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+ Numerical analyses demonstrate their robustness. 16 
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Abstract 1 

Evolutionary branching is the process by which ecological interactions induce evolutionary 2 

diversification. In asexual populations with sufficiently rare mutations, evolutionary 3 

branching occurs through trait-substitution sequences caused by the sequential invasion of 4 

successful mutants. A necessary and sufficient condition for evolutionary branching of 5 

univariate traits is the existence of a convergence stable trait value at which selection is 6 

locally disruptive. Real populations, however, undergo simultaneous evolution in multiple 7 

traits. Here we extend conditions for evolutionary branching to bivariate trait spaces in which 8 

the response to disruptive selection on one trait can be suppressed by directional selection on 9 

another trait. To obtain analytical results, we study trait-substitution sequences formed by 10 

invasions that possess maximum likelihood. By deriving a sufficient condition for 11 

evolutionary branching of bivariate traits along such maximum-likelihood-invasion paths 12 

(MLIPs), we demonstrate the existence of a threshold ratio specifying how much disruptive 13 

selection in one trait direction is needed to overcome the obstruction of evolutionary 14 

branching caused by directional selection in the other trait direction. Generalizing this finding, 15 

we show that evolutionary branching of bivariate traits can occur along evolutionary-16 

branching lines on which residual directional selection is sufficiently weak. We then present 17 

numerical analyses showing that our generalized condition for evolutionary branching is a 18 

good indicator of branching likelihood even when trait-substitution sequences do not follow 19 

MLIPs and when mutations are not rare. Finally, we extend the derived conditions for 20 

evolutionary branching to multivariate trait spaces. 21 

Keywords 22 

frequency-dependent selection, speciation, adaptive dynamics, two-dimensional traits, multi-23 

dimensional traits 24 
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1 Introduction 1 

Real populations have undergone evolution in many quantitative traits. Even when such 2 

populations experience contemporary selection pressures, their selection response will usually 3 

be highly multivariate. However, not all responding adaptive traits evolve at the same speed: 4 

in nature, such evolutionary speeds exhibit a large variation (Hendry and Kinnison, 1999; 5 

Kinnison and Hendry, 2001).)1. Past speciation processes may have been driven mainly by 6 

traits undergoing fast evolution (Schluter, 1996), while gradual evolutionary differentiation 7 

among species, genera, and families may derive from traits undergoing slow evolution. These 8 

differences in evolutionary speed can have two fundamentally different causes. First, they 9 

may be due to less genetic variation being available for evolution to act on: in asexual 10 

populations this occurs when mutation rates and/or magnitudes are smaller in some traits than 11 

in others, while in sexual populations this occurs when standing genetic variation is smaller in 12 

some traits than in others. Second, differences in evolutionary speed are also expected when 13 

fitness is much less sensitive to changes in some traits than to changes in others. 14 

For conveniencebrevity, we refer to the slowly evolving and the fastrapidly evolving traits 15 

as slow traits and fast traits, respectively. If the slow traits are sufficiently slow, it is tempting 16 

to neglect their effects on the evolution of the fast traits. As far as evolutionary responses to 17 

directional selection are concerned, this simplification is usually unproblematic: directional 18 

evolution, i.e.,the directional trend of evolution (Rice, 2011) resulting from such selection, 19 

which we can refer to as directional evolution,, is described effectively by ordinary differen-20 

                                                 

 

 

 
1 To facilitate the reviewing process, we adopt the author-date style for citations. Naturally, 

we will immediately change these citations to numbers when it is suggested or once our man-
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tial equations or difference equations focusing only on those fast traits (Price 1970; Lande, 1 

1979; Dieckmann and Law 1996; Rice, 2011)2.). 2 

On the other hand, such a simplification may not be safe where more complex evolutionary 3 

dynamics are involved. A typical example is adaptive speciation, i.e., evolutionary diversifi-4 

cation driven by ecological interactions (Dieckmann et al., 2004; Rundle and Nosil, 2004). Ito 5 

and Dieckmann (2007) have shown numerically that when populations undergo disruptive 6 

selection in thea fast trait, their evolutionary diversification can be suppressed by directional 7 

evolution of a slowanother trait, even if the latter is slow. Conversely, if the slow directional 8 

evolution is sufficiently slow, disruptive selection in the fast trait can drive evolutionary di-9 

versification, both in asexual populations and in sexual populations (Ito and Dieckmann, 10 

2007). The suppression of evolutionary diversification can occur even when the slow and fast 11 

traits are mutationally and ecologically independent of each other. Thus, in a multivariate trait 12 

space, evolutionary diversification in one trait can be suppressed by slow directional evolu-13 

tion in just one of the many other traits. Moreover, such slow directional evolution may never 14 

cease, as the environments of populations are always changing, at least slowly, due to changes 15 

in abiotic components (e.g., climatic change) or biotic components (i.e., evolution in other 16 

species of the considered biological community). It is therefore important to improve the the-17 

oretical understanding of this phenomenon by deriving conditions for evolutionary diversifi-18 

cation under slow directional evolution. 19 

As a starting point to this end, we can consider the special situation in which there is only a 20 

single fast trait, while all other traits of the considered population are evolving extremely 21 

slowly, such that they are completely negligible. In this case, the question whether the 22 

selection on the fast trait favors its evolutionary diversification can be examined through 23 
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conditions that have been derived for the evolutionary branching of univariate traits (Metz et 1 

al., 1992; Geritz et al., 1997, 1998). In general, evolutionary branching is the process through 2 

which a unimodal phenotype distribution of a population becomes bimodal in response to 3 

frequency-dependent disruptive selection (Metz et al., 1992; Geritz et al., 1997, 1998; 4 

Dieckmann et al., 2004), which can occur through all fundamental types of ecological 5 

interaction, including competition, predator-prey interactionexploitation, mutualism, and 6 

cooperation (Doebeli and Dieckmann, 2000; Doebeli et al., 2004). This kind of diversifying 7 

evolution provides ecological underpinning for the sympatric or parapatric speciation of 8 

sexual populations (e.g., Doebeli, 1996; Dieckmann and Doebeli, 1999; Kisdi and Geritz, 9 

1999; Doebeli and Dieckmann, 2003; Dieckmann et al., 2004; Claessen et al., 2008; Durinx 10 

and Van Dooren, 2009; Heinz et al., 2009; Payne et al., 2011). Moreover, evolutionary 11 

branching may lead to selection pressures that favor further evolutionary branching, inducing 12 

recurrent adaptive radiations and extinctions (e.g., Ito and Dieckmann, 2007), and thus 13 

community assembly (e.g., Jansen and Mulder, 1999; Bonsall et al., 2004; Johansson and 14 

