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Abstract 1 

High evolvability of influenza virus and the complex nature of its antagonistic 2 

interaction with the host immune system make it difficult to predict which strain of 3 

virus will become epidemic next and when it will emerge. To investigate the most likely 4 

time at which a new successful strain emerges every year in seasonal influenza, we use 5 

an individual-based model that takes into account the seasonality in transmission rate 6 

and host cross-immunity against a current viral strain due to previous infections with 7 

other strains. Our model deals with antigenic evolution of influenza virus that originated 8 

by point mutations at the antigen determining sites and is driven by host immune 9 

response. Under the range of parameters by which influenza virus shows a “trunk” 10 

shape in its phylogenetic tree, as is typical in influenza A virus evolution, we find that 11 

most successful mutant strains emerge in an early part of the epidemic season, and that 12 

the time when the number of infected hosts reaches a maximum tends to be more than 13 

one season after viral emergence. This carryover of the epidemic peak timing implies 14 

that we can detect the strain that will become dominant in the epidemic in the following 15 

year. 16 

17 
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1. Introduction 1 

Influenza viruses rapidly change their antigenicity (antigenic drift), which makes 2 

vaccination strategy against them difficult. Forecasting the evolutionary trajectory of 3 

influenza antigenicity is therefore important for prevention of an epidemic. The 4 

evolution of influenza virus is driven by selection due to changes in the host herd 5 

immunity, as well as random factors such as mutations, demographic stochasticity due 6 

to finiteness of infected hosts, and environmental fluctuation. The combined effect of 7 

these factors should mold the direction of the evolutionary trajectory. A new viral strain 8 

must face not only the immune response directly mounted against it, but also partial 9 

cross-immunity due to previous infection with related strains. In addition to the specific 10 

immune responses, a novel infecting strain must face temporal nonspecific immunity 11 

raised by infection with strains with arbitrary antigenicity (Ferguson et al. 2003). These 12 

immune-driven processes should play a key role in the evolution of influenza virus. The 13 

immune response due to earlier infection can suppress later emergence of an epidemic 14 

outbreak with other strains, which could drive the later strains to extinction. This 'mass 15 

extinction' of later strains that would establish themselves if originated earlier can make 16 

the phylogenetic tree of influenza virus slender (Andreasen et al., 1997, Ferguson et al., 17 

2003, Koelle et al., 2006, Andreasen and Sasaki, 2006, Omori et al., 2010). 18 

The genetic distance is correlated with the antigenic distance (Smith et al. 2004), 19 

and the strength of host herd immunity against a new strain of influenza virus is 20 

determined by how far it is genetically or antigenically distant from the strains that the 21 

host population has experienced in the past. Mathematical models that explicitly take 22 

into account the phylogenetic relationship between strains are therefore necessary to 23 

understand the evolution of influenza virus. In this paper, we study the model describing 24 
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the evolution of antigenic sites of virus, in which viruses are allowed to mutate their 1 

antigenicity and the antigenic variants are exposed to selection due to host and cross 2 

immunity. This is a multi-strain model with cross immunity that describes the coupled 3 

dynamics of host herd immunity structure and the epidemiology of co-circulating viral 4 

strains. Previous studies based on multi-strain models have revealed which strains may 5 

be dominant at equilibrium and how the equilibrium may be destabilized (Gupta et al., 6 

1996, Minayev and Ferguson, 2009, Recker et al., 2007). By using our individual based 7 

model for the co-circulation of antigenic strains, we focus on the timing of emergence, 8 

epidemic peak timing and epidemic duration of influenza virus strains that will 9 

successfully establish themselves in the host population.  10 

 11 

2. Model 12 

We consider a host population of a finite size, say 105, and track the immune status 13 

of each host individual against each virus strain. We designate the immune status of 14 

the x -th person against a viral strain n by H x ,n : 15 

 Hx,n  {0,1,2},  (1) 16 

where the state 0, 1 and 2 respectively indicates that the host is susceptible to, currently 17 

infected by, and recovered from the viral strain n . We consider the immunity and 18 

cross-immunity against a viral strain in terms of the infectivity of the strain. For 19 

example, the force of infection A  of strain A, or the rate at which a host is infected 20 

by strain A, is defined as 21 

 
A
  

x ,A
x H x ,A 1

 , (2) 22 

where summation is taken for all the hosts, x , infected by strain A (i.e. with the state 23 
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H
x ,A

1).   is the transmission rate of virus, constant over strains, but has seasonal 1 

variation within an annual cycle 2 

 (t) 0 (1 acos(2 t)),  (3) 3 

where 
0
 is the mean transmission rate, and a  the amplitude of seasonal fluctuation 4 

of the transmission rate.  x,A is the infectivity of strain A reduced by cross-immunity 5 

of the x-th person, 6 

 
x ,A

 min
B H x ,B 2

(1 d ( A ,B ) ). (4) 7 

Here we assume that the closer the antigenic distance d( A, B) between strains A and 8 

