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Human-induced nitrogen–phosphorus
imbalances alter natural and managed
ecosystems across the globe
Josep Peñuelas1,2, Benjamin Poulter3, Jordi Sardans1,2, Philippe Ciais3, Marijn van der Velde4,

Laurent Bopp3, Olivier Boucher5, Yves Godderis6, Philippe Hinsinger7, Joan Llusia1,2, Elise Nardin6,

Sara Vicca8, Michael Obersteiner4 & Ivan A. Janssens8

The availability of carbon from rising atmospheric carbon dioxide levels and of nitrogen from

various human-induced inputs to ecosystems is continuously increasing; however, these

increases are not paralleled by a similar increase in phosphorus inputs. The inexorable change

in the stoichiometry of carbon and nitrogen relative to phosphorus has no equivalent in

Earth’s history. Here we report the profound and yet uncertain consequences of the human

imprint on the phosphorus cycle and nitrogen:phosphorus stoichiometry for the structure,

functioning and diversity of terrestrial and aquatic organisms and ecosystems. A mass

balance approach is used to show that limited phosphorus and nitrogen availability are likely

to jointly reduce future carbon storage by natural ecosystems during this century. Further, if

phosphorus fertilizers cannot be made increasingly accessible, the crop yields projections of

the Millennium Ecosystem Assessment imply an increase of the nutrient deficit in developing

regions.
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T
he growth of the global demand for phosphorus (P) in a
world flooded with reactive nitrogen (N) and CO2 emitted
by human activities is faster than the growth of supply1–4.

This creates a N:P imbalance that may induce signi-
ficant alterations in Earth’s organisms and ecosystems and a
P limitation of natural ecosystems growth and agricultural
production in the future.

The worldwide application of mineral phosphorus fertilizers to
croplands is B17 Tg P per year. When the use of livestock slurry
and manure is included, the total phosphorus application in
agriculture amounts to 22–26 Tg P per year (ref. 4). Unlike
nitrogen fertilizers, phosphorus fertilizers are not volatile, so that
very little phosphorus is redistributed from croplands to nearby
natural terrestrial ecosystems3,4. However, excessive application
of phosphorus fertilizer can result in substantial transfers of
phosphorus to adjacent freshwater bodies, followed by transport
to coastal waters. In contrast to phosphorus, atmospheric
nitrogen deposition from anthropogenic activities is
geographically widespread; it mostly impacts northern
ecosystems but will likely extend to the tropics during this
century1. The burning of fossil fuels, and the formation of
nitrogen oxides, has resulted in a widespread increase in the
deposition of nitrogen, especially around densely populated areas.
Globally, the deposition of reactive nitrogen from fossil fuel
burning amounts to 25–33 Tg N per year (ref. 4). Fertilizer inputs
make up a considerable additional amount of B118 Tg N per
year (ref. 4). Moreover, the annual human-caused biological
fixation of atmospheric N2 by cultivated leguminous crops and
rice is currently estimated at B65 Tg N per year (ref. 4). Only
B22% of these total human inputs of nitrogen ends up
accumulating in soils and biomass, whereas B35% enters the
oceans via atmospheric deposition (17%) and leaching via river
runoff (18%)2. In contrast to these multiple and massive human-
caused additions of reactive nitrogen, the only source of
atmospheric phosphorus deposition is through mineral aerosols
(dust and fly ash from wildfires). This source is small, with a total
global flux estimated at B3–4 Tg P per year (ref. 3) and it is not
clear whether it will increase or decrease in the future in response
to human activities and climate change. In agricultural lands, the
use of nitrogen fertilizers has grown more than 10 times since the
1950s, and continues to increase4. In contrast, although the use of
phosphorus fertilizers tracked that of nitrogen until the 1980s, it
has stalled since 1989 (ref. 4). The global average N:P ratio of
fertilizer inputs has thus increased by 51% since 1975. These
global agricultural inputs, however, mask a growing gap in access
to phosphorus fertilizers between developed and developing
(mainly tropical) countries. Only 10% of the world’s croplands
are found in developed countries but they account for 32% of the
global nitrogen surplus and for 40% of the phosphorus surplus5.