Dieckmann, 2009; Brännström et al., 2012) and food-web formation (e.g., Loeuille and 15 

Loreau, 2005; Ito et al., 2009; Brännström et al., 2010; Takahashi et al., in press). Therefore, 16 

evolutionary branching may be one of the important mechanisms underlying the evolutionary 17 

diversification of biological communities. 18 

Conditions for the evolutionary branching of univariate traits can be extended to bivariate 19 

trait spaces, if all traits considered evolve at comparable speeds (Bolnick and Doebeli, 2003; 20 

Vukics et al., 2003; Ackermann and Doebeli, 2004; Van Dooren et al., 2004; Egas et al., 21 

2005; Leimar, 2005; Van Dooren, 2006; Ito and Shimada, 2007; Ravigné et al., 2009). How-22 

ever, if their evolutionary speeds are significantly different, the resultant conditions for biva-23 

riate traits can fail to predict evolutionary branching observed in numerical analyses (Ito and 24 

Dieckmann, 2007; Ito et al., 2009, Ito and Dieckmann, 2012). In the present study, we there-25 

fore derive conditions for a population’s evolutionary branching in a fast trait when, at the 26 

same time, such a population is directionally evolving in one or more slow traits. The result-27 

ant conditions reveal when slow directional evolution either prevents or permits evolutionary 28 

branching. 29 
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This paper is structured as follows. Section 2 explains heuristically how the likelihood of 1 

evolutionary branching in asexual populations depends on selection pressures and mutational 2 

step sizes. Section 3 derives a normal form for strong disruptive selection and weak 3 

directional selection in a bivariate trait space and explains when arbitrary bivariate fitness 4 

functions can be mapped onto this normal form. Section 4 introduces the concept of 5 

maximum-likelihood-invasion paths, formed by mutants with maximum likelihood of 6 

invasion. On that basis, Section 5 derives sufficient conditions for evolutionary branching. 7 

Section 6 numerically examines the robustness of these conditions when the simplifying 8 

assumptions underlying our derivation are relaxed. Section 7 summarizes all conditions 9 

needed for identifying evolutionary-branching lines and extends these conditions to 10 

multivariate trait spaces. Section 8 discusses how our results generalize previously derived 11 

conditions for evolutionary branching that ignored slow directional evolution, and how our 12 

maximum-likelihood-invasion paths are related to existing methods for determining 13 

evolutionary dynamics or reconstructing evolutionary histories. 14 

2 Heuristics 15 

We start by describing, in a heuristic way, how disruptive selection in one direction, 16 

directional selection in the otheranother direction, and mutational step sizes may affect the 17 

likelihood of evolutionary branching. We then explain the analyses required for deriving the 18 

conditions for evolutionary branching, which are conducted in the subsequent sections. 19 

When a population undergoes disruptive selection in trait x , as well as directional selec-20 

tion in trait y , its fitness landscape resembles that illustrated in Fig. 1a. The strength of dis-21 

ruptive selection in x  is given by the fitness landscape’s curvature (i.e., second derivative) 22 

along x , denoted by xxD , while the strength of directional selection in y  is given by the 23 

fitness landscape’s steepnessslope (i.e., first derivative) along y , denoted by yG . For sim-24 

plicity, we assume that the population is monomorphic with a resident phenotype ( , )x y , in-25 

dicated by a small black circle in Fig. 1a, and that mutational step sizes are identical in all 26 

directions. In this case, possible mutants are located on a circle around the resident phenotype, 27 
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as shown in Fig. 1b-g. Then, small yG  means slow evolution in y . Roughly speaking, the 1 

direction of evolution favored by selection is indicated by the mutants possessing maximum 2 

fitness (small white circles in Fig. 1b-g). These mutants are located where the circle of con-3 

sidered mutants is tangential to the fitness contours. 4 

From this simple setting, we can already draw the following geometrically evident 5 

conclusions. If yG  is large compared to xxD , which results in low curvatures for the fitness 6 

contours (Fig. 1b), the mutant having the maximum y  has maximum fitness, in which case 7 

directional evolution along y  is expected. On the other hand, if yG  is sufficiently small 8 

compared to xxD  (Fig. 1c, d), the high curvatures mean that two different mutants are 9 

sharing the same maximum fitness. In this case, evolutionary diversification in x  may be 10 

expected. In addition, we can easily see (Fig. 1e-g) that the smaller the mutational step size, 11 

the smaller the yG  and/or larger the xxD  required for two different mutants jointly having 12 

maximum fitness (Fig. 1e-g). 13 

It turns out that these qualitative and heuristic insights can be corroborated by formal 14 

analysis (Sections 3-6). For this, two things have to be done properly. First, we have to clarify 15 

the conditions under which a population undergoes disruptive selection in one direction and 16 

sufficiently weak directional selection in the other direction. To compare the strengths of 17 

selection among different directions, trait spaces have to be normalized so that mutation 18 

becomes isotropic in all directions, as in Fig. 1b-g. Second, because the existence of 19 

disruptive selection is a necessary but not a sufficient condition for evolutionary branching 20 

(Metz et al., 1996; Geritz et al., 1997, 1998), the emergence of an initial dimorphism and the 21 

subsequent process of divergent evolution have to be analyzed. Conducting these analyses in 22 

the subsequent sections, we end up being able quantitatively to predict the likelihood of 23 

evolutionary branching in terms of yG , xxD , and mutational step sizes. 24 
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3 Normal form for bivariate invasion-fitness functions 1 

causing slow directional evolution 2 

In this section, we first derive a normal form that applies when evolution is slow in one 3 

direction. As mentioned before, this may occur when mutational steps or fitness sensitivities 4 

are strongly asymmetrical. Second, we explain the evolutionary dynamics that are expected 5 

under this normal form. Third, we outline the fundamental ideas underlying our subsequent 6 

analyses. 7 

3.1 InvasionBivariate invasion-fitness functions causing slow directional 8 

evolution 9 

We start by considering arbitrary bivariate trait spaces; accordingly, each phenotype 10 
T( , )X YS  comprises two scalar traits X  and Y . We assume an asexual population with a 11 

large population size and sufficiently small mutation rates. The latter assumption has two con-12 

sequences. First, the population dynamics have sufficient time to relax toward their equilibri-13 

um after a new mutant emerges. Second, as long as the population experiences directional 14 

selection, only the phenotype with the highest fitness among the existing phenotypes survives 15 

as a result of selection. Thus, the population is essentially always close to equilibrium and 16 

monomorphic. This allows its directional evolution to be translated into a trait-substitution 17 

sequence based on the invasion fitness of a mutant phenotype S  arising from a resident phe-18 

notype S  (Metz et al., 1992, 1996; Dieckmann and Law, 1996).  19 

The invasion fitness of S  under S , denoted by ( ; )F S S , is defined as the initial per capi-20 

ta growth rate of S  in the monomorphic population of S  at its equilibrium population size. 21 