B, the stronger the degree of immune protection,  d ( A ,B ) , by cross immunity, where   9 

is a constant, representing infectivity reduction rate by one mutation, in the range 10 

0  1. The infectivity of a strain A is assumed to be determined by the strongest 11 

cross-immunity in all the past infections of x-th person. This corresponds to the 12 

minimum infectivity of all the viral strains B that have infected the host  x  in the past. 13 

 The antigenic distance (immunological distance) d(A, B) is defined as the 14 

number of unmatched sites (hamming distance) between antigenic determining sites of 15 

strains A and B. We consider a sequence of antigenic determining sites of length 10, in 16 

which each site harbors one of two alleles, 0 and 1. Each site changes its allelic status 17 

by mutation with the rate  .  18 

 An infected host recovers at the rate . After the recovery, the host achieves 19 

temporary nonspecific immunity. Hosts in this class are protected from any strain. 20 

Temporary immunity is lost at a constant rate . For the sake of simplicity, birth and 21 

death rates of a host, denoted by u , are assumed to be the same so that the total 22 
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population is kept constant, and newborns are susceptible to all the strains. The mean 1 

basic reproductive ratio averaged over a year is expressed by R
0
 

0
/ (u  ) . The 2 

initial condition is that the host population is completely susceptible to any strain, 3 

except for 10 host individuals infected by a single inoculated strain with the sequence of 4 

antigenic determining sites 00…0. Birth and death of hosts, infection and recovery 5 

events, and mutations at antigenic sites of influenza virus occur randomly with the rates 6 

described above (the model therefore falls into the category of a multi-agent 7 

continuous-time Markov chain).  8 

Previous studies have revealed that, to realize a slender phylogenetic tree that 9 

characterizes the evolutionary pattern of influenza A virus, the epidemiological 10 

parameters must reside in a certain range. In the model of intra-host antigenic drift of 11 

pathogens, Sasaki and Haraguchi (2000) has shown that an intermediate basic 12 

reproductive ratio is necessary for long persistence of viruses by continuously escaping 13 

the host immune response. For antigenic drift of pathogens through inter-host selection 14 

pressure as in the present model, too, small (but being greater than 1) basic reproduction 15 

number, as well as sufficiently strong general temporary immunity or suppression of 16 

co-infection is necessary for secure long persistence of a slender phylogenetic tree 17 

during antigenic drift (Andreasen and Sasaki, 2006, Omori et al., 2010, Koelle et al., 18 

2010, Bedford et al., 2012). Fig. 1a shows a phylogenetic tree observed in our 19 

individual based model simulation and Fig. 1b shows the mean antigenic distance 20 

between strains co-circulating at each time point: 21 

  (5) 22 
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where d(A,B) is the antigenic distance between strain A and B, and IA(t) and IB(t) is the 1 

number of hosts infected by strain A and stain B, respectively, at time t. These results 2 

show that the within-year antigenic diversity of viruses is kept low and the phylogenetic 3 

tree is kept slender in our model. We are interested in the long-lasting antigenic drift of 4 

pathogens as found in influenza viruses; therefore, we restricted our analysis in the 5 

range of epidemiological parameters of cross-immunity and general temporary 6 

immunity ( and a), so that the viruses succeeded in persisting for >1000 years by 7 

continuously evading the immune response in the simulation. If co-infection is not 8 

suppressed, sufficiently strong general temporal immunity is required (Fig. A1), which 9 

agrees with the findings of Andreasen and Sasaki 2006 and Omori et al. 2010. In the 10 

case where co-infection is suppressed, the lineage of virus can persist for a long time 11 

even if there is no general temporal immunity. Other parameters are kept constant:  = 12 

25.0 per year by which the infectious period 1/   is set about 2 weeks, u = 1/50 by 13 

which mean host life time is 50 years, and mutation rate per antigenic site per infection 14 

event  . Most simulations are performed with host population size of N=105, 15 

but the results remained qualitatively similar when N was further increased (up to 10 16 

times larger) as long as N  is kept constant to give rise to the same basic reproductive 17 

ratio.  18 

 19 

3. Results  20 

3.1 Earlier emergence of successful strains than in the seasonal peak in transmission 21 

efficiency 22 

We first focus on the emergence times of new strains in a year observed in our 23 



 

 8

Monte Carlo simulations. The peak time for the generation of new strains is earlier than 1 

the time at which the seasonally varying infection rate attained its maximum (Fig. 2 A). 2 

Here, we define a new strain of virus as one that has at least one mutation at antigenic 3 

determining sites from its direct ancestor. We then focus on a subset of new strains that 4 

will later succeed in producing further new strains (Fig. 2 B–D). We call these strains 5 

the second-generation-producing strains. Among a large number of new viral strains 6 

generated by mutations in each year, only a small fraction can establish themselves in a 7 

host population (compare the vertical axis of Fig. 2 A with those of Fig. 2 B–D). All the 8 

other new strains become extinct without showing any detectable increase in the 9 

population. As a result, the shape of the phylogenetic tree becomes nearly linear, as has 10 

been shown empirically for influenza A viruses (Buonagurio et al, 1986, Cox and 11 