As a result of these unbalanced human-induced N and P inputs
into the biosphere, the N:P ratio of overall inputs and the N:P
ratio of atmospheric deposits, although being extremely variable
geographically, have continuously increased in the Northern
Hemisphere since pre-industrial times4. Future projections of
nitrogen emissions suggest an expansion of the area with high
anthropogenic nitrogen deposition and high deposited N:P ratios
from the populated temperate regions of the Northern
Hemisphere into tropical regions6. The stoichiometry of these
deposits currently presents a molar N:P deposition ratio in the
range 44–47 over land, more than twice the current molar ratio in
terrestrial plants (22–30) and of 114–370 over the oceans, which
is 10–20 times the current molar ratio in marine plankton (B16,
the Redfield ratio)4. These unbalanced nutrient inputs are very
likely to alter the environment and the life it supports.

In response to these likely alterations, as phosphorus and its
relation with N is pivotal for the functioning of the carbon cycle

and thereby also of climate, the question now arises as to whether
or not the changes in P and N availability and in N:P ratio can
alter the Earth’s capacity to fix carbon from human-induced CO2

emissions. Coupled climate–carbon cycle models are generally
unconstrained by nutrient limitation for land ecosystems and,
apart from some models that address potential nitrogen
limitations, do not include explicit phosphorus or other soil-
nutrient feedbacks on productivity and changes in carbon storage.
This lack of soil-nutrient constraint suggests that simulated
changes in net primary production (NPP) and increases in
vegetation and soil carbon storage in response to rising CO2 and
longer Northern Hemisphere growing seasons are likely over-
estimated7. Recent progress in implementing mechanistic
nitrogen and phosphorus schemes in terrestrial carbon cycle
models underscores the importance of nutrient feedbacks,
showing reductions in the twenty-first century productivity up
to 50% (ref. 8). Despite these advances, however, there is large
disagreement on the spatial pattern and the strength of future
nutrient limitation9, and their interaction with the coupled
climate–carbon cycle system remains highly uncertain.

Here we aim to discern how phosphorus limitations and
increased N:P resources will affect the environmental N:P
imbalances and the structure, function and diversity of the
Earth’s organisms and ecosystems, and in particular future
terrestrial ecosystem and cropland productivity and changes in
carbon storage, and thereby the function of the carbon cycle. We
conduct a literature review of the available observations and
experimental evidences of the ecological consequences of human-
induced N:P imbalances in the ‘Web of Science’ and conduct a
mass balance analysis, that is, we assume a C:N:P ratio and
calculate N and P demands for given changes in C pools, for an
ensemble of models from the Coupled Climate Carbon Cycle
Model Intercomparison Projects (C4MIP and CMIP5) used in the
IPCC Fourth and Fifth Assessment Reports. As a result, we report
profound and yet uncertain consequences of the human imprint
on the phosphorus cycle and N:P stoichiometry for the structure,
functioning and diversity of terrestrial and aquatic organisms and
ecosystems. We show that limited phosphorus and nitrogen
availability are likely to jointly reduce future carbon storage by
natural ecosystems during this century, and that if phosphorus
fertilizers cannot be made increasingly accessible, the crop yields
projections of the Millennium Ecosystem Assessment imply an
increase of the nutrient deficit in developing regions.

Results
Environmental N:P imbalances. Our review of the literature
showed that the higher increases of N inputs than of P inputs into
the biosphere (Figs 1 and 2) result in increases in N:P deposition
rates especially in the Northern hemisphere (Fig. 3), and that, as a
result, most studies reported increases in the N:P ratio of soils and
waters (Fig. 4). Increases in nitrogen deposition have increased
the N:P ratios of soils in terrestrial ecosystems in the temperate
zone, in northern and central Europe and in North America
(Fig. 4). Increases in nitrogen deposition have also been observed
in some tropical regions10, areas that, despite being complex and
heterogeneous, are usually less nitrogen-limited than temperate
regions. Some recent studies have already observed increases in
soil N:P ratios due to N deposition in tropical forest11.

In several lakes of Europe and eastern North America, the two
regions which have been exposed to the highest nitrogen
deposition over the past century, increases in N:P ratios have
paralleled shifts from a nitrogen-limited to a phosphorus-limited
environment12. In coastal waters, the amounts of anthropogenic
nutrients received from agricultural areas through rivers have
increased in recent decades13, leading to observations of higher
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N:P ratios in the waters off the coasts of China and South
America, and in the North Atlantic and the Baltic Sea14,15.
However, decreases in the coastal water N:P ratios have also been
reported, especially for estuaries in emerging economies
characterized by growing agricultural inputs of phosphorus,

such as Turkey13 and Mexico13. In the open ocean, the increases
in the N:P ratios of the atmospheric inputs (Fig. 3) enlarge the
extent of phosphorus-limited areas13.