The function ( ; )F S S  can be treated as a fitness landscape in S , whose shape depends on 22 

S . When a mutant emerges, which occurs with probability  per birth, we assume that its 23 

phenotype follows a mutation probability distribution denoted by ( )M S , where S S S . 24 

The distribution is assumed to be symmetric, unimodal, and smooth. As long as the mutation-25 

al step sizes are sufficiently small, such that ( )M S  has sufficiently narrow width, the distri-26 

bution is well characterized by its variance-covariance matrix , 27 
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 XX XYT

XY YY

( )d d
V V

M X Y
V V

, (1) 1 

where 2
XX ( )d dV X M X Y , 2

YY ( )d dV Y M X Y , and 2 

XY ( )d dV X Y M X Y . The standard deviation of mutational step sizes along each 3 

direction is thus described by an ellipse, T 1 1S S , as shown in Fig. 2a. Since  is 4 

symmetric, its two eigenvectors are orthogonal, and these vectors determine the directions of 5 

the long and short principal axes of this ellipse. Through a coordinate rotation, we align the 6 

axes of the coordinate system with the eigenvectors of . In the rotated coordinate system, 7 

 is diagonal, XY 0V , and we can choose the axes such that X Y , where X XXV  8 

and Y YYV  (Fig. 2b). Then, stretching the trait space in the Y -direction by X Y/  9 

gives an isotropic mutation distribution with standard deviation X  in all directions (Fig. 10 

2c). This is achieved by introducing a new coordinate system T( , )x ys , where x X  and 11 

X Y( / )y Y . We assume that  is small, such that 1. In this normalized trait space, 12 

the invasion-fitness function can be expanded in s  and s  around a base point T
0 0 0( , )x ys  13 

as 14 

 T T 3
0

1( ; ) ( ) O( )
2

s s G s s s C s s D sf , (2a) 15 

where O( )s s s  and 0 O( )s s  are assumed. The G , C , and D  are given 16 

by 17 

 

0

0 0 0

xx xy xx xy
x y m mm rm mm

yx yy xy yy

m mm rr rm

, , ,

, , ,x x x y xx xy xx xy
x y

x y y y xy yy yx yy

C C D D
G G

C C D D

f f f f f f
f f

f f f f f fs s s
s s s s s s s s s

G f C f f D f

f f f f
 (2b) 18 

where the subscripts ‘m’ and ‘r’ refer to mutants and residents, respectively, and where f  19 

for , , ,x y x y  and f  for , , , ,x y x y  denote the first and second derivatives of 20 

( ; )f s s , respectively. See Appendix A for the derivation of Eqs. (2). Notice that G , C , and 21 

D  are functions of the base point 0s . The vector G  describes the fitness gradient at s  22 

when 0s s . The matrix C  describes how the fitness gradient at s  changes as s  deviates 23 
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from 0s . The matrix D  describes the curvature (i.e., second derivative) of the fitness 1 

landscape, which is approximately constant as long as the third-order terms can be neglected. 2 

If Y  is much smaller than X , such that 2
Y XO( ) , the stretching of the trait space in 3 

the Y -direction for the normalization makes derivatives with respect to y  very small, in the 4 

sense y O( )G , xy O( )C , yx O( )C , xy O( )D , 2
yy O( )C , and 2

yy O( )D . 5 

This simplifies Eq. (2a), 6 

 2 3
x xx 0 xx y

1( ; ) ( ) O( )
2

s sf G x C x x x D x G y , (3) 7 

where terms with xyC , yxC , yyC , xyD , and yyD  are subsumed in the higher-order terms 8 
3O( ) . For a derivation of Eq. (3), see Appendix B. Notice that on the right-hand side only 9 

the first term is of order O( ) , while the other terms, including yG y , are of order 2O( ) . 10 

This means that this normal form describes fitness functions with significantly weak 11 

directional selection along y  compared to that along x  as long as XG  and YG  in the 12 

original trait space have similar magnitudes. We call Eq. (3) the normal form for invasion-13 

fitness functions with significant sensitivity difference. 14 

A comparison of Eqs. (2a) and (3) shows that the latter can be obtained even for Y X , 15 

provided the sensitivity of the fitness function to variation in trait Y  is significantly weaker 16 

than that in X , so that yG , xyC , yxC , yyC , xyD , and yyD  are all relatively small, 17 

satisfying 18 

 y xy yx yy xy yy

x xx xx

O( )
G C C C D D

G C D
. (4) 19 

For a derivation of Eq. (4), see Appendix B. 20 

Notice that the assumption needed for the derivation of Eq. (3), i.e., 2O( )Y X , also 21 

satisfies Eq. (4). Thus, the condition for a significant difference between mutational step sizes 22 

in the original trait space S  can naturally be integrated with the condition for a significant 23 

sensitivity difference of the invasion-fitness function in the normalized trait space s . Based 24 

on Eq. (4), we therefore define the condition for significant sensitivity difference as follows. 25 
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Significant sensitivity difference: After normalization to make mutation isotropic, the 1 

invasion-fitness function can be made to satisfy Eq. (4) by rotating the x - and y -2 

axes. 3 

3.2 Evolutionary dynamics expected under normal form 4 

We now consider the expected evolutionary dynamics induced by the normal form in Eq. (3). 5 

For this purpose we first recap expectations for the simpler case in which yG  is so small that 6 
2

y O( )G . In that case, 3
y O( )G y  is negligible, so that y  vanishes from Eq. (3), 7 

and the evolutionary dynamics therefore become univariate in x , so that phenotypes are 8 

characterized by that trait value alone. In this simpler case, conditions for evolutionary 9 

branching are easier to understand (Metz et al., 1996; Geritz et al., 1997, 1998), as follows. 10 