Subbarao, 2000, Fitch et al., 1991, Fitch et al., 1997 Hay et al., 2001). The 12 

second-generation-producing strains in our simulations thus correspond to the strains 13 

constituting the “trunk” of the cactus-shaped phylogenetic tree of influenza virus.  14 

Let us now consider the emergence time; the time at which the 15 

second-generation-producing strains are generated by mutation. The peak times of 16 

emergence of the second-generation-producing strains are earlier than those for all the 17 

strains (compare Fig. 2 B with Fig. 2 A). Though we also study the peak times of 18 

emergence of the third- and fourth-generation-producing strains, they show no clear 19 

differences from that of the second-generation-producing strains (Fig. 2 B–D). This 20 

means that, although success in producing the second generations crucially depends on 21 

the timing of emergence, further success in producing third or further generations is 22 

nearly independent of the emergence time of the strain.  23 

Markedly earlier emergence of successful second-generation-producing strains 24 
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during the year is shown over a wide range of parameters (Fig. 3). The emergence times 1 

in a single epidemic season of the second-generation-producing strains are consistently 2 

and considerably earlier than the mean emergence times of all the new strains, including 3 

those that become extinct before increasing in the host population (red, blue, green lines 4 

in comparison to black lines in Fig. 3).  5 

3.2 Peak emergence time and basic reproductive ratio 6 

Although the successful strains emerge earlier than the other strains consistently 7 

over a wide range of parameters, the mean emergence times themselves change with 8 

each epidemiological parameter. The increased mean basic reproductive ratio, R
0
, leads 9 

to an earlier peak time of emergence of all the new strains (Fig. 3 A). This can be simply 10 

ascribed to the classical result of epidemiological models (e.g. Anderson and May, 11 

1991) – an earlier peak of outbreak for a larger basic reproductive ratio. It is interesting 12 

to note that for a sufficiently large R
0
, the mean emergence time is set back again due 13 

to demoted synchronizations of epidemiological outbreaks by different strains (denoted 14 

by larger variances in peak emergence times towards larger R
0
 – see Appendix for the 15 

theoretical explanation for the demoted synchronization with a larger basic reproductive 16 

ratio). Similarly, the decrease in the degree of cross-immunity (decreased  ) by a 17 

single mutation in antigenic sites leads to an earlier peak of emergence (Fig. 3 B). We 18 

also observe that a stronger general temporal immunity (i.e. longer mean duration) leads 19 

to an earlier peak of emergence (Fig. 3 C). There is no clear effect of the amplitude ( a ) 20 

of seasonal fluctuation of transmission rate (Fig. 3 D). 21 

3.3 Carryover of epidemic peak to the next year 22 

We next focus on the time for a strain to attain the maximum for the number of 23 
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infected hosts after it emerges. Fig. A2 shows that, during the epidemic courses of 1 

particular strains, most epidemic peaks are attained around 1 year after their emergence. 2 

This means that, in most cases, the strain that causes an epidemic already emerged in 3 

the previous epidemic season, suggesting the possibility for specifying the most likely 4 

strain that will become dominant in the next year by looking in the current epidemic 5 

season. However, if R
0
 is too large, this is no longer the case; thus, there is a high 6 

probability of such a prediction failing. If R
0

 is large, many strains attain their 7 

epidemic peaks in the same season in which they emerge. This means that, even at the 8 

late stage of the epidemic season, it is too early to find the potential dominant strains of 9 

the next season if the basic reproductive ratio is large.  10 

The other parameters ( for cross immunity, 1/ for general immunity and a 11 

for the magnitude of seasonal variation) make only a small difference to the fraction of 12 

hosts that are infected in the first year in which the strain emerges. However, they make 13 

a big difference in the fraction of hosts that are infected in the second year after the 14 

strain emerged. The increased infectivity reduction rate , prolonged duration of 15 

temporal immunity 1/, and decreased amplitude a  of seasonality in transmission rate 16 

a, all contribute to reduce the number of hosts who were infected in the second year 17 

after the strain emerged. Despite these parametric dependencies for the infection timing 18 

spectrum after the second year, the mean time of infection is not changed greatly by  , 19 