Phosphorus fertilizer continues to be overused in croplands of
developed countries, causing eutrophication of downstream
ecosystems, but it is not applied in sufficient amounts in
developing countries, where food security is a challenge16. In
contrast to the global tendency for an enhancement of the N:P
ratio, intensely used pastoral areas and areas where animal slurry
is used as fertilizer17 are being polluted with excess phosphorus;
this phosphorus decreases the N:P ratio of water in soil, lakes and
streams. In contrast, where crops are fertilized solely with
industrial fertilizers, streams and lakes have systematically shown
high N:P ratios18.

Impacts of N:P ratio imbalances on organisms and ecosystems.
An increasing number of studies report increases in the N:P ratio
of terrestrial and aquatic plants in response to increased nitrogen
loadings (Fig. 4) (Supplementary Tables S1–S18). The literature
review shows that nitrogen deposition (or any type of nitrogen
loading) has direct effects on organisms and ecosystem structure
and function by itself, but also affects them indirectly
through alteration of the N:P ratio19 (Fig. 4) (Supplementary
Tables S1–S18); various metabolic processes are thereby affected
to different degrees. For example, the maximum growth rate
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Figure 1 | Anthropogenic N and P inputs to the biosphere. Anthropogenic
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per year) since the industrial revolution (1860). Error bars indicate the

range of the data reported4.
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capacity of organisms is characterized by a specific ratio of RNA
to protein; and this ratio has been related to the organisms’ N:P
ratio20. In the Mediterranean shrub Erica multiflora, for instance,
increases in N:P ratio were accompanied by decreased
proportions of primary metabolites (sugars, amino acids)
relative to lipids and secondary metabolites, and also by lower
growth rates21. Several studies have observed that the N:P ratio of
foliage correlates negatively with net photosynthetic rate22, plant
growth23 and biomass production24 (Fig. 4) (Supplementary
Tables S1–S18). The increases in N:P ratio of environment and
organisms thus produce a cascade of effects favouring organisms
with lower growth rates and changing communities species
compositions and function (Fig. 4) (see details in Supplementary
Tables S1–S18). The N:P ratio has thus also been found to be
significantly related to plant community composition and
diversity19,25, but with different sign depending on the study.
N:P ratios are often correlated negatively with diversity26 but
there is also evidence suggesting precisely the opposite—that N:P
stoichiometry is related positively to species diversity. For
example, Laliberte et al.27 showed recently that increasing
phosphorus limitation along long-term soil chronosequences
occurs in parallel with a continual increase in vascular plant
diversity. Declines in diversity owing to nitrogen deposition can
also be due to other factors linked to nitrogen deposition, than
the change in N:P ratio itself28. In fact, nitrogen deposition could
promote plant diversity, because rare species are favoured under
phosphorus-limited conditions29. The relationship between N:P
stoichiometry and species diversity30 is, moreover, not necessarily
linear. For instance, Sasaki et al.25 have shown unimodal
relationships between N:P stoichiometry and species richness in
terrestrial ecosystems that reach a maximum at B20 biomass N:P
ratio, that is, at a much lower ratio than current deposition
ratios4. Several important ecosystem processes such as the energy
and element transfers through trophic levels have also been
related to these changes in organism’s N:P ratios30 (Fig. 4) (see

details in Supplementary Tables S1–S18). Among these ecosystem
processes, the fixation of CO2 is also likely to be affected by the
changes in P and N availabilities and the corresponding changes
in the N:P ratio, even though reduced growth does not necessarily
mean reduced C storage (for example, there is a decline in litter
decomposition rates following atmospheric nitrogen deposition31

in northern ecosystems, leading to an accumulation of carbon in
the forest floor).