Suppose that the base point 0x  of the expansion of ( ; )f s s  can be chosen such that 11 

x 0G . Such a point, which we denote by bx , is called an evolutionarily singular point (or 12 

simply a singular point or an evolutionary singularity) because a resident located at bx  13 

experiences no directional selection. In contrast, a resident located close to bx  experiences 14 

directional selection along x , 15 

 xx b
( ; ) ( )s s

x x

f C x x
x

. (5) 16 

If xxC  is negative, the fitness gradient is positive for bx x  and negative for bx x , which 17 

means that it attracts a monomorphic population through directional evolution. In other 18 

words, the singular point is then convergence stable (Christiansen, 1991). 19 

When a population comes close to bx , it may become possible for a mutant s  to coexist 20 

with a resident s . Mutual invasibility between s  and s , which gives rise to protected di-21 

morphism (Prout, 1968), is defined by ( ; ) 0f s s  and ( ; ) 0f s s , which requires 22 

xx xx 0D C . Following the emergence of a protected dimorphism of trait values denoted by 23 

1s  and 2s , the resultant fitness landscape 1 2( ; , )f s s s  maintains approximately the same cur-24 

vature (i.e., second derivative) xxD  along x . If this curvature is positive, i.e., this point is 25 

not a local evolutionarily stable strategy, or ESS (Maynard Smith and Price, 1973), the two 26 
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subpopulations evolve in opposite directions, keeping their coexistence, in a process called 1 

dimorphic divergence. When dimorphic divergence occurs in univariate trait spaces, it can 2 

never collapse (if it is assumed that mutual invasibility among phenotypes ensures their coex-3 

istence). This is because only mutants outside of the interval between the two residents can 4 

invade, and such an invading mutant then always excludes the closer resident and is mutually 5 

invasible with the other more distant resident, resulting in a new protected dimorphism with a 6 

larger phenotypic distance (Geritz et al., 1998). As we will see below, such collapses, howev-7 

er, become crucial when analyzing dimorphic divergence in bivariate trait spaces. 8 

The evolutionary process described above is called evolutionary branching. It requires 9 

monomorphic convergence ( xx 0C ), mutual invasibility ( xx xx 0D C ), and dimorphic 10 

divergence ( xx 0D ). We therefore see that the necessary and sufficient conditions for 11 

univariate evolutionary branching are given by the existence of a point bx x  satisfying 12 

 x 0G , (6a) 13 

 xx 0C , (6b) 14 

 xx 0D , (6c) 15 

with 0 bx x . When trait y  is also taken into account, the point bx x  forms a line in the 16 

bivariate trait space. Thus, the aforementioned conditions for univariate evolutionary 17 

branching can be translated into the following statement. 18 

Bivariate translation of conditions for univariate evolutionary branching: When 19 

directional selection in y  is very weak, such that 2
y O( )G , monomorphic 20 

populations around a line bx x  converge to that line and bring about evolutionary 21 

branching, if and only if Eqs. (6) are all satisfied. 22 

Using these simple results as a baseline for comparison, we now consider the case that yG  23 

is of order 1 , which, according to Eq. (3), implies that the evolution in y  can affect the 24 

evolution in x . When the population is not close to the singular line bx x , directional 25 

evolution in x  dominates the effects of y . Thus, the singular line still attracts monomorphic 26 
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populations if and only if xx 0C . We thus call such a singular line a convergence-stable line. 1 

When a population is in the neighborhood of a convergence-stable line and evolves toward it, 2 

directional selection in x  inevitably becomes small, such that yG  may affect the 3 

evolutionary dynamics. 4 

When x  is close to bx , a dimorphism in x  may emerge, but invasion by a mutant in y  5 

with higher fitness may exclude both of the coexisting resident phenotypes and thereby abort 6 

the incipient evolutionary branching. Such an abortion is especially likely when yG  is large. 7 

Thus, the larger yG  becomes, the more difficult evolutionary branching is expected to be. 8 

Below, we examine how the resultant likelihood of evolutionary branching can be estimated. 9 

3.3 Motivation for further analyses 10 

In principle, bivariate evolutionary branching is possible even for very large yG , as long as 11 

trait-substitution sequences comprise invasions only in x  for an adequately large number of 12 

substitutions after the inception of dimorphism. However, for large yG , sequential invasions 13 

of this kind are unlikely, because the fitness advantage of mutants in y  then is large, which 14 

favors their invasion, which in turn easily destroys any initial dimorphisms. Thus, the average 15 

number of invasions required for evolutionary branching is expected to be quite large in this 16 

case. We can thus measure the likelihood of evolutionary branching as the probability of its 17 

successful completion within a given number of invasions. 18 

It is difficult to calculate this probability directly, and thus to determine its dependence on 19 

the parameters yG , xxC , and xxD  of the normal form. To avoid this difficulty, we focus on 20 

invasions that individually have maximum likelihood for a given composition of residents. 21 

We can loosely interpret the successions of residents formed by such invasions as describing 22 

typical evolutionary paths. Because of their special construction, it is possible analytically to 23 

derive sufficient conditions for evolutionary branching along these paths. It is expected that 24 

the conditions thus obtained can serve as useful indicators for the probability of evolutionary 25 

branching along the more general evolutionary paths formed by arbitrary stochastic invasions. 26 

Notice that when we refer to stochastic invasions, we refer to the stochasticity of mutations 27 

and to the stochasticity of the initial survival of rare mutants, but not to the effects resulting 28 
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from small resident population size, which occasionally allow mutants to invade even when 1 

they have negative fitness. In formal terms, these clarifications are implied by our assumption 2 

of sufficiently large resident population size. 3 

In our analyses below, we assume that the conditions for evolutionary branching in 4 

univariate trait spaces, Eqs. (6), are satisfied. Our goal is to determine how conditions for 5 

bivariate evolutionary branching in x  under weak directional selection in y  differ from 6 

Eqs. (6). 7 

4 Maximum-likelihood-invasion paths 8 

In this section, we define evolutionary paths formed by sequential invasions each of which 9 

has maximum likelihood. Among all possible evolutionary paths formed by arbitrary 10 

stochastic invasions, these paths have high likelihood and may therefore be regarded as 11 

typical. Our reason for introducing these maximum-likelihood-invasion paths (MLIPs) is that 12 

we can derive, in Section 5, conditions for evolutionary branching along those typical paths in 13 

Section 5. 14 

4.1 Definition of oligomorphic stochastic invasion paths 15 

We start by explaining how probabilities of invasion events are formally defined. We consider 16 

a monomorphic population with phenotype s , as a trait vector with an arbitrary dimension, at 17 

equilibrium population size n̂  that is uniquely determined by s . The birth and death rates 18 