1 /  or a , because they hardly affect the number of hosts who are infected in first 20 

year in which the strain emerges. 21 

 22 

4. Discussion 23 
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We studied evolutionary dynamics of influenza in a single population with 1 

seasonal change of transmission rate. Present study shows two key results, i) the 2 

emergence time of successful strains is earlier than the other strains ii) most strains 3 

reach epidemic peak more than 1 year later since their emergence time.  4 

The reason why the emergence time of successful strains 5 

(second-generation-producing strains) is earlier than the other strains can be explained 6 

by the advantage of strains emerging at an early stage of the epidemic season over the 7 

other strains (Omori et al., 2010). An earlier-emerging strain in an epidemic season 8 

suffers less from cross-immunity or temporal immunity mounted against the other 9 

strains. Later-emerging strains, however, are more heavily suppressed by the 10 

cross-immunity of hosts infected by antigenically similar strains. General temporary 11 

immunity also contributes to the advantage of an earlier strain, in the same way as 12 

cross-immunity does. This by no means implies that the strain with the earliest 13 

emergence in the season becomes the major strain of the year; the strains emerging too 14 

early must face smaller transmission rates (which fluctuate seasonally) than in the peak 15 

season. There is therefore an optimum time of emergence in a year for a mutant virus to 16 

be successful, which is much earlier than the peak time of the epidemic of wild-type 17 

virus, and against which we must be precautious. 18 

We observed most strains reach epidemic peak more than 1 year later since 19 

emergence timing (Fig. A2). This carryover of epidemic peak of a strain from the season 20 

it emerges to the next or later epidemic seasons could be important for predicting new 21 

successful strains. What, then, enables this carryover? To answer this question, we 22 

constructed a deterministic model for the epidemics of a single strain in the host 23 

population, in which the immune structure changes with time according to the mean 24 
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behavior observed in the individual-based model (IBM) simulation. The epidemic peak 1 

timing of the model agrees with, or is self-consistent with, the result of the IBM (Fig. 2 

A2). Prohibition of co-infection and addition of general temporal immunity both 3 

contribute to carry over the epidemic peak timing of the strains that emerge in the early 4 

part of the season. In Fig. A2, the median waiting time to epidemic peak of strains from 5 

their emergences discontinuously shifts at the emergence time around t = 0.8 in a year. 6 

This shift in median waiting time is caused by seasonality of transmission rate,--- for 7 

the majority of strains that emerged after the time t = 0.8 in a year, their epidemic peaks 8 

tend to be carried over to the next season. This discontinuous change of waiting time is 9 

expected both in our IBM simulations and our simple mean field model described in 10 

Appendix A.  11 

We also analyzed the dependence of the epidemic duration of the 12 

second-generation-producing strains on the parameters R0 , , 1/ and a. The epidemic 13 

duration is defined as the period from the emergence of the first infectious host to the 14 

time when the last infectious host recovers. The results in Fig. A3 can be summarized as 15 

follows: the epidemic duration increases if R0  increases, and if  and a decrease. 16 

There is, however, no clear effect of general temporal immunity, 1/ , on the epidemic 17 

duration. 18 

 A larger basic reproductive ratio shortens the epidemic duration in the 19 

susceptible–infected–recovered (SIR) model if there were only one strain (i.e. in a 20 

standard SIR model) (Fig. A4). In contrast, in the IBM model with many co-circulating 21 

strains, the increase in the mean basic reproductive ratio, R0 , leads to an increase in the 22 

epidemic duration of the second-generation-producing strains (Fig. A3a). To understand 23 
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this discrepancy in the dependence of epidemic duration on R0 , we focus on the role of 1 

competition between co-circulating strains for their hosts. For a larger number of 2 

co-circulating strains, we expect more intense competition between them, and hence we 3 

expect a smaller peak of epidemic and prolonged epidemic duration by each strain. This 4 

is supported by the IBM model. We find that the total number of hosts infected in a 5 

season increases with R
0
 (Fig. A5 A), but that the mean number of hosts infected by 6 

each strain decreases with R0  (Fig. A5 C). This is because the “denominator”, the 7 

number of emerged strains per season, increases further than the “numerator”, the total 8 

number of infected hosts, with R0  (compare Fig. A5 A with A3 B). Similarly, a longer 9 

epidemic duration with a smaller   (Fig. A3 B) suggests that more efficient 10 

cross-immunity by a single mutation (i.e. decreased  ) leads to more intense 11 

competition between co-circulating strains. 12 

The reason why a greater fluctuation in transmission rate (by increased a) 13 

shortens epidemic duration of the second-generation-producing strains (Fig. A3 D) can 14 

also be explained by more intense competition between co-circulating strains. Indeed, 15 

the denominator of mean number of hosts infected by a particular strain (i.e. number of 16 

strains that emerged in a season) increases further than the numerator (i.e. total number 17 

of infected hosts) with increasing a (Fig. A6 A and B). (15) has revealed that epidemics 18 

of influenza A in high latitude regions have stronger seasonality than those in low 19 

latitude regions, therefore it is suggested that epidemics of each influenza strain in low 20 

latitude region should persist longer. 21 

General temporal immunity shows no clear effect on epidemic duration (Fig. A3 22 

C). This is consistent with the fact that there is no clear difference in the mean number 23 
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of hosts infected by the second-generation-producing strains that emerge in a season for 1 

varying 1/  (Fig. A7 C). A greater general temporal immunity (i.e. longer duration) 2 

decreases to the same extent both the total epidemic size and the number of strains 3 

emerging per year (Fig. A7 A and B). 4 

We studied the evolutionary dynamics of seasonal flu by assuming seasonal 5 

change in the transmission rate, without introducing meta-population structure and the 6 

processes of local extinction and reinvasion of viruses. Several studies argue that 7 

evolutionary dynamics of influenza is affected by the migration of influenza virus from 8 

other areas (Bahl et al. 2011, Bedford et al. 2010, Bedford et al. 2012, Russell et al. 9 

