm is S = 64). But the four indicators can also be computed

for the less regular networks shown in Fig.1.1 (for example, our algorithm

gives S = 7, 5, 3, respectively, for the networks with m = 1, 2, 3 in Fig.1.1).

Computing the four indicators for many randomly generated networks with

the same m one obtains the four curves reported in Fig.1.3. The curves (a),

(b), (c) show that randomization has only a small impact on synchroniza-
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tion, while curve (d) predicts just the opposite, namely a dramatic drop of

synchrony with randomization. However, these conflicting results can be

easily justified if one recalls that the topological indicator (d) refers to all

forms of synchrony while the indicators (a), (b), and (c) refer only to the

strongest form of synchrony.

1.4 An ecological application

Spatially extended ecological systems are often composed of N very similar,

if not identical, patches in each one of which n species dynamically interact.

Some of the patches are connected by channels through which individuals

of different species can migrate at various rates. Thus, eq. (1.1) can be

used to model such ecosystems.

If some patches are synchronous, even intermittently, then all popu-

lations of the same species of those patches reach their minimum density

at the same time. This is a highly risky situation because if an environ-

mental shock of large spatial scale occurs exactly at that time, there are

high chances that all individuals of the species in those patches die. For

this reason high probabilities of synchronization are usually perceived by

ecologists as high probabilities of extinction. This justifies studies in which

relationships are established between probabilities of synchronization and

topological characteristics of the network.

We consider from now on a spatially extended ecosystem composed of

n species living in 10 patches located on a circle. Migration of all species

is possible from each patch to its four neighbors (two on the left and two

on the right), as shown in Fig.1.1a. Networks of this kind mimic aquatic

or terrestrial ecosystems distributed around islands or lakes. Moreover,

we assume to be interested in knowing if randomization of the migration

channels in the form shown in Fig.1.1 is beneficial or not in terms of risk of

extinction. The problem can be immediately solved by using the topological

indicator (d) described in the previous section because in this application

we are interested in all forms of synchrony. The answer is therefore given

by the curve (d) of Fig.1.3 which allows one to conclude that randomization

reduces very effectively the risk of extinction.

In order to verify if this is indeed the case, we assume that there are

only two species, namely a prey x1 and a predator x2, described by the
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d

Fig. 1.3 Topological indicators of synchronization propensity for the networks of Fig.1.
Each curve (normalized to 1 for m = 0) represents the mean values of 100 randomly
generated networks for every m.

most standard model used in ecology (Rosenzweig and MacArthur, 1963):

ẋ1 = f1(x1, x2) = rx1

(

1−
x1

K

)

−
ax1

b+ x1
x2

(1.6)

ẋ2 = f2(x1, x2) = e
ax1

b+ x1
x2 − zx2

where

r and K are net growth rate and carrying capacity of the prey, ax1/(b+

x1) is the Holling type II functional response of the predator and e and

z are predator efficiency and mortality. Thus, model (1.1) is completely

specified because f(·) is given by (1.6), the matrix D is a 2 × 2 diagonal

matrix with migration rates d1 and d2 on its diagonal and the elements chk
are specified by the graphs of Fig.1.1.

In order to estimate the synchronization propensity in the network we

can use a pragmatic approach somehow similar to those used by field ecol-

ogists (Koenig, 1999; Liebhold et al., 2004). Here we closely follow Holland

and Hastings (2008) who have studied, through extensive simulations, the

dependence of synchrony on various factors in the networks of Fig.1.1 with

model (1.6). More precisely, we integrate Eq.(1.1) for a given initial condi-

tion and determine, through correlation analysis, how many are the groups

of patches (p) that can be roughly considered to be synchronous after the

system has settled on one of its numerous attractors (limit cycles, tori
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and strange attractors). Then, we repeat this procedure for 100 randomly

generated initial conditions, as well as for many different graphs with the

same value of m, thus estimating the distribution of the number p of syn-

chronous groups of patches for each m. Since p = 1 and p = 10 indicate

completely synchronous and asynchronous regimes respectively, we extract

from each distribution the probability P that p ≤ 5, i.e. that the groups

of synchronous patches are at most 5 and consider this as the probability

of synchronization. Finally, in order to check the robustness of our results

we have repeated all computations for more than 10 parameter settings of

model (1.6) and for various values of the migration rates. All the computed

probabilities decline with m, as shown in the four examples reported in

Fig.1.4, and therefore confirm the prediction of our topological indicator

(see curve (d)) in Fig.1.3). The curves in Fig.1.4 compare favorably with

the analysis performed by Holland and Hastings (see Figs. 11a, 10b, 3, 9a

in Holland and Hastings (2008)).

It is worth noticing, however, that in this specific application millions

of long simulations of 20 ODE’s are needed to obtain the same conclusions

that can be obtained in a few minutes with our indicator. Moreover, thanks

to our theorems we can state that the results are valid not only for other

prey-predator communities but also for any other model.

Fig. 1.4 Probability P that at most 5 groups of patches are synchronous in the networks
of Fig.1.1.
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1.5 Concluding remarks

The results presented in this paper are certainly worth to be extended to

more complex networks, in particular those described by directed graphs,

and to different types of coupling rules like periodic or aperiodic couplings

(e.g. Belykh et al. (2004); Wu (2007); Rinaldi (2009)), which are important

when migration or diffusion can occur only in specific seasons or during rare

and random events. Moreover, since high values of our topological indicator

are not necessarily correlated with high chances of complete synchroniza-

tion, it would make sense to try to identify more complex indicators that

might also include the propensity to complete synchronization. Finally, our

indicator could be used to identify the coupling architectures that are most

promising for controlling epidemics in social networks, since this problem

has been shown to be critically influenced by synchrony (Earn et al., 2000).
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