(i.e., the number of birth and death events per individual per unit time, respectively) of a rare 19 

mutant phenotype s  are denoted by ( ; )b s s  and ( ; )d s s , where ( ; )b s s  and ( ; )d s s  20 

denote the birth and death rates of the resident s , which must satisfy 21 

( ; ) ( ; ) ( ; ) 0f b ds s s s s s , because the resident is at population dynamical equilibrium. The 22 

invasion fitness of the mutant s  in the environment determined by the resident s  is given 23 

by 24 

 ( ; ) ( ; ) ( ; )f b ds s s s s s . (7) 25 
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Once a mutant s  has arisen, the probability of its successful invasion in a population of 1 

resident s  is approximately given by ( ; ) / ( ; )f bs s s s  (Dieckmann and Law, 1996). Here, 2 

the subscript “+” denotes conversion of negative values to zero. The probability (density per 3 

unit time) for the emergence of a successfully invading mutant s  in a population of 4 

residents s  is given by multiplying the numberdensity ˆ ( ; ) ( )nb Ms s s s  of mutants 5 

emerging per unit time with their probability of successful invasion, 6 

 
( ; )ˆ( ; ) ( ; ) ( )
( ; )

ˆ ( ) ( ; ) ,

fE nb M
b

nM f

s ss s s s s s
s s

s s s s
 (8a) 7 

where  is the mutation probability per birth event, and ( )M s s  is the mutation 8 

probability distribution. The above approximation applies in the leading order of s s , when 9 

 is sufficiently small such that ( ; ) ( ; )b bs s s s  is much smaller than ( ; )b s s  (i.e., 10 

[ ( ; ) ( ; )] / ( ; ) O( )b b bs s s s s s ) (see Appendix C for the derivation). The expected waiting 11 

time for the next invasion event is given by 1/ ( ; )dT E s s s . When an invasion event 12 

occurs, the successfully invading mutants s  follow the invasion-event probability density 13 

 ( ; ) ( ; )P TEs s s s . (8b) 14 

For a polymorphism with resident phenotypes R 1( ,..., )Ns s s , the probability density per 15 

unit time of successful invasion by a mutant phenotype s  originating from the resident is is 16 

given by an approximation analogous to the monomorphic case, Eq. (8a), 17 

 1 1ˆ( ; ,..., ) ( ) ( ; ,..., )s s s s s s s si N i i NE n M f , (9a) 18 

where ˆin  is the equilibrium population size of the resident is . As in Eq. (8b), we can also 19 

define an invasion-event probability density 20 

 1 1( ; ,..., ) ( ; ,..., )s s s s s si N i NP TE , (9b) 21 

where 11
1/ ( ; ,..., ) ds s s sN

i Ni
T E  is the expected waiting time for the next invasion 22 

event. Notice that the invasion event is identified by the combination ( , )s i  of the mutant 23 

phenotype s  and its parental resident is . Consequently, the invasion event probability den-24 
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sities are normalized according to 11
( ; ,..., ) d 1s s s sN

i Ni
P . When only a single resident 1 

exists, Eqs. (9a) and (9b) are identical to Eqs. (8a) and (8b), respectively. 2 

The invasion by a mutant leads the community to a new population dynamical equilibrium. 3 

In most cases, the mutant replaces only its parental resident, while under certain conditions 4 

the coexistence of both, extinction of both, or extinction of other residents may occur. A se-5 

quence of such invasions specifies a succession dynamics of resident phenotypes, which is 6 

called a trait-substitution sequence (Metz et al., 1996). 7 

If the invasion event is calculated stochastically according to Eqs. (8b) and (9b), the 8 

resultant trait substitution is called an oligomorphic stochastic process (Ito and Dieckmann, 9 

2007). When considering an initial monomorphic resident as  and a mutant-invasion 10 

sequence  11 

 ( (1),..., ( ),..., ( ))I s s sk K , (10a) 12 

where ( )ks  is the mutant that invades in the k th invasion event, the trait-substitution 13 

sequence is denoted by 14 

 a R R R( ; ) ( (1),..., ( ),..., ( ))R I s s s sk K , (10b) 15 

where R 1 ( )( ) ( ( ),..., ( ))N kk k ks s s  is an ( )N k -dimensional vector composed of the ( )N k  16 

resident phenotypes that coexist after the invasion of ( )ks . This kind of trait-substitution 17 

sequence constitutes an evolutionary path, which we call an oligomorphic stochastic invasion 18 

path (OSIP). 19 

If the k th invasion event leads to the extinction of the entire community, no further inva-20 

sions occur. In this case, the lengths of I  and a( ; )R I s  are limited by k . In this study, we 21 

condition all analyses on the absence of complete community extinction. 22 

4.2 Definition of maximum-likelihood-invasion paths 23 

We now introduce the concept of maximum-likelihood invasion. Specifically, we define a 24 

maximum-likelihood-invasion event as the combination of the mutant MLIs  and its parental 25 

resident si  with MLIi i  that maximizes the invasion-event probability density, Eq. (9b), 26 

across all s and i  for a given set of residents, 27 
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 MLI MLI ( , ) 1, argmax ( ; ,..., )ss s s si i Ni P , (11) 1 

where we refer to MLIs  and 
MLI

si  as the MLI mutant and MLI resident, respectively, and 2 

denote 
MLI

si  by MLIs  for convenience. A maximum-likelihood-invasion path (MLIP) is a 3 

trait-substitution sequence formed by MLI events, denoted by 4 

MLI MLI MLI MLI( (0),..., ( )..., ( ))I s s sk K . The MLIP, which is expressed as MLI a( ; )R I s with the 5 

for an initial monomorphic resident as , is included in the set of all corresponding possible 6 

OSIPs a( ; )R I s .  7 

Note that the MLI mutational steps MLI MLIs s  are bounded by 2 , if invasion-fitness 8 

functions are approximated by quadratic forms of s  (e.g., Eqs. 2) and if mutation probability 9 

distributions are approximated by multivariate Gaussian functions (Appendix F). 10 