2008). In temperate region where strong seasonality in epidemic is observed, the 10 

morbidity during non-epidemic season is indeed very low (Rambaut et al. 2008). 11 

However, considering host heterogeneity and environmental heterogeneity within a 12 

local population, perfect extinction of the whole strains may not always occur even in 13 

non-epidemic season. Our results clearly show that even without meta-population 14 

structure or geographical heterogeneity, the viruses can securely be maintained and 15 

perform rapid and consecutive antigenic evolution. Introducing geographical structure 16 

and migration in analyzing viral evolution is definitely quite important, but is out of 17 

scope of the present study. Though our study focuses on the evolutionary dynamics at 18 

the local area level, we have revealed a number of new findings on the timing of 19 

successful emergence and peak epidemic of strains. It is also worth noting that annual 20 

cycles of epidemic with nonzero morbidity in non-epidemic season are observed in 21 

tropical and subtropical regions (Blair et al. 2009).  22 

The key result of our study is that the strains that will produce new strains tend to 23 

emerge at an early stage in the epidemic season, and reach the maximum number of 24 
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infected hosts in the next season. This result agrees with that of Omori et al. (2010).  1 

Omori et al. (2010) reached the same conclusion for early emergence a new strain that 2 

will succeed in establishing itself by analyzing whether or not a new branch can occur 3 

on a linear trunk structure of the viral phylogeny of virus. In the present paper, we 4 

relaxed these restrictive simplifying assumptions and allowed viruses to have arbitrary 5 

phylogenetic relationship and extended their results. Predicting a strain that will become 6 

dominant in the next year is usually difficult, but our study suggests that the strains that 7 

have already emerged by the time of peak epidemic have a high probability of 8 

becoming the dominant strains in the next year. Our main conclusion that epidemic of 9 

successful viral strains are likely to be carried over to the next year of their emergence 10 

(Figure #) suggest that effort must be focused on the survey of co-circulating strains in 11 

the last year that had not yet become dominant and survived till the end of epidemic 12 

season. 13 

 14 

Acknowledgments 15 

This work was supported in part by the Center for the Promotion of Integrated 16 

Sciences (CPIS) of Sokendai, and by the Research Fellowship of Japan Society for the 17 

Promotion of Science. 18 

 19 

References 20 

Anderson, R. M. & May, R. M. (1991) Infectious Diseases of Humans: Dynamics and 21 

Control. Oxford Univ. Press. Oxford. 22 

Andreasen, V., Lin, J. & Levin, S. (1997). The dynamics of cocirculating influenza 23 

strains conferring partial cross-immunity. J. Math. Biol. 35: 825–842. 24 



 

 16

Andreasen, V. & Sasaki, A. (2006). Shaping the phylogenetic tree of influenza by 1 

cross-immunity. Theor. Popul. Biol. 70: 164-173. 2 

Bahl, J., Nelson, M. I., Chan, KH et al. (2011). Temporally structured metapopulation 3 

dynamics and persistence of influenza A H3N2 virus in humans. Proc Natl Acad 4 

Sci USA 108: 19359–19364. 5 

Bedford, T., Cobey, S., Beerli, P. et al. (2010). Global migration dynamics underlie 6 

evolution and persistence of human inuenza A (H3N2). PLoS Pathog 6: 7 

e1000918. 8 

Bedford, T., Rambaut, A., Pascual, M. (2012). Canalization of the evolutionary 9 

trajectory of the human influenza virus. BMC Biol. 10:38 10 

Blair, P.J., Wierzba, T.F., Touch, S et al. (2009). Influenza epidemiology and 11 

characterization of influenza viruses in patients seeking treatment for acute fever 12 

in Cambodia. Epidemiol. Infect. 138:199–209. 13 

Buonagurio, D., Nakada, S., Parvin, J. et al. (1986) Evolution of human influenza A 14 

virus over 50 years: rapid, uniform rate of change in NS gene. Science 232: 15 

980–982. 16 

Cox, N.J. & Subbarao, K. (2000) Global epidemiology of influenza: past and present, 17 