Capacity of terrestrial ecosystems to fix CO2. Using the Coupled
Climate Cycle Model Intercomparison Projects (C4MIP and
CMIP5), we observed that in the absence of nutrient limitation,
terrestrial NPP increased between 2000 and 2099 by 3–57 Pg C
per year for the C4MIP model ensemble (n¼ 22) (Supplementary
Fig. S1) and � 4 to 12 and 10–64 Pg C per year for CMIP5
representative concentration pathways (RCP) 2.6 and 8.5,
respectively (for the CMIP5 ensemble, see Supplementary Table
S20). The change in NPP generally resulted in increased carbon
storage in both vegetation biomass (þ 22 to þ 477 Pg C for
C4MIP and � 369 to þ 435 Pg C for CMIP5) and soils (� 45 to
þ 457 Pg C and � 85 to 324 Pg C for C4MIP and CMIP5,
respectively, Supplementary Figs S1 and S2) by 2099. The
majority of models show high sensitivity of productivity to CO2

because they all lack P limitation and all but two models lack N
limitation.

Because of the slow rate of phosphorus release from weath-
ering, compared with losses from erosion, leaching and occlusion,
our analysis of the capacity of terrestrial ecosystems to fix
carbon from human-induced CO2 emissions (Supplementary
Tables S19-S21 and Supplementary Figs S1 and S2) suggested that
phosphorus limitation will be met first and nitrogen limitation
second in most regions (Fig. 5). Globally, the increase in nutrient
availability needed to sustain the carbon stock changes projected
by the C4MIP models, ranged from � 0.9 to 6.2 Pg P and � 4.9
to 36.7 Pg N for the coupled simulations and from 0.8 to 9.2 Pg P
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and 4.7 to 53.9 Pg N for the uncoupled simulations (positive
numbers indicate a higher demand; Fig. 5a). For the CMIP5
models, the change in nutrient availability needed to sustain the
carbon stock changes, ranged from � 0.9 to 4.3 Pg P and � 5.4 to
25.1 Pg N for the RCP 2.6 (the lower projection for fossil fuel
emissions) and from � 1.7 to 6.5 Pg P and � 10.0 to 38.6 Pg N
for the higher fossil fuel (RCP 8.5) scenario (Fig. 5b). In
comparison, the size of the global plant-accessible labile-
phosphorus soil pool is only 13.2 Pg P (estimated as the mean
of the range in the labile phosphorus pool in Fig. 2). The lower
demand, and for few models a negative demand, for the coupled
models was due to lower soil or vegetation carbon stocks from
increased soil organic matter decomposition or from increased
mortality due to climate stress.

The extra amount of phosphorus needed to sustain the
increased carbon storage exceeded all plausible phosphorus
supply scenarios by the end of the twenty-first century for all
of the 22 coupled and uncoupled simulations, and all of the
35 CMIP5 models (Fig. 5a,b). This estimation assumed no
additional plant uptake of plant-available labile phosphorus,
which is consistent with observations that microbes currently
sequester much of this labile phosphorus32. Assuming that the
labile-phosphorus soil pool could become entirely accessible for
plant uptake, sufficient phosphorus would be available in most of
the coupled model runs (Fig. 5a,b) under this ‘most optimistic’
supply scenario. At this global scale, the extra amount of nitrogen

needed to sustain the increased carbon storage exceed all
plausible nitrogen supply scenarios by the end of twenty-first
century for 18 out of 22 coupled and uncoupled simulation and
11 out of the 35 CMIP5 models.

At the regional scale, the change in tropical ecosystem
phosphorus demand (Fig. 5) was largely driven by changes in
vegetation carbon. Because of the high C:P ratio of woody
biomass, this carbon sink imposes only a relatively small
phosphorus demand (compared with the demand associated
with changes in soil carbon stocks). The size of the tropical labile-
phosphorus pool (3.3 Pg P; Supplementary Tables S19–S21 and
Supplementary Figs S1 and S2) may suffice to compensate for the
smaller cumulative inputs of phosphorus from weathering
(0.11 Pg P) and dust deposition (0.03 Pg P) relative to phosphorus
losses through erosion, leaching and occlusion (0.39 Pg P;
Supplementary Tables S19–S21 and Supplementary Figs S1 and
S2) over the same time period. We estimated an extra-tropical
labile pool of 9.9 Pg P (from a global labile-phosphorus pool of
13.2 Pg P), three times as high as the tropical labile-phosphorus
pool, with cumulative (over the years 2000–2099) extra-tropical
dust and weathering inputs at 1.4 Pg P but exceeded by large
leaching and occlusion losses at 3.4 Pg P.