Also note that the MLIP does not give the maximum-likelihood OSIP, which would require 11 

maximization of the likelihood at the level of the mutant-invasion sequence rather than at the 12 

level of individual mutant-invasion events. Although such sequence-level maximization 13 

would be more appropriate for our purpose, it seems analytically intractable. On the other 14 

hand, the event-level maximization defined by MLIPs is analytically tractable, and the MLIP 15 

is still expected to have a relatively large likelihood among corresponding OSIPs. Likewise, 16 

as illustrated by our numerical results in Section 6, when an MLIP MLI a( ; )R I s  exhibits evolu-17 

tionary branching, then a large fraction of the corresponding OSIPs a( ; )R I s  also exhibit 18 

evolutionary branching. 19 

5 Conditions for evolutionary branching along MLIPs 20 

In this section, we derive sufficient conditions for evolutionary branching along MLIPs, in 21 

terms of the properties of the normal form for invasion-fitness functions with significant 22 

sensitivity difference, Eq. (3). 23 

5.1 Further rescaling 24 

Here we assume that the base point of expansion T
0 0 0( , )x ys  is on a convergence-stable 25 

line bx x  that satisfies univariate conditions for evolutionary branching, Eqs. (6). To 26 
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simplify the analysis, we adjust the trait space as follows, without loss of generality. First, we 1 

shift the origin of the trait space to the base point 0s  so that T
0 (0,0)s  and b 0x . 2 

Second, we rescale the trait space so that 1 . (In this case, magnitude differences among 3 

O( )s , 2 2O( )s  with 1 are transformed into those among the corresponding 4 

derivative coefficients G , C , and D , while the magnitudes of s , 2s  themselves 5 

become similar to each other.) Third, we rescale time and potentially flip the direction of the 6 

y -axis so that y 1G . For simplicity, we consider the first- and second-order terms only. 7 

Consequently, ( ; )f s s  is given by  8 

 2( ; )f y D x Cx xs s , (12a) 9 

where 10 

 xx

y

0CC
G

 (12b) 11 

and 12 

 xx

y

0
2

DD
G

, (12c) 13 

with  before the rescaling (i.e., 1). In the simplified normal form in Eq. (12a), only 14 

two dimensionless parameters D  and C  determine the geometry of the fitness landscape. 15 

This geometry not only determines the fitness landscape’s shapes ( D ), but also how the 16 

landscape changes when the resident phenotype is varied ( C ). Eq. (12a) then shows that any 17 

possible fitness landscape ( ; )f s s  can be obtained from T 2( ; (0,0) )f y D xs  by a 18 

parallel shift, i.e., T
w( ; ) ( ; (0,0) )f fs s s s  with T 2 2 2 T1 1

w w w 4 2( , ) ( / , / )x y C x D Cx Ds . 19 

This means that the contour curve ( ; ) 0f s s , given by 2
w w( )y D x x x y y , 20 

always has a constant parabolic shape specified by D , so that the position of this curve 21 

determines the fitness landscape (Fig. 3a). 22 

In the next two subsections, we derive conditions on D  and C  for evolutionary 23 

branching along MLIPs. We first obtain conditions on MLI mutants, MLIs , for evolutionary 24 
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branching. Then we analyze these conditions considering the dependence of MLIs  on D  and 1 

C , which provides conditions on these two parameters for evolutionary branching. 2 

5.2 Conditions on MLI mutants for evolutionary branching 3 

Here we obtain conditions on MLIs  for evolutionary branching. The process of evolutionary 4 

branching can be decomposed into two steps: emergence of protected dimorphism (dimorphic 5 

emergence) and directional evolution of these two morphs in opposite directions (dimorphic 6 

divergence). First, sufficient conditions for dimorphic emergence and specific evolutionary 7 

dynamics ensured by these conditions are expressed as follows (see Appendix G for the 8 

derivation). 9 

Lemma 1: Suppose the conditions for dimorphic emergence below hold. Then, for an 10 

arbitrary initial resident as , repeated invasions by MLIs  first induce directional 11 

evolution of the population toward the convergence-stable line b 0x x , and then 12 

bring about protected dimorphism after sufficient convergence. 13 

Conditions for dimorphic emergence: Any T
MLI MLI MLI( , )x ys  under an arbitrary 14 

monomorphic resident s  satisfies 15 

 MLI

MLI

for 0
for 0,

x x x
x x x

 (13a) 16 

and 17 

 2
MLI MLI( )y y D x x . (13b) 18 

The set of mutants satisfying inequalities (13) are illustrated as ais indicated by the white 19 

region in Fig. 3c. Clearly, inequalities (13a) ensure that the MLI mutant is always closer than 20 

the resident to the convergence-stable line, resulting in directional evolution toward this line 21 

as long as the mutant replaces the resident. Inequality (13b) restricts the deviation of the MLI 22 

mutant from the resident along the y -axis, and thus ensures that a protected dimorphism 23 

(with ( ; ) 0f s s  and ( ; ) 0f s s ) emerges after sufficient convergence to the line. 24 
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After emergence of an initial protected dimorphism, we denote the coexisting phenotypes 1 

by 1s  and 2s , with 1 2x x , without loss of generality (Fig. 3b). A sufficient condition for 2 

dimorphic divergence and specific evolutionary dynamics ensured by these conditions are 3 

expressed as follows (see Appendix H for the derivation). 4 

Lemma 2: Suppose the conditions for dimorphic divergence below hold. Then, for 5 

any initial protected dimorphism of 1s  and 2s  emerged under the conditions for 6 

dimorphic emergence, subsequent invasions by MLIs  continue directional evolution of 7 

the two morphs in opposite directions in x  without collapse. 8 

Conditions for dimorphic divergence: Any MLIs  satisfies 9 

 2
MLI 1 MLI 1 MLI 1and ( )x x y y D x x  (14a) 10 

or 11 

 2
MLI 2 MLI 2 MLI 2and ( )x x y y D x x , (14b)  12 

where 1 2x x  is assumed without loss of generality. 13 

The set mutants satisfying inequalities (14) are illustrated asis indicated by the white 14 

regions in Fig. 3d. In each invasion step, MLIs  replaces only its parental resident, so the 15 

divergence of the new dimorphism in x  is larger than that of 1s  and 2s . 16 

Clearly, if conditions for dimorphic emergence and that for dimorphic divergence both 17 

hold, evolutionary branching along MLIPs inevitably occurs for an arbitrary initial resident 18 

as . 19 

5.3 MLIP condition 20 

As MLIs  is a function of D  and C , substituting this function into the conditions for 21 

dimorphic emergence and divergence above and solving those for D  and C  gives 22 

conditions on these parameters for evolutionary branching. 23 
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To derive MLIs  as a function of D  and C , we explicitly define the mutation distribution. 1 

For analytical tractability, we assume that the mutation distribution is approximated by a two-2 

dimensional Gaussian distribution, which is expressed in the normalized and rescaled trait 3 

space T( , )x ys  as 4 

 21
2

1( ) exp
2

s sM ,  (15) 5 

where the standard deviation of mutational step sizes is scaled to 1. 6 

Under monomorphism with phenotype s , the MLI mutant MLIs , which maximizes the 7 

invasion-event probability density, is given by the s  that maximizes Eq. (8b), 8 

