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Abstract

Plankton patchiness in homogeneous physical environments is studied in this

paper assuming that all involved populations disperse diffusively. A recent

but powerful sufficient condition for the emergence of spatial patterns in mod-

els with any number of species is systematically applied to all food chain and

food web plankton models and the result is rather sharp: All models explic-

itly containing phytoplankton, zooplankton and planktivorous fish suggest

zooplankton patchiness, while models not containing phytoplankton or fish

populations do not. The results are in agreement with many previous but

particular theoretical studies on plankton patchiness and Turing instability,

and testable prediction of the models satisfying the sufficient predictions is

that zooplankton should be more patchy then phytoplankton, a property

that is often seen in natural settings. An application to a complex model

with five compartments (nutrient, phytoplankton, zooplankton, planktivo-

rous fish, carnivorous fish) highlights the predictive power of the method.
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1. Introduction1

Plant and animal populations are often not uniformly distributed in space,2

in particular when turbulent flows are controlling their dispersal. In aquatic3

ecosystems, the paradigmatic example is plankton patchiness that has at-4

tracted the attention of many researchers since the very beginning of spatial5

ecology (Levin and Segel, 1976, Steele, 1978, Okubo, 1992). In general, when6

populations interact demographically in media that vary in time and space7

one is, at least in principle, forced to study the problem through the use of8

two distinct submodels connected in cascade as sketched in Fig. 1. This9

makes the problem rather complex, because population samples not only10

contain information on demography but also on the characteristics of the11

physical environment, at the point of being sometimes dominated by them.12

For example, all techniques used for extracting the Liapunov exponent (the13

most popular indicator of chaos) from a plankton time series (Sugihara and14

May, 1990, Ascioti, Beltrami, Carroll and Wirick, 1993, Pascual, Ascioti and15

Caswell, 1995) would give an estimate (actually an upper bound) of the Lia-16

punov exponent of the environmental submodel (Rinaldi and Solidoro, 1998,17

Colombo, Dercole and Rinaldi, 2008). That is to say, the plankton commu-18

nity plays the role of an instrument that measures a characteristic parameter19

of the environment, as noted by Pascual et al. (1995), who discovered that20

the Liapunov exponent extracted from plankton time series was actually very21

close to the Liapunov exponent emerging from the analysis of purely oceano-22

graphic time series.23

Only a few studies have been carried out on complete models of the24
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Figure 1: Two submodels connected in cascade.

kind shown in Fig.1 (Vilar, Solé and Rub́ı, 2003, Abraham, 1998, Hillary25

and Bees, 2004b, Colombo et al., 2008). These studies confirm that the26

characteristics of the environment can be dominant, but that in some cases27

plankton demography may add extra complexity.28

In order to simplify the study of plankton, one can restrict the analysis29

to only one of the two submodels in Fig. 1. The first extreme approach30

consists of studying the spatio-temporal dynamics of the flows and deduce31

from them the population patterns by considering plankton, as well as other32

species, as inert particles (see Gower (1980) for an early support of this idea).33

In this way, the problem is reduced to a relatively standard problem of hy-34

drodynamics where only the sinking, floating or swimming characteristics of35

the populations are taken into account. This approach can explain numer-36

ous plankton patterns, observed at various spatial scales, like vortices that37

turn on and off alternatively (Aref, 1984), multiple bands of dense organisms38

lumped into swaths (Shanks, 1983), and long single stripes of swimming or39

floating plankton parallel to shore (Franks, 1997). Conversely, the second40

extreme approach, simply rules out the hydrodynamics by assuming that all41

flows are constant in time and space, so that the model becomes a classical42

population model with a dispersal mechanism controlling the movement of43

the individuals in a spatial domain. This approach has a long scientific tra-44
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dition and emphasizes the role of biology by pointing out that demography45