Crop yields. For the analysis in croplands, the change in crop
production (including wheat, rice, maize, roots/tubers and pulse
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and non-biofuel oil crops) projected by the Millenium Ecosystem
Assessment went from 1,568 Tg C per year in 2000 to 2,475 Tg C
per year in 2050. This suggests an increase in phosphorus
demand from 12.3 Tg P per year to 18.9–19.9 Tg P per year,
across the four Millenium Ecosystem Assessment scenarios, and
in nitrogen demand from 81 Tg N per year to 135.6–142.5 Tg N
per year (taking C:P and C:N stoichiometry of crops as a model;
Supplementary Table S19). Integrating over the cumulative
additions of phosphorus from 2000 to 2050, and 2000 to 2100, we
estimated that applications of 1,232 Tg P and 3,195 Tg P would be
needed, respectively, to satisfy this increasing demand. Our
analyses show that the future phosphorus deficits for cereal crops
(including wheat, maize and rice) may be especially large in
Africa and Russia where the potential yields are not realized
(Fig. 6).

Discussion
The available data thus shows that the unbalanced human-
induced inputs of carbon, nitrogen and phosphorus into the

biosphere are altering environmental N:P ratios and that these
altered environmental N:P ratios are affecting the metabolism and
growth rates, and therefore the life histories and competitiveness
of various microbes, plants and animals33. The observed metabolic
shifts associated with organisms N:P ratio change21 provide
support for the hypothesis that exceedances of the optimal N:P
ratios can reduce growth rates34. Several studies have verified this
hypothesis in diverse unicellular organisms, zooplankton and fish
in aquatic ecosystems; there is evidence that this hypothesis can
also be extended to a large number of terrestrial plants and
animals, albeit with a few exceptions35 (Fig. 4).

The observed increasingly imbalanced inputs of N and P
require substantial upregulation of the homoeostatic and
flexibility mechanisms of the different organisms and commu-
nities and their corresponding energy costs, and in some cases it
is likely that they will exceed the homoeostatic and flexibility
limits, that is, the limits in the imbalance of the inputs of N and P
that these homoeostatic and flexibility mechanisms can cope
with36. Organisms and communities present a certain degree of
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atmosphere were included), and (b) the CMIP5 models. The horizontal lines indicate the estimated supply of phosphorus (blue, solid and dashed) and

nitrogen (maroon) in the year 2100 considering cumulative changes in nitrogen and phosphorus inputs. For nitrogen, the range of uncertainty (thickness of

the line) represents uncertainty from N-inputs and losses (ignoring the dynamics of the total labile pool), whereas with P the uncertainty (distance between

solid and dashed lines) represents two different assumptions on the labile P pool and it being available (dashed blue line) or unavailable, due for example

to competition with microbes (solid blue line) for uptake by plants (Supplementary Methods and Supplementary Table S19). The negative values for

the lower P threshold indicate a decrease in immediately available P due to gross losses from leaching and occlusion being slightly larger than gross inputs

from weathering (ignoring changes in the labile pool of P). Circles above the blue lines indicate that models predict that the phosphorus demand will not be

met. The C4MIP models are: TAXIS, HadCM3, IPSL-CM2, IPSL-CM4-LOOP, CSM, MPI, LLNL, FRCGC, UMD, UVIC, CLIMBER and BERNCC and

the 35 CMIP5 models are listed in Supplementary Table S2. Grey points for a are for the coupled C4MIP models and the black points for the uncoupled

C4MIP models, whereas the grey points for b are for RCP 2.6 and the black points for RCP 8.5.
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homoeostasis, a certain capacity to maintain roughly constant
stoichiometries by adapting their functioning and by acquiring
more of the limiting nutrients. However, the homoeostatic
capacity and the ranges of stoichiometric flexibility of
organisms and communities are limited, and differ among
species. The species that are stoichiometrically more
homoeostatic than others tend to have higher biomass; and
ecosystems dominated by more homoeostatic species tend to have
higher productivity and stability37. Less homoeostatic species
tend to have greater nitrogen and phosphorus concentrations and
lower N:P ratio38. This suggests that fast shift rates of N:P ratio
can be more detrimental for less homoeostatic species, with
consequences for community composition and carbon cycling.