Annu. Rev. Med. 51: 407–421. 18 

Ferguson, N.M., Galvani, A.P. & Bush, R.M. (2003). Ecological and immunological 19 

determinants of influenza evolution. Nature 422: 423–428. 20 

Fitch, W.M., Leiter, J.M.E., Li, X. et al. (1991) Positive Darwinian evolution in human 21 

influenza A viruses, Proc. Natl. Acad. Sci. USA 88: 4270–4274. 22 

Fitch, W.M., Bush, R.M., Bender, C.A. et al. (1997) Long term trends in the evolution 23 

of H(3) HA1 human influenza type A, Proc. Natl. Acad. Sci. USA 94: 7712–7718. 24 



 

 17

Gupta, S., Maiden, M.C.J, Feavers, I.M. et al. (1996) The maintenance of strain 1 

structure in populations of recombining infectious agents. Nat. Med. 2: 437–442. 2 

Hay, A., Gregory, V., Douglas A. et al. (2001) The evolution of human influenza 3 

viruses. Phil. Trans. R. Soc. Lond. B 356: 1861–1870. 4 

Koelle, K., Cobey, S., Grenfell, B. et al. (2006). Epochal evolution shapes the 5 

phylodynamics of interpandemic influenza A(H3N2) in humans. Science 314: 6 

1898–1903. 7 

Minayev, P. & Ferguson, N. (2009) Improving the realism of deterministic multi-strain 8 

models: implications for modelling influenza A. Interface 6: 509–518 9 

Omori, R., Adams, B. & Sasaki, A. (2010) Coexistence conditions for strains of 10 

influenza with immune cross-reaction. J. Theor. Biol. 262: 48-57 11 

Recker, M., Pybus, O.G., Nee, S. et al. (2007) The generation of influenza outbreaks by 12 

a network of host immune responses against a limited set of antigenic types. Proc. 13 

Natl Acad. Sci. USA 104: 7711-7716 14 

Rambaut, A., Pybus, O. G., Nelson, M. I. et al. (2008) The genomic and epidemiological 15 

dynamics of human influenza A virus. Nature 453: 615-619 16 

Russell, C. A., Jones, T. C., Barr, I. G. et al. (2008) The Global Circulation of Seasonal 17 

Influenza A (H3N2) Viruses. Science 320: 340-346 18 

Sasaki, A. & Haraguchi, Y. (2000) Antigenic drift of viruses within a host: A finite site 19 

model with demographic stochasticity. Journal of Molecular Evolution 51: 20 

245-255 21 

Smith, D. J., Lapedes, A. S., de Jong, J. C. et al. (2004) Mapping the Antigenic and 22 

Genetic Evolution of Influenza Virus. Science 305: 371-376 23 

Figure legends 24 



 

 18

Fig. 1. (a) Phylogenetic tree is produced with a 100 year simulation result of our model. 1 

Strains that the number of infected hosts are smaller than 500 don’t appear in 2 

phylogenetic tree. (b) Time evolution of weighted mean antigenic distance between 3 

emerged stains. For both (a) and (b), simulation settings are same; R
0
 2 ,   0.2, 4 

1/  7 / 365 (7 days), a  0.6, 1 / u  50  (years), and   0.001 (per infection). 5 

Fig. 2. Distribution of emergence times of new strains observed in a 1000-year 6 

simulation run of the IBM model. (A) The solid line indicates the distribution of the 7 

emergence timing of new strains that emerge by mutation in each year, with the moving 8 

averaged of 1/10 year window. The dashed line indicates the seasonally varying 9 

transmission rate. (B–D) The conditional distributions for the timing of the emergence 10 

of strains that succeeded to produce second (B), third (C), and fourth (D) generations. 11 

The parameters are set as R
0
 2 ,   0.2 , 1/  7 / 365  (7 days), a  0.6 , 12 

1 / u  50  (years), and   0.001 (per infection). 13 

 14 

Fig. 3. The peak emergence times of all the new strains, and the subset of successful 15 

(second-, third- and fourth-generation-producing) strains as functions of 16 

epidemiological parameters. In each panel, the black line shows the peak emergence 17 

time (relative to a year – see the scale of the horizontal axis of Fig. 1) of all the new 18 

strains (antigenicity mutants); blue, red and green lines, that of the second-, third- and 19 

fourth-generation-producing strains. The epidemiological parameters varied along the 20 

horizontal axis of each panel are: (A) the mean basic reproductive ratio averaged over a 21 

year, R
0
 

0
/ (u  ) ; (B) the infectivity reduction   by the cross immunity mounted 22 
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by a single-step distant strain; (C) the mean duration of temporal immunity, 1/ ; and 1 

(D) the amplitude of seasonal fluctuation of transmission rate, a . Each point represents 2 

the mean value of 10,000 times boot-strap resampling of the simulation results over 3 

1000 years, and the error bars denote their standard deviations. Apart from the 4 

parameter values varied in the horizontal axis, the other parameters are set to R
0
 2 , 5 