has the power of creating surprisingly complex spatial patterns, like spots46

and stripes of abundances, even in perfectly homogeneous environments.47

Segel and Jackson (1972) were the first to show that the theory devel-48

oped by Turing (1952) in his celebrated study on the origin of morphogenesis49

could be applied in ecology to check if density dependent mechanisms could50

promote spatial pattern formation in perfectly homogeneous environments.51

Their study was limited to models with two populations and diffusive dis-52

persal, because these were Turing’s assumptions. A few years later, Levin53

and Segel (1976) conjectured that Turing’s theory was potentially the most54

appropriate tool for supporting the idea that plankton patchiness could be55

the consequence of demographic characteristics of the populations. However,56

the phytoplankton-zooplankton model they used is not credible (phytoplank-57

ton in the absence of zooplankton increases unboundedly) and suggests that58

the so-called “activator” (a key notion in Turing’s theory) is phytoplankton.59

This implies that phytoplankton should be more patchy than zooplankton,60

a property which is in contrast with observations (Levin, 1992, Vilar et al.,61

2003). Here we show that Levin and Segel could not do any better, given62

the constraint of using a model with only two populations. In fact, all stan-63

dard ditrophic food chain models with zooplankton at the top or at the64

bottom of the chain can not have zooplankton as activator (we consider as65

non-standard not only the models with unboundedly growing phytoplankton66

(Levin and Segel, 1976), but also those with predator with ratio-dependent67

functional responses which are known to be prone to degeneracies (Yodzis,68

1994, Abrams, 1994). By contrast Levin and Segel were right in making69
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their conjecture because, as shown in this paper, a recently derived sufficient70

condition for pattern formation (Satnoianu, Menzinger and Maini, 2000, Sat-71

noianu and van den Driessche, 2005, Della Rossa, Fasani and Rinaldi, 2012),72

is structurally satisfied in all realistic models where zooplankton feeds on73

phytoplankton and is predated by fish.74

The paper is organized as follows. In the next section we briefly report75

the sufficient condition implying pattern formation in models with more than76

two populations. Then, we show that under very general assumptions such a77

condition is satisfied in models with (one or more groups of) phytoplankton,78

zooplankton and planktivorous fish. This is done by distinguishing between79

zooplankton and phytoplankton patchiness. Finally, we highlight the power80

of our condition by simulating a model with five compartments, namely nu-81

trient, phytoplankton, zooplankton, planktivorous fish, and carnivores. A82

final section presents the conclusions and discusses possible extensions.83

2. A simple sufficient condition for pattern formation84

Assume that n populations with densities xi, i = 1, ..., n depending upon85

time and space interact in a spatial domain in accordance with a standard86

reaction-diffusion PDE87

∂xi

∂t
= fi(x) + di∇

2xi i = 1, ..., n (1)

where di is dispersal of i-th population. In general, zero-flux or periodic88

conditions are imposed at the boundary of the spatial domain. If di and fi89

do not depend on time and space, then a uniform solution x̄ = (x̄1, ..., x̄n) of90
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(1) (satisfying ∂xi/∂t = ∇
2xi = 0) is an equilibrium of the lumped model91

dxi

dt
= fi(x) i = 1, ..., n (2)

In his famous paper on morphogenesis, Turing (1952) discovered that x̄92

can be stable in model (2) but unstable in model (1) for suitably unbal-93

anced dispersal rates. This somehow counterintuitive phenomenon, called94

diffusive (or Turing) instability, has been extensively used in ecology in the95

last 40 years to discuss the problem of pattern formation in spatially ex-96

tended ecosystems (see, for instance, Segel and Jackson (1972), Levin and97

Segel (1976), Chakraborty, Singh, Lucy and Ridland (1996), Bartumeus,98

Alonso and Catalan (2001), Alonso, Bartumeus and Catalan (2002), Bau-99

rmann, Gross and Feudel (2007), Wang, Liu and Jin (2007), Zhang, Wang100

and Xue (2009), Sun, Zhang and Jin (2009), Banerjee (2010), Fasani and Ri-101

naldi (2011, 2012), Della Rossa et al. (2012)). Also the problem of plankton102

patchiness has been studied in terms of diffusive instability (Levin and Segel,103