 2 2 21
2

ˆ( ; ) ( ) ( ; )
ˆ

exp [ ] .
2

P T nM f
T n x y y D x Cx x

s s s s s
 (16) 9 

We first focus on the special case that s  is located exactly on the convergence-stable line, 10 

i.e., T(0, )ys  with arbitrary y . In this case, MLIs  is given by 11 

 

T

T
MLI 2

10,1 for
2

4 1 1 1, for .
2 22

D

D D
DD

s

s
s

 (17) 12 

Substitution of Eq. (17) and T(0, )ys  into the inequality condition (13b) for dimorphic 13 

emergence yields 14 

 1 .
2

D  (18) 15 

We do not need to examine inequalities (13a), which are of interest only for T( , )x ys  with 16 

0x . Even if the resident is not located on the convergence-stable line, i.e., T( , )x ys  with 17 

0x , inequalities (13) still hold under 1/ 2D , as shown in Appendix D. Therefore, 18 

conditions for dimorphic emergence are satisfied if 1/ 2D  holds. In this case, MLIs  is 19 

always located inside of the dark gray rectangle in Fig. 3e. 20 

Moreover, under 1/ 2D , the derivation in Appendix D derivesshows that MLIs  always 21 

satisfies the condition for dimorphic divergence. Therefore, inequality (18), 1/ 2D , is a 22 
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sufficient condition for evolutionary branching along MLIPs starting from an arbitrary initial 1 

monomorphic resident. More specifically, we have 2 

Theorem 1: Suppose a normalized and rescaled invasion-fitness function having 3 

significant sensitivity difference, which is expressed in a form of Eq. (3) with 1, 4 

satisfies both 0C  and inequality (18), 1/ 2D . Then, any MLIP starting from 5 

an arbitrary initial monomorphic resident monotonically converges toward the 6 

convergence-stable line, 0x , and brings about protected dimorphism, which leads 7 

to dimorphic divergence without collapse, i.e., evolutionary branching. 8 

We thus call inequality (18), 1/ 2D , the MLIP condition for evolutionary branching, and 9 

refer to a convergence-stable line satisfying this condition as an evolutionary-branching line. 10 

5.4 Directional evolution sufficient for evolutionary branching 11 

Under the MLIP condition, dimorphism with *
2 1x x x  for arbitrary * 0x  emerges 12 

before the population directionally has evolved by  13 

 * *
a y0 a a, / 2y y L x x x x , (19) 14 

where the second equality defines the function *
y0 a ,L x x , and T

a a a( , )x ys  is the initial 15 

monomorphic resident (see Appendix J for the derivation). The y  is the mean value of y , 16 

given by y y  for monomorphism or by 1 1 2 2 1 2ˆ ˆ ˆ ˆ( ) /( )y n y n y n n  for dimorphism, where 17 

1̂n  and 2n̂  are the equilibrium population sizes of 1s  and 2s , respectively. 18 

6 Numerical examination of MLIP condition 19 

In this section we investigate how the MLIP condition is related to the likelihood of 20 

evolutionary branching in numerically calculated MLIPs, OSIPs, and polymorphic stochastic 21 

invasion paths (PSIPs) in which mutation rates are not small. See Appendices K, M, and L for 22 

details on the calculation algorithms and initial settingsconditions. 23 

When deriving the MLIP condition, we assumed the bivariate Gaussian mutation 24 

distribution defined in Eq. (15), called bivariate Gaussian here.). The resultant MLIP 25 
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condition may also be applicable to other types of mutation distributions. To examine this 1 

kind of robustness, below we investigate onan additional three different mutation distributions 2 

for the calculation of OSIPs and PSIPs. AThe bivariate fixed-step distribution has possible 3 

mutations that are bounded on a circle (Fig. 5b). AThe univariate Gaussian distribution 4 

applies when mutations in x  and y  occur separately, each following a one-dimensional 5 

Gaussian distribution (Fig. 5c). AThe univariate fixed-step distribution also limits possible 6 

mutations to affect either x  or y , but with fixed step sizes (Fig. 5d). See Appendix L for 7 

details on these mutation distributions.  8 

The cumulative likelihood of evolutionary branching is measured as a probability 9 

y y0
ˆ( )p L L , where yL  is the length of directional evolution in y  along MLIPs, OSIPs, or 10 

PSIPs until evolutionary branching has occurred, while y0L̂ , calculated withthrough Eq. (19), 11 

is the length of directional evolution in y  along MLIPs sufficient for the occurrence of evo-12 

lutionary branching (see Appendix K for details on y0L̂ ). Thus, y y0
ˆ( )p L L  measuresgives 13 

the cumulative probability of evolutionary branching beforewhen the population has direc-14 

tionally evolved in y  by yL , beyond what is implied by the MLIP condition ( y0L̂ ) y y0
ˆL L  15 

is the additionally needed directional evolution in y , relative to what is implied by the MLIP 16 

condition. In the case of MLIPs, y y0
ˆ( ) 1p L L  clearly holds for y y0

ˆ 0L L . In the case of 17 

OSIPs and PSIPs, when values of y y0
ˆ( )p L L  for y y0

ˆ 0L L  are close to 1, this indicates 18 

that the MLIP condition is working well also under such relaxed conditions. However, 19 

y y0
ˆ( )p L L  never reaches 1 in OSIPs, differently from MLIPs. One reason is that even under 20 

very large D  there are non-zero probabilities for repeated mutant invasions only in the y -21 

direction, providingcausing directional evolution in the y -direction. Another reason is that 22 

even after the emergence of a protected dimorphism, thethis dimorphism may collapse by 23 

subsequent mutant invasions in the case of OSIPs. When a dimorphism has collapsed, leaving 24 

behind a monomorphic resident, by the definition of OSIPs, the information about the col-25 

lapse itself is lost, and it is only the remaining resident that determines the likelihood of evo-26 

lutionary branching in the “next trial”. A sufficiently large D  is expected to induce evolu-27 

tionary branching within a few trials, keeping the total directional evolution in the y -28 

direction short, which results in a high value of y y0
ˆ( )p L L  for y y0

ˆ 0L L and vice versa.. 29 
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6.1 Sufficient vs. necessary conditions: MLIPs 1 