  0.2, 1/  7 / 365 (7 days), a  0.6,u = 1/50 and  . 6 

 7 

Fig. 4. Relationship between the time of the emergence of a strain in a year (horizontal 8 

axis) and the waiting time until the number of infected hosts attains its peak since it 9 

emerged (vertical axis, in units of year). Note that the transmission was maximum at 10 

t  0  or t  1, and minimum at t 1/ 2 . The vertical axis greater than 1 indicates that 11 

the epidemic peak was carried over to the next year from the year of emergence. Red 12 

points indicate the median waiting time observed in a 1000-year simulation of the IBM 13 

model, until a second-generation-producing strain attained its peak epidemic size. Blue 14 

points are the result for “mean-field” single strain model described in Appendix, when 15 

there is co-infection but no general temporal immunity. Green points are the result for 16 

the same mean-field single strain model but there was general temporal immunity but 17 

no co-infection. The parameters are R
0
 2 ,   0.2, 1/  7 / 365 (years, or 7 days), 18 

a  0.6, �1/ u  50  (years) and   0.001�  19 

 20 

Fig. A1. Persistence condition of virus in the IBM model when there is co-infection and 21 

general temporal immunity. We count the frequency of simulation runs in which the 22 

lineage of virus survived for >70 years (over a generation time of the host) in 20 23 



 

 20

simulation runs of the IBM. In the region marked as “Persistence”, the virus survived 1 

for >70 years in all 20 simulation runs, whereas in the region marked as “Extinction”, 2 

the virus became extinct within 70 years in all 20 simulation runs. The parameters 3 

except R
0
 and 1/  were set as   0.2, a  0.6, u = 1/50 and  4 

 5 

Fig. A2. Cumulative distribution for the timing of infections of all the strains that 6 

emerged in a 1000-year simulation of the IBM model. The vertical axis denotes the 7 

cumulative distribution for the timing of infection, i.e., the number of hosts infected by 8 

a strain by time t , divided by the final epidemic size of that strain. (A) The distribution 9 

for varying mean basic reproductive rate over a year, R0 , from 2 to 4; (B) that for 10 

varying infectivity reduction rate by cross-immunity,  , from 0.1 to 0.3; (C) that for 11 

varying mean duration of temporal immunity, 1/ , from 2 to 36 days; and (D) that for 12 

varying amplitude of seasonal fluctuation of transmission rate, a , from 0.3 to 0.6. The 13 

basic parameters are set as R
0
 2  (B–D),   0.2(A, C and D), 1/  7 / 365  (7 14 

days; A, B and D), a  0.6 (A–C), 1 / u  50  (years), and   0.001 (per infection). 15 

16 

Fig. A3. Epidemic duration of the second-generation-producing strain in a 1000-year 17 

simulation of the IBM model. Each line denotes mean values of the epidemic duration 18 

of the second-generation-producing strains and error bar is standard deviation. Apart 19 

from the parameter values varied in the horizontal axis, the other parameters are set to 20 

R
0
 2,   0.2, 1/  7 / 365 (7 days), a  0.6,u = 1/50 and  . 21 

22 

Fig. A4. Dependence of epidemic duration on basic reproductive ratio in a single strain 23 
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SIR model. Time course change of the frequencies of S, I and R in a single strain SIR 1 

model was S  SI, I  SI  I , and R  I . Mean duration of infectiousness is 2 

constant, 1 / 14 (days), and the basic reproductive ratio  /  is changed by 3 

changing  . Initial condition is I(0)  0.000001, S (0) 1 I (0) , and R(0)  0. The 4 

epidemic duration is defined as the duration from the beginning of the simulation to the 5 

time when I became smaller than the initial value of I, I(0). 6 

 7 

Fig. A5. Relationship between R0  and (A) the total number of hosts infected with the 8 

second-generation-producing strains that emerged in a season; (B) the number of 9 

second-generation-producing strains that emerged in a season; and (C) the mean final 10 

epidemic size of each of second-generation-producing strain, i.e., the mean number of 11 

hosts infected by each second-generation-producing strain. (A-C) are generated from a 12 

1000-year simulation in the IBM model. The parameters except R
0
 are set as   0.2, 13 

1/  7 / 365 (7 days), a  0.6,u = 1/50 and  . 14 

 15 

Fig. A6. Relationship between the amplitude, a , of seasonal fluctuation of the 16 

transmission rate and (A) the total number of hosts infected with the 17 

second-generation-producing strains that emerged in a season; (B) the number of the 18 

second-generation-producing strains that emerged in a season; and (C) the mean final 19 

epidemic size of each second-generation-producing strain. (A–C) are generated from a 20 

1000-year simulation in the IBM model in which the parameters except a are set as 21 