1976, Malchow, 1993, 1994), even if it has more often been dealt with through104

the analysis of power spectra (see, for example, Steele and Henderson (1992),105

Powell and Okubo (1994), Abraham (1998), Vilar et al. (2003)).106

Necessary and sufficient conditions for diffusive instability have first been107

obtained by Turing for the particular case n = 2 and then by Satnoianu et al.108

(2000), Satnoianu and van den Driessche (2005) for the general case. In this109

paper, we only use the following sufficient condition for diffusive instability110

that can be easily derived (see Della Rossa et al. (2012)) from the general111

results of Satnoianu and coauthors.112

A sufficient condition for diffusive instability. If a population, say113

the i-th one, is an activator, in the sense that ∂fi/∂xi > 0 at a positive stable114
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equilibrium x̄ of (2), then the uniform solution x̄ of (1) is unstable provided115

the activator disperses sufficiently less than the other populations. The exis-116

tence of an activator is only a sufficient condition for diffusive instability, in117

the sense that there are systems with three or more species in which diffusive118

instability can emerge even if there are no activators. In contrast, this is not119

possible in systems with only two species, where the existence of an activator120

is a necessary and sufficient condition of diffusive instability, again under the121

assumption of unbalanced dispersals.122

In the case n = 2, there can be only one activator because, x̄ being123

stable, the trace of the Jacobian (∂f1/∂x1 + ∂f2/∂x2) must be negative. By124

constrast, when n > 2, we can have multiple activators, in which case the125

dispersals of the activators required to guarantee spatial patterns do not need126

to be unbalanced.127

The spatial patterns that emerge when the sufficient condition is satis-128

fied (typically spot-like patterns) are particularly sharp for the activators129

and depend upon demographic parameters and dispersal, as shown in the130

application described in Sect.4.131

3. Patchiness in plankton models132

Phytoplankton (P ) and zooplankton (Z) populations are central compo-133

nents of the aquatic food web going from nutrient (N) to fish (F ). They134

are usually present in a high number of groups characterized by different135

size, mobility and life strategies. Each phytoplankton group is limited by136

light and nutrients (typically, nitrogen and phosphorous) and is predated by137

a few zooplankton groups, which, in turn, are the food sources of a number138
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of fish species. Some demographic characteristics of the various components139

of the food web are influenced by periodic (or almost periodic) exogenous140

factors (daily cycle for light, weekly cycle for nutrient production, moon141

cycle for predator efficiency, yearly cycle for light and water temperature)142

that can have relevant impacts on plankton dynamics (see, for example, May143

(1974), Harris (1986), Berryman and Millstein (1989), Sugihara and May144

(1990), Scheffer (1991b), Steele and Henderson (1992), Hastings, Hom, Ell-145

ner, Turchin and Godfray (1993), Ascioti et al. (1993), Pascual et al. (1995)).146

Depth is also an important independent variable that, in principle, should be147

included in any model in order to carefully describe the impact of self-shading148

on phytoplankton growth.149

Models used to mimic spatio-temporal plankton dynamics are much more150

simple than reality. In particular, in order to apply our sufficient condition151

for diffusive instability we rule out exogenous periodicities and depth. Thus,152

the models we will consider are, in the most complex case, food webs with153

constant demographic parameters and dispersal. But, more often, they sim-154

ply mimic food chains going from nutrients to fish or segments of this food155

chain.156

The aim of our analysis is to show that, under general and standard157

assumptions, zooplankton populations are activators, in the sense specified158

in the previous section. This occurs with almost no exception if the model159

includes explicitly (as it should!) phytoplankton and fish. By contrast, if160

preys or enemies of zooplankton are missing, then there is no chance that161

the model predicts zooplankton patchiness. In order to support these state-162

ments, we first show that in food chain models ending with zooplankton163
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(e.g. phytoplankton-zooplankton (P−Z) models or nutrient-phytoplankton-164

zooplankton (N−P−Z) models), or starting with zooplankton (e.g. zooplankton-165

fish (Z − F ) models), zooplankton can not be an activator. Then, we prove166

that food chain models including prey and enemies of zooplankton, like167

N − P − Z − F models, satisfy our sufficient condition for the emergence of168

zooplankton patchiness. Finally, we show that the result remains valid also169

in food webs, i.e., when the model includes multiple groups of phytoplankton170

and/or zooplankton.171

3.1. Zooplankton patchiness172

Food chain models with zooplankton at the top of the chain are either173

P − Z models (Levin and Segel, 1976, Steele and Henderson, 1992, Vilar174

et al., 2003) or N − P − Z models (Steele and Henderson, 1992, Abraham,175

1998, Hillary and Bees, 2004a,b). They all share the same equation for176

zooplankton, namely177

dZ

dt
= fZ(P, Z) = eZΨZ(P, Z)Z −mZ(Z)Z

= Z [eZΨZ(P, Z)−mZ(Z)]