Fig. 4a shows the branching likelihood in MLIPs under the bivariate Gaussian mutation 2 

distribution for varying 0C  and 0D : the contour curves indicate where a 97% 3 

cumulative probability of Fig. 4a shows the occurrence of evolutionary branching in MLIPs is 4 

reached for y y0
ˆ 0L L , 100 y y0

ˆ 100L L , and 200 y y0
ˆ 200L L  (i.e., (0) 0.97p , 5 

(100) 0.97p , and (200) 0.97p ), at various values for 0C  and 0D  under bivariate 6 

Gaussian mutation. For 1/ 2D , MLIPs quickly undergo evolutionary branching in the 7 

gray area in Fig. 4a, while they do not undergo evolutionary branching in the white area in 8 

Fig. 4a. Examples of branching and non-branching MLIPs are shown as gray curves in Fig. 4b 9 

and Fig. 4c,d, respectively. Importantly, the threshold 1/ 2D  provided by the MLIP 10 

condition and indicated by the black dashed line in Fig. 4a characterizes very well the area 11 

that ensures the occurrence of evolutionary branching. In particular, the MLIP condition 12 

1/ 2D  seems to give a necessary and sufficient condition as C  converges to 0.  13 

6.2 Robustness of MLIP condition: OSIPs 14 

When the MLIP condition 1/ 2D  holds, OSIPs tend to undergo immediate evolutionary 15 

branching (black curves in Fig. 4b). On the other hand, even for 1/ 2D , OSIPs may still 16 

undergo evolutionary branching (black curves in Fig. 4c). In this case, however, the required 17 

y y0
ˆL L  becomes large as D  is decreased. As D  is decreased further, evolutionary 18 

branching may not be observed even for very large y y0
ˆL L  (black curves in Fig. 4d). 19 

Fig. 5a shows the branching likelihood in OSIPs under the bivariate Gaussian mutation dis-20 

tribution for varying 0C  and 0D : t. The contour curves indicate where a 97% likeli-21 

hood cumulative probability of evolutionary branching is reached for y y0
ˆ 0L L , 100 , and 22 

200  (i.e., (0) 0.97p , (100) 0.97p , and (200) 0.97p ). We see that more than 97% 23 

branching likelihood is attained for y y0
ˆ 0L L , as expected by the MLIP condition. Similar-24 

ly, more than 90% branching likelihood is attained for y y0
ˆ 0L L  for each of the three oth-25 

er mutation distributions (Fig. 5b-d), as long as the mutation rate in y  is not very small com-26 

pared to that in x  (i.e., y x/ 0.05 ) for the univariate Gaussian and univariate fixed-step 27 
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mutation distributions. Thus, for the examined OSIPs, the MLIP condition turns out to be ro-1 

bust (at a likelihood level of 97%) as an almost sufficient condition for evolutionary branch-2 

ing; it is also robust against variations in mutation distributions. 3 

6.3 Robustness of MLIP condition: PSIPs 4 

For PSIPs assume that, mutation rates areneed not be low. In this case, evolutionary dynamics 5 

are no longer, in contrast with OSIPs, given by trait-substitution sequences (as for OSIPs), but 6 

by gradual changes of polymorphic phenotype distributions. Population dynamics of PSIPs 7 

are calculated based on the stochastic sequence of individual births and deaths (Dieckmann 8 

and Law, 1996). The stochastic effects become large when fitness gradients and curvatures 9 

are both weak and/or population sizes are small. In this case, the likelihood of evolutionary 10 

branching in PSIPs, in contrast with OSIPs, may be affected not only by C  and D , but also 11 

by other parameters, such as the mutational step size , the mutation rate , and the 12 

carrying capacity along the evolutionary-branching line, 0K . We have numerically confirmed 13 

that the MLIP condition is still useful for characterizing evolutionary branching in PSIPs 14 

across a certain range of parameter values. For example, 1/ 2D  provides (0) 0.9p  15 

under all four mutation distributions for 0.001 0.01, 0300 10000K , and 16 
5 13.3 10 1 10 , with 3 2

03 10 3 10K  (results not shown). 17 

Fig. 5e-h show the branching likelihood in PSIPs for varying 0C  and 0D , with 18 

0.01, 0 600K , and 35.1 10 :. tThe contour curves indicate where a 95% likelihood 19 

cumulative probability of evolutionary branching is reached for y y0
ˆ 0L L , 40 , and 80  20 

(i.e., (0) 0.95p , (40) 0.95p , and (80) 0.95p ). We see that more than 95% branching 21 

likelihood is attained for y y0
ˆ 0L L  under all four mutation distributions, as long as the 22 

mutation rate in y  is not very small compared to that in x  (i.e., y x/ 0.05 ) for the uni-23 

variate Gaussian and univariate fixed-step mutation distributions. Thus, for the examined 24 

PSIPs, the MLIP condition turns out to be robust as a good indicator for evolutionary branch-25 

ing, even when mutation rates are not small and/or mutation distributions other than bivariate 26 

Gaussian are considered. 27 
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7 Conditions for evolutionary-branching lines 1 

In this section, we first summarize the conditions for evolutionary-branching lines in bivariate 2 

trait spaces. Second, we extend these conditions to multivariate trait spaces. Third, we explain 3 

how to find evolutionary-branching lines or manifolds in arbitrary trait spaces with arbitrary 4 

dimensionality. 5 

7.1 Conditions for evolutionary-branching lines in bivariate trait spaces 6 

By an appropriate affine transformation, arbitrary trait spaces T( , )X YS  can be normalized 7 

into a representation T( , )x ys  with isotropic mutation with standard deviation . In this 8 

normalized trait space, the invasion-fitness function can be expanded around 0s  as shown in 9 

Eq. (2a), 10 

 T T 3
0

1( ; ) ( ) O( )
2

s s G s s s C s s D sf ,  11 

where T( , )x ys s s . If the x -and y -axes can be adjusted such that Eq. (4) holds, 12 

 y xy yx yy xy yy

x xx xx

O( )
G C C C D D

G C D
,  13 

then ( ; )f s s  is significantly less sensitive to trait y  than to trait x . In this case, Eq. (2a) is 14 

transformed into Eq. (3), 15 

 2 3
x xx 0 xx y

1( ; ) ( ) O( )
2

s sf G x C x x x D x G y .  16 

If Eq. (6a) holds, 17 

 x 0G ,  18 

then there exists a singular line 0x x  denoted by bx . This line is convergence stable if Eq. 19 

(6b) holds, 20 

 xx 0C   21 

(i.e., if 0C ). The convergence-stable line causes evolutionary branching along MLIPs 22 

(maximum-likelihood-invasion paths), if inequality (18), i