Seasonal variation in functional properties of microbial communities in beech forest soil

Koranda M, Kaiser C, Fuchslueger L, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S, & Richter A (2013). Seasonal variation in functional properties of microbial communities in beech forest soil. IIASA Interim Report. IIASA, Laxenburg, Austria: IR-13-041

[img]
Preview
Text
IR-13-041.pdf

Download (150kB) | Preview

Abstract

Substrate quality and the availability of nutrients are major factors controlling microbial decomposition processes in soils. Seasonal alteration in resource availability, which is driven by plants via belowground C allocation, nutrient uptake and litter fall, also exerts effects on soil microbial community composition. Here we investigate if seasonal and experimentally induced changes in microbial community composition lead to alterations in functional properties of microbial communities and thus microbial processes. Beech forest soils characterized by three distinct microbial communities (winter and summer community, and summer community from a tree girdling plot, in which belowground carbon allocation was interrupted) were incubated with different 13C-labeled substrates with or without inorganic N supply and analyzed for substrate use and various microbial processes. Our results clearly demonstrate that the three investigated microbial communities differed in their functional response to addition of various substrates. The winter communities revealed a higher capacity for degradation of complex C substrates (cellulose, plant cell walls) than the summer communities, indicated by enhanced cellulase activities and reduced mineralization of soil organic matter. In contrast, utilization of labile C sources (glucose) was lower in winter than in summer, demonstrating that summer and winter community were adapted to the availability of different substrates. The saprotrophic community established in girdled plots exhibited a significantly higher utilization of complex C substrates than the more plant root associated community in control plots if additional nitrogen was provided. In this study we were able to demonstrate experimentally that variation in resource availability as well as seasonality in temperate forest soils cause a seasonal variation in functional properties of soil microorganisms, which is due to shifts in community structure and physiological adaptations of microbial communities to altered resource supply.

Item Type: Monograph (IIASA Interim Report)
Uncontrolled Keywords: C and N availability; Extracellular enzyme activities; Microbial community composition; Microbial processes; PLFA; Priming effect; Respiration; Carbon use efficiency
Research Programs: Evolution and Ecology (EEP)
Postdoctoral Scholars (PDS)
Depositing User: IIASA Import
Date Deposited: 15 Jan 2016 08:49
Last Modified: 14 Nov 2016 07:43
URI: http://pure.iiasa.ac.at/10722

Actions (login required)

View Item View Item

International Institute for Applied Systems Analysis (IIASA)
Schlossplatz 1, A-2361 Laxenburg, Austria
Phone: (+43 2236) 807 0 Fax:(+43 2236) 71 313