(3)

where eZ , mZ and ΨZ are efficiency, per-capita mortality and functional178

response of zooplankton. If we assume, that the stable equilibrium (N̄ , P̄ , Z̄)179

is strictly positive (zooplankton patchiness in the absence of zooplankton180

makes no sense) then181

∂fZ
∂Z

= Z̄

[

eZ
∂ΨZ

∂Z
−

∂mZ

∂Z

]

(4)

because the term in the brackets in (3) is zero at a positive equilibrium. If182

the functional response ΨZ and the per-capita mortality mZ of zooplankton183
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do not depend on zooplankton density, then ∂fZ/∂Z = 0 so that zooplank-184

ton is not an activator (even if our sufficient condition is ‘almost satisfied’).185

If zooplankton individuals interfere when predating (∂ΨZ/∂Z < 0) and/or186

suffer some kind of intraspecific competition (∂mZ/∂Z > 0), then ∂fZ/∂Z187

is negative and the sufficient condition for pattern formation is not satisfied.188

In order to obtain the opposite result, one should imagine that zooplankton189

is cooperative in searching for food (∂ΨZ/∂Z > 0) or in activating survival190

mechanisms (∂mZ/∂Z < 0), but these assumptions are not sensible and in191

fact they have never been reported in the literature.192

Food chain models with zooplankton at the bottom of the chain (never193

discussed in the literature so far) should be Z − F models with the fish194

equation of the form195

dF

dt
= fF (Z, F ) = eFΨF (Z, F )F −mF (F )F = F [eFΨF (Z, F )−mF (F )]

so that, at a positive equilibrium
(

Z̄, F̄
)

,196

∂fF
∂F

= F̄

[

eF
∂ΨF

∂F
−

∂mF

∂F

]

(5)

The standard assumption in studies of fish stocks (Walters and Martell, 2004)197

is that the functional response ΨF and the per-capita mortality mF do not198

depend on F (notice that this rules out the case of ratio-dependency), so that199

from (5) ∂fF /∂F = 0. Since, by assumption, the equilibrium
(

Z̄, F̄
)

is stable,200

the trace of the Jacobian (∂fZ/∂Z + ∂fF /∂F ) must be negative, and hence201

∂fZ/∂Z < 0, i.e. our sufficient condition is not satisfied for zooplankton.202

This conclusion is reinforced if ∂ΨF /∂F > 0 and/or ∂mF /∂F < 0, i.e. if203

fish are cooperative and/or predated by Holling type II carnivores. Thus, in204
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conclusion, even Z −F models do not suggest zooplankton patchiness under205

very general and realistic assumptions.206

Let us now consider P − Z − F and N − P − Z − F models where both207

prey and predator of zooplankton appear explicitly. Models of this kind have208

been proposed in the literature with N and F fixed at constant values and209

used as control parameters (in order to still obtain a model with only two210

differential equations) (Scheffer, 1991b,a, Malchow, 1993, 1994, Medvinsky,211

Petrovskii, Tikhonova, Malchow and Li, 2002) or with N and F varying in212

time in accordance with a differential equation (Doveri, Scheffer, Rinaldi,213

Muratori and Kuznetsov, 1993, Rinaldi and Solidoro, 1998). In all these214

cases, the zooplankton equation is still eq. (3) but with the addition of an215

extra mortality due to fish, namely216

dZ

dt
= fZ(P, Z, F ) = eZΨZ(P, Z)Z −mZ(Z)Z − FΨF (Z, F )

= Z

[

eZΨZ(P, Z)−mZ(Z)− F
ΨF (Z, F )

Z

] (6)

In the absence of interference and cooperation in the zooplankton population217

(∂ΨZ/∂Z = ∂mZ/∂Z = 0) we obtain from (6) that at a positive equilibrium218

Z̄219

∂fZ
∂Z

= −Z̄F̄
∂ (ΨF/Z)

∂Z
(7)

To evaluate the sign of ∂fZ/∂Z in (7) we can consider the two standard cases220

of fish functional response221

ΨF =







aZ/(b+ Z) Holling type II

aZ2/(b2 + Z2) Holling type III

where b is the half-saturation constant, namely the density of zooplankton222

11



at which fish predation is half maximum. After some algebra, we obtain223

∂fZ
∂Z

=







aZ̄/(b+ Z̄)2

aZ̄(Z̄2
− b2)/(b2 + Z̄2)2

and the conclusion is that if the fish has a Holling type II functional response224

the zooplankton is always an activator, while in the case of Holling type III225

functional response the zooplankton is an activator if Z̄ > b, i.e. if the226

equilibrium (N̄, P̄ , Z̄, F̄ ) is a so called zooplankton dominated equilibrium227