The changes in community composition in response to altered
N–P availability by nitrogen enrichment can result from multiple
processes. These are some reported examples: First, the N2-fixing
community loses its competitive advantage over other species and
decreases in abundance39. Second, increased N:P availability ratio
in soils and waters favours the slow-growing species with high
optimal N:P ratios at the expense of the fast-growing species with
lower optimal N:P ratio34. Third, by favouring species with slower
growth rates, food sources with higher N:P ratios decrease the
rates of energy transfer through food webs40, favouring shorter
trophic webs with fewer predators41, thus potentially decreasing
biodiversity. Fourth, in phosphorus-limited zones of the coastal
waters, zooplankton (for example, copepods) adapt their feeding
behaviour to counteract the resource limitation in selecting higher
phosphorus-containing organisms (for example, ciliates) rather
than nutrient-limited phytoplankton42. Fifth, in the open ocean,
altered nutrient input ratios reduce food-web diversity, alter
phytoplankton community composition and could increase toxic
blooms of phytoplankton43. Looking at the past may reveal how

changes in the N:P ratio influence marine biota. Diatom frustule
size seems to have decreased through the Neogene, linked with a
decrease in phosphorus availability44. Further back in time, large
episodic accumulations of phosphorite in the early Paleozoic,
Permian, Jurassic, early Cretaceous and Cenozoic periods45

indicate periods of well-suited sedimentation conditions
combined with a high biological productivity, potentially driven
by enhanced delivery of P by continental weathering. Most of
these events were associated with widespread anoxic conditions,
sea-level changes, tectonics and biodiversification44–47. For
example, phytoplankton adapted to phosphorus-rich environ-
ments is thought to have diversified during the early Palaeozoic in
open waters overlying deeper anoxic zones48. Enhanced
phosphorus content compared with nitrogen, however, does not
necessarily confer benefits to the marine biomass. An example is
the possible decline in growth efficiency and animal biomass
in benthic marine ecosystems in the Triassic, which led to a slow
recovery after the Permian mass extinction that coincided
with a period of supposed low-nitrogen but high-phosphorus
delivery to the ocean49. Marine ecosystems in the geological past
thus appear to have been highly sensitive to changes in the
N:P ratio, although most events recorded a decrease in this
ratio during transition periods ranging from 104 to 106 years. A
strong increase in this ratio over a few decades, as is now
occurring in response to human activities, seems unprecedented
in Earth’s history.

The imbalanced human-induced inputs of N and P are also
affecting the functioning of ecosystems. For many regions of the
Northern Hemisphere, human nitrogen inputs are converting
originally nitrogen-limited ecosystems into a state of nitrogen
saturation, with nitrogen losses to aquatic ecosystems and with
high rates of nitrogen volatilization50. The response of tropical
ecosystems to nitrogen addition is more uncertain. Some models
suggest that tropical forests will be unresponsive to nitrogen
enrichment because it is already plentiful and phosphorus is the
key limiting nutrient8,51. However, the diversity of conditions
with nutrient limitation is very high in tropical forests52,53, and
therefore uncertainty is large. Furthermore, increased nitrogen
loadings can affect ecosystem phosphorus cycling, as observed in
a wide variety of terrestrial ecosystems54, by favouring higher
plant phosphorus uptake e.g. through enhanced activity of soil
phosphatases55, root phosphatases56 or changing symbiotic
fungi57. Nonetheless, in the long term, these mechanisms seem
quantitatively insufficient to deliver enough phosphorus to
alleviate phosphorus limitation58. On the other hand, eventual
negative effects of deposited NH4

þ on litter decomposition, as
frequently observed in northern ecosystems31, could slow
nutrient cycling and further reduce phosphorus availability and
ecosystem productivity.

Few studies have focused on the role of changes in atmospheric
deposition or riverine input of nutrients (including phosphorus)
on marine biota and productivity. Krishnamurthy et al.59 have
shown that changes in the deposition of atmospheric nitrogen
and phosphorus should only have a weak effect on marine
productivity and the marine carbon sink on a global scale,
because these depositions are small relative to the input of these
nutrients from deeper waters by ocean mixing and upwellings.
However, the potential for compensatory effects of these changes
in nutrient input with the expected decrease in the vertical supply
of phosphorus from deep water due to marine stratification60

remains largely unknown. Because anthropogenic riverine supply
and atmospheric deposition are concentrated near coasts, it is the
coastal zone that is most affected by phosphorus changes on short
timescales61.