R
0
 2 ,   0.2, 1/  7 / 365 (7 days),u = 1/50 and  . 22 

 23 
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Fig. A7. Relationship between mean duration of temporal immunity 1/ and (a) the total 1 

number of hosts infected with second-generation-producing strains that emerged in a 2 

season; (B) the number of second-generation-producing strains that emerged in a 3 

season; and (C) the mean number of the hosts infected by each 4 

second-generation-producing strain that emerges in a season. (A–C) are generated from 5 

a 1000-year IBM simulation in which the parameters except 1/ are set as R
0
 2 , 6 

  0.2 , a  0.6,u = 1/50 and  . 7 

 8 

Fig. A8. Relationship between the emergence time (horizontal axis) and epidemic peak 9 

time (vertical axis) in a year. The emergence time in a year varied from 0 to 0.99 years, 10 

with a 0.01 year interval. The initial condition is that there are a few hosts infected 11 

( I(0)  0.000001) and the other hosts are susceptible ( S(0)  1 I (0) , R(0)  0). The 12 

mean basic reproductive ratio R0   /  is adjusted by changing  . The parameters 13 

are set as a  0.6 and1/  14 / 365(14 days). 14 

 15 

16 
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Appendix 1 

The demoted synchronization of epidemic peak timing with a larger basic 2 

reproductive ratio 3 

 For analysis of the relationship between synchronization of epidemic peaks 4 

and basic reproductive ratio, we use a standard SIR model (S for the fraction of 5 

susceptible hosts, I for that of infected hosts, and R for that of recovered hosts) with 6 

seasonal fluctuation of transmission rate, 7 

  

S  SI ,

I  SI  I ,

R   I ,

      (A1) 8 

where S  I  R  1  and (t)  0 (1 acos(2 t)) . See Fig. A8 legends for the 9 

parameter values and initial condition. Using this model, we analyze the relationship 10 

between the emergence time in a year (i.e. introduction time of a strain into the host 11 

population) and epidemic peak timing in a year. If R
0
 is small, the epidemic peak 12 

times in a year are limited to a narrow range in a year when the emergence times vary 13 

over a year, whereas if R
0
 is large, the epidemic peak times vary over a wider range in 14 

a year (Fig. A8 A–C). This implies that a smaller R
0
 promotes synchronization of 15 

epidemic peak timing in a year among co-circulating strains that emerge at different 16 

emergence times. 17 

 18 

“Mean-field” model 19 

To understand what makes the carry-over of epidemic peak time, we analyze 20 

the key behavior of the IBM model (equations 1–4 in the main text) by constructing a 21 

simple deterministic model described below. In the IBM model, the relative infectivity 22 
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reduction by cross-immunity in the force of infection of a particular strain is determined 1 

by the mean susceptibility of host population to this strain (equations 2 and 4 in the 2 

main text). In this model, for the sake of simplicity, we assume that the susceptibility to 3 

a particular strain is constant during an epidemic of this strain, and equals the mean 4 

value observed in IBM simulations averaged over all emerged strains. Therefore, the 5 

force of infection to strain A (equation 2 in main text) is rewritten as 6 

 A  QiA,  (A2) 7 

where i
A

 denotes the frequency of hosts infected with strain A, Q  the mean 8 

susceptibility and   0 (1 acos(2 t)). 9 

Under these approximations, we consider the epidemic dynamics of a strain 10 

“in the mean field”, in which the influence of the other cocirculating strains is 11 

embedded in the mean host susceptibility. Suppose that co-infection is possible, but 12 

there is no general temporal immunity. The dynamics for the population of each 13 

immunity status to strain A, the hosts that are susceptible to strain A ( s
A

), the hosts that 14 

are currently infected and infectious with strain A ( i
A

), and the hosts that are immune to 15 

strain A ( r
A

), is described as 16 

 

sA  AsA,

iA  AsA iA,

rA iA,

 (A3) 17 

where  sA  iA  rA  1 by definition. We use the mean value of the susceptibility to all 18 

strains in a 1000-year simulation of the IBM model with the same parameter values as 19 

the value of Q; Q  0.85.  20 

 Next, we consider the case in which there is general temporal immunity but 21 
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no co-infection. The time course of frequency of each immunity status is rewritten, with 1 

equation (S2), as follows 2 

 

sA  A (sA  î (t) ŵ(t)),

iA  A (sA  î (t) ŵ(t))iA,

rA iA

 (A4) 3 

where ŵ(t) denotes the frequency of hosts that have general temporal immunity, and 4 

î (t)  the frequency of hosts that are currently infected by some other strain. We use the 5 

mean frequency of hosts infected by any strain at each time in a year over 1000 years in 6 

the IBM model as î (t) , and the mean frequency of hosts that have general temporal 7 

immunity at each time point in a year over 1000 years in the IBM model as ŵ(t). For 8 

the calculation of î (t)  and ŵ(t) in the IBM model, the parameters are set as R
0
 2 , 9 

  0.2, 1/  7 / 365 (7 days),� u  1/ 50 and   0.001. 10 

 11 
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