(Malchow, 1993). In the opposite case, namely when the equilibrium is a228

phytoplankton dominated equilibrium (i.e. P̄ large and Z̄ small) zooplankton229

is not an activator and its patchiness can not be inferred from our sufficient230

condition. This is not a great deal because knowing if a population with low231

abundance is patchy or not is only a futile curiosity.232

The results obtained so far are valid also in food web models characterized233

by multiple phytoplankton and zooplankton groups (see, for example, Rose,234

Swartzman, Kindig and Taub (1988)). In these models each zooplankton235

group i is described by an equation similar to (6)236

dZ(i)

dt
= e

(i)
Z
Ψ

(i)
Z
Z(i)

−m
(i)
Z
(Z)Z(i)

− FΨ
(i)
F

(8)

where the i-th functional response Ψ
(i)
Z

depends upon the phytoplankton237

groups that are in the diet of the i-th zooplankton group but not upon Z(i),238

while the fish functional response Ψ
(i)
F

depends upon Z(i) but also upon the239

other zooplankton groups. More precisely, Ψ
(i)
F

takes the form240

Ψ
(i)
F

=
aZ(i)

b0 + b1Z(1) + b2Z(2) + . . .+ biZ(i) + . . .
(9)

in the case of a generalized type II fish functional response, or a similar form241

in the case of a generalized type III fish functional response. Substituting242
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(9) into (8) one obtains243

dZ(i)

dt
= Z(i)

[

e
(i)
Z
Ψ

(i)
Z

−m
(i)
Z

−
aF

b0 + b1Z(1) + b2Z(2) + . . .+ biZ(i) + . . .

]

that gives244

∂f
(i)
Z

∂Z(i)
=

aFbiZ̄
(i)

(b0 + b1Z(1) + b2Z(2) + . . .+ biZ(i) + . . .)
2

which is always positive, thus indicating that each zooplankton group is an245

activator. As in the case of food chain models, the analysis of model (8,9)246

with type III fish functional response brings to the conclusion that zooplank-247

ton groups are activators in zooplankton dominated regimes.However, not248

all zooplankton groups have the same chance to be patchy, because some of249

them might not satisfy the condition of sufficiently low dispersal. This result250

might be of some interest for interpreting the dependence of patchiness upon251

individual size recently pointed out in a study on field data (Decima, Ohman252

and De Robertis, 2010).253

3.2. Phytoplankton patchiness254

The analysis performed for zooplankton can be repeated to check if also255

phytoplankton is an activator in N − P − Z or N − P − Z − F models. In256

these models the phytoplankton equation is257

dP

dt
= fP (N,P, Z) = ePΨP (P,N)P −mP (P )P − ZΨZ(P, Z)

= P

[

ePΨP (P,N)−mP (P )− Z
ΨZ(P, Z)

P
)

] (10)

where ΨP is nutrient uptake of phytoplankton. Thus,258

∂fP
∂P

= P̄

[

eP
∂ΨP

∂P
−

∂mP

∂P
− Z

∂(ΨZ/P )

∂P

]
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and even in the simplest case of constant mortality (∂mP /∂P = 0) and type259

II functional response of zooplankton (ΨZ = aP/(b+ P )) we can not obtain260

a unique answer. In fact261

∂fP
∂P

= P̄

[

eP
∂ΨP

∂P
+

aZ̄

(b+ P̄ )2

]

(11)

and the first term in brackets is negative because self-shading is depressing262

the nutrient uptake of phytoplankton. Actually, eq. (11) shows that phyto-263

plankton has higher chances to be an activator when its density is low and264

Z̄ is high, i.e. in zooplankton dominated regimes. But this result. as shown265

in the next section, is not always guaranteed.266

3.3. Unbalance of dispersals267

We conclude this section with a comment on a somehow delicate point,268

namely that of the required unbalance of dispersals. Since zooplankton is in269

general an activator, its patchiness is guaranteed by our sufficient condition270

provided it disperses sufficiently less than phytoplankton and fish, i.e.271

dZ < dP dZ < dF .