The responses of communities and ecosystems to environ-
mental change are likely to be more complicated than predicted
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Figure 6 | Projected depletion of mineable P. Expected depletion of

mineable phosphorus to satisfy total crop phosphorus demand throughout

the twenty-first century. Inset indicates the deficit of phosphorus under

current (year 2000, grey bars) and projected future (year 2050, red bars)

balances between cereal crop phosphorus-demand and supply (positive

values) or a surplus of phosphorus in negative values. For the year 2040, at

current rates of phosphorus application, phosphorus surpluses decrease

and phosphorus deficits increase indicating the likely increase in the

application of finite phosphorus reserves (with error bars representing the

max–min range from the Millennium Ecosystem Assessment cereal yield

storylines). It is likely that the mineable phosphorus pool (blue shaded area;

not considering additional potential reserves, see Fig. 1) will be depleted by

over 50% (horizontal red line) by mid-late twenty-first century.
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from N and P alone or the ratios between them. There are many
complexities in ecosystem functioning including multiple factors
and nutrients limiting productivity: for example, nitrogen
deposition also depletes ecosystems of calcium as soils are
acidified, promoting calcium limitation (for example, in northern
temperate forests), while there is evidence that N, P and K all
limit different components of biomass production in lowland
tropical rain forests53. However, analysing C:N:P interactions and
the isolation of the N:P impacts in our analysis is already one
important step ahead with respect to previous studies.

The mass balance approach used here shows that limited P and
N availability are likely to jointly reduce future carbon storage by
terrestrial ecosystems during this century. A high sensitivity to
model assumptions was found in this study, indicating that the
future mobilization of phosphorus stocks, in particular soil
phosphorus and interactions with microbial processes is critical
for sustaining changes in future carbon stocks. Unfortunately,
current process understanding is lagging behind model needs8,58.
Knowledge about the potential for ecosystems to tap into the
labile-phosphorus pool and for nitrogen deposition to affect the
processes by which plants may try to take up phosphorus from
the labile pool appears crucial to determine the future carbon
sequestration potential of terrestrial ecosystems and specially of
tropical ecosystems.

For the extra-tropical regions (Fig. 5), the calculated change in
phosphorus supply was insufficient to support the projected
changes in carbon stocks. This was mainly due to increases in P
bound in soil carbon, which tends to have a lower C:P ratio than
vegetation. This result is somewhat surprising given the paradigm
that non-tropical systems are considered less phosphorus-limited
than tropical systems62 but consistent with more recent work
suggesting equal nutrient limitation across biomes63 and near
future shifts from N to P limitations at high latitudes although
nutrient limitations in the tropics decline8.

The magnitude of the marine sink of anthropogenic CO2 is
more certain than the terrestrial sink64 and can be assessed using
several methods, now all converging towards a figure of
2.4±0.5 Pg C per year (ref. 65). The marine sink is mostly due
to physical and chemical mechanisms. It is mainly driven by
increasing levels of atmospheric CO2, which tend to increase
diffusion in regions that exhibit natural CO2 uptake (for example,
North Atlantic) and to decrease outgassing in regions that
experience natural CO2 outgassing (for example, equatorial
Pacific). Thus, contrary to what happens on land, no additional
phosphorus input is required to absorb most of the
anthropogenic carbon fixed in the oceans. However, any
increase or reduction of phosphorus input to the oceans from
atmospheric deposition or from rivers potentially affects
biological carbon fixation in the oceans and indirectly perturbs
air-sea CO2 fluxes – but these effects are still largely unknown. In
the oceans, with low living-biomass relative to its annual
turnover, the carbon and nutrient cycles are tightly coupled.
With rapid recycling of carbon and nutrients, the ocean carbon–
climate feedback seems weak at the century timescale, but a
remaining question is whether the changes in the C:N:P ratios in
both the particulate and dissolved organic matter pools may
provide a mechanism for biological processes to change the
amount of carbon sequestered by the ocean66. A recent study67

suggests that coastal oceans are an anthropogenic sink of CO2 of
0.2 Pg C per year and that it is mainly due to phosphorus and
nitrogen increasing accompanied by usually also increasing N:P
ratios, biological activity and burial of carbon in organic shelf-
sediments, but not in open ocean.

At crop level, our results would mean that mineable
phosphorus reserves would be depleted by over 100% by 2100
given the lower and upper estimates for these reserves from Fig. 2.