While there is no doubt on the latter condition, the first poses some problems.272

The most common opinion on this matter, in particular when phytoplank-273

ton and zooplankton are considered as inert traces, is that dP and dZ are274

roughly comparable (see, for instance, Medvinsky et al. (2002)). But the275

inequality dZ < dP can, in principle, be supported by noticing that many276

zooplankton species are capable of resisting to currents by grasping, while277

phytoplankton is not. In reality, the mobility of zooplankton can be used to278

say that when there is no turbulence the opposite inequality can hold (see, for279
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instance, Malchow (1994)). However, this issue is of no relevance when also280

phytoplankton is an activator, because in that case the only unbalance that281

matters is dZ < dF . From the above discussion it follows that this should282

often be the case in zooplankton dominated regimes.283

4. Analysis of a particular plankton model284

In this section we study in some detail a spatially extended food chain285

model with 5 components: Nutrient (N), Phytoplankton (P ), Zooplank-286

ton (Z), Planktivorous fish (F ), and Carnivores (C). The zooplankton is287

the central compartment of the chain and we therefore expect zooplankton288

patchiness for suitably low zooplankton dispersal. The model, derived from289

Doveri et al. (1993), has been selected for three reasons: First, it has per-290

formed quite well in explaining the emergence of chaotic plankton dynamics291

in the presence of seasonalities (Rinaldi and Solidoro, 1998); second, realistic292

parameter ranges are available for it (Doveri et al., 1993); third it is much293

more detailed than the simple P − Z or P − Z − F models used until now294

for testing pattern formation due to Turing instability.295

The model equations, obtained from Doveri et al. (1993) by eliminating296
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all seasonalities, are:297

dN

dt
= δ(N0 −N)− βP

PN

kP +N

l

γP + l
+ ρPmPP + ρZmZZ + ρFmFF+

+ρCmCC + ξZβZ

ZP

kZ + P
+ ξFβF

FZ

kF + Z
dP

dt
= ePβP

PN

kP +N

l

γP + l
− βZ

ZP

kZ + P
−mPP − δP

dZ

dt
= eZβZ

ZP

kZ + P
− βF

FZ

kF + Z
−mZZ − δZ

dF

dt
= eFβF

FZ

kF + Z
− βC

CF

kC + F
−mFF − δF + V0Ī

dC

dt
= eCβC

CF

kC + F
−mCC

(12)

Notice that the nutrient uptake per unit of phytoplankton decreases with298

phytoplankton density in order to take the effect of self-shading into account.299

Thus, phytoplankton is not guaranteed to be an activator.300

The reference parameter values used in all simulations are reported in301

Table 1. They have been fixed in the feasible ranges proposed in Doveri302

et al. (1993) except the parameter l which has been selected in order to303

enhance the self-shading effect.304

For these reference parameter values the model has a stricly positive stable305

equilibrium306

N̄ = 0.356 [mgP l−1]307

P̄ = 0.075 [mgdw l−1]308

Z̄ = 0.565 [mgdw l−1]309

F̄ = 0.024 [mgdw l−1]310

C̄ = 0.099 [mgdw l−1]311

which is a zooplankton dominated equilibrium. The Jacobian matrix evalu-312
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Parameter Units Value Parameter Units Value

mP day−1 0.2 mZ day−1 0.15

mF day−1 0.02 mC day−1 0.01

kP mgP l−1 0.02 kZ mgdw l−1 0.075

kF mgdw l−1 0.5 kC mgdw l−1 1.2

βP day−1 0.1 βZ day−1 0.6

βF day−1 0.2 βC day−1 0.5

eP mgdw(mgP )
−1 100 eZ - 0.6

eF - 0.6 eC - 1

ρP mgP (mgdw)
−1 0.003 ρZ mgP (mgdw)

−1 0.0031

ρF mgP (mgdw)
−1 0.00465 ρC mgP (mgdw)

−1 0.0054

ξZ mgP (mgdw)
−1 0.007 ξF mgP (mgdw)

−1 0.006

δ day−1 0.025 l cal m−2day−1 4

γ cal l m−2(day mgdw)
−1 150 V0 mgdw l−1 2

N0 mgP l−1 0.37 Ī day−1 0.00027

Table 1: Parameter values for model (12)

ated numerically at this equilibrium is313























−0.0252777 0.00199401 0.00257325 0.000729839 0.000054

0.0277658 −0.70517 −0.299329 0 0

0 0.681537 0.00243975 −0.10614 0

0 0 0.00129449 −0.0212353 −0.01

0 0 0 0.0399192 0























and the sign of its central element confirms that zooplankton is an activator.314