We observed that future phosphorus deficits for cereal crops
(including wheat, maize and rice) may be especially large in
Africa and Russia where the potential yields are not realized
(Fig. 6), which is in agreement with previous work68 and which
has large implications for the sustainability of global agriculture,
and its geopolitical consequences.

In conclusion, a key and complex impact of the N:P ratio can
be anticipated in a carbon- and nitrogen-enriched current and
future world. The many lines of evidence reported here indicate
that the changes in phosphorus and N:P ratios are, and will
become more so, vital through their controlling role on organism
and ecosystem functioning and structure, the carbon cycle,
climate and agriculture. Nevertheless, we still have little knowl-
edge of where, how and to what degree the imbalance in
phosphorus and nitrogen additions to ecosystems will affect the
structure and diversity of microbial, plant and animal commu-
nities, and their functioning, including for example organic
matter decomposition, N2 fixation, N2O and NOx emissions or
CO2 uptake, and the magnitude of the feedback of this altered
Earth-system structure and functioning on nutrient cycling and
climate change. However, our estimations indicate that the
change in nitrogen and phosphorus supply is likely insufficient to
support the projected changes in carbon stocks even for the extra-
tropical regions, which is surprising because non-tropical systems
are considered less phosphorus-limited than tropical systems.

Methods
Observational and experimental ecological evidences. To check the current
impacts of the shifts in N:P ratio by human driven eutrophication, we reviewed the
‘Web of Science’ database until December 2012. We summarized the studies
reporting: effects of increased environmental nitrogen availability on soil and water
N:P ratios, the effects of environmental N:P ratios on organism’s N:P ratios, growth
rates and changes in community structure and ecosystem functioning, the effects of
organism’s N:P ratios on growth rates and changes in community structure and
ecosystem functioning and the effects of growth rates on changes in community
structure and ecosystem functioning (Fig. 4).

Terrestrial nutrient constraints on carbon sequestration. We applied a mass
balance approach underpinned by fixed C to nutrient stoichiometries for an
ensemble of models from the Coupled Climate Carbon Cycle Model Inter-
comparison Projects (C4MIP and CMIP5) used in the IPCC Fourth and Fifth
Assessment Reports. Two sets of C4MIP model simulations were analysed, the first
set included ‘uncoupled’ simulations where climate feedbacks from fluxes of land
and ocean carbon to the atmosphere were excluded (these models have a higher
marine and terrestrial carbon sink being caused by elevated CO2 alone), and a
second set of ‘coupled’ simulations where climate change is influenced by fossil fuel
emissions and land and ocean carbon feedbacks64. For the CMIP5 experiment, we
analysed changes in nutrient demand for the Representative Concentration
Pathways 2.6 and 8.5, which correspond to a year 2100 CO2 concentration of 421
and 936 mmol mol� 1. The RCP 2.6 scenario reaches a radiative forcing of
2.6 W m� 2 in 2100, with a peak in CO2 concentrations in 2050, followed by a
decline69.

Stoichiometric mass balance approaches are commonly used to evaluate
coupled carbon-nutrient cycling at multiple scales spanning from leaf to globe7,8.
Here, the approach of Hungate et al.7 was adapted to evaluate potential phosphorus
and nitrogen limitation globally, as well as separately for tropical, extra-tropical
and cropland regions. We first estimated the change in phosphorus and nitrogen
demand from the modelled increases in vegetation and soil carbon stocks in natural
ecosystems and croplands between 2000 and 2099. Then, this demand was
confronted with corresponding scenarios of changes in phosphorus and nitrogen
supply (Supplementary Tables S19 and S20, Supplementary Figs S1 and S2 and
Supplementary Methods).
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24. Güsewell, S. N:P ratios in terrestrial plants: variation and functional
significance. New Phytol. 164, 243–266 (2004).

25. Sasaki, T., Yoshihara, Y., Jamsran, U. & Ohkuro, T. Ecological stoichiometry
explains larger-scale facilitation processes by shrubs on species coexistence
among understory plants. Ecol. Engin. 36, 1070–1075 (2010).

26. Seastedt, T. R. & Vaccaro, L. Plant species richness, productivity, and nitrogen
and phosphorus limitations across a snowpack gradient in alpine tundra,
Colorado, USA. Artic Antartic Alpine Res. 33, 100–106 (2001).
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