The negativity of the second diagonal element shows, as observed in the315

previous section, that in a zooplankton dominated equilibrium there is no316

guarantee that phytoplankton is an activator.317

Thus, on the basis of the results obtained with our sufficient condition318
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we expect zooplankton patchiness if zooplankton dispersal is sufficiently low.319

To confirm this guess we have performed extensive simulations of the PDE320

model (1,12) on 51.2 km × 51.2 km square spatial domains with periodic321

boundary conditions. The initial conditions have been randomly selected,322

in order to avoid the formation of special patterns. Significant parts of the323

simulation results are reported in Fig. 2 (see captions for details) and confirm324

all our expected results. They point out that the zooplankton spatial patterns325

are typically spot-like patterns, where the spots become more numerous and326

irregular when the zooplankton dispersal decreases.327

Figure 2: Stationary solutions of model (1,12) obtained through simulations on 51.2 km ×

51.2 km square spatial domains with periodic boundary conditions and randomly selected

initial conditions. In order to show more details on the shape and dimension of zooplankton

spots, only parts of the solutions are shown, by zooming on 3.2 km × 3.2 km squares.

Parameter values are as in Table 1 and dispersal coefficients are dN = dP = 2 km2 day−1,

dF = dC = 10 km2 day−1 and, from left to right, dZ = 1, 0.5, 0.1 dm2 day−1. Simulations

have been performed using GRIND for Matlab, http://www.aew.wur.nl/UK/GRIND/.
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5. Concluding remarks328

We have studied in this paper the problem of plankton patchiness due329

to diffusive instability. For this we have used a very simple but powerful330

sufficient condition for pattern formation that can be applied when a diago-331

nal element of the Jacobian matrix is positive. First we have systematically332

discussed all possible zooplankton models and discovered that the sufficient333

condition is satisfied if and only if the model contains both the prey (phyto-334

plankton) and the predator (planktivorous fish) of zooplankton. The discov-335

ery that the impact of fish on zooplankton, a problem rarely considered in the336

technical literature, is the key for understanding pattern formation, gives a337

new value to old contributions in aquatic sciences (Rose, Swartzman, Kindig338

and Taub, 1975, Leah, Moss and Forrest, 1980, Cronberg, 1982, Shapiro and339

Wright, 1984, Reinertsen and Olsen, 1984, Levitan, Kerfoot and De Mott,340

1985). Then, we have studied models involving phytoplankton and discov-341

ered that patchiness emerges if the effect of self-shading is not too strong and342

the equilibrium is zooplankton dominated. In conclusion, we have pointed343

out subtle but relevant differences between phytoplankton and zooplankton344

in the role they play in promoting patchiness.345

The present study has been carried out under the assumption of diffusive346

dispersal of all populations, which is rigorously justified if all automotive347

individuals (like planktivorous fish and carnivores) undergo unbiased random348

walks. In contrast, if individuals of some species are also actively moving, it349

is, in principle, important to add to the diffusive term a second term (called350

cross-emigration) interpreting the tendencies of individuals to escape from351

predator and/or pursuit prey. In general this second dispersal mechanism352
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is assumed to depend on the gradient of prey and predator abundances,353

(see, for example, Murray (1990), Arditi, Tyutyunov, Morgulis, Govorukhin354

and Senina (2001), Huang and Diekmann (2003), Li, Gao, Hui, Han and355

Shi (2005)) and the conclusion is that cross-emigration can either increase or356

decrease spatial complexity (Huang and Diekmann, 2003). It would therefore357

be interesting, though certainly not trivial, to apply Huang and Diekmann358

approach to the case in which planktivorous fish and carnivores have relevant359

cross-emigration responses.360

Obviously, the present study could also be extended in other directions,361

for example by looking at the effect of depth, seasons and multiplicity of362

attractors. But certainly more attractive is the idea of checking if what we363

have discovered here can be extended up to the point of formulating a sort of364

general ecological principle, namely that populations that disperse less than365

their prey and enemies tend to be patchy under very general conditions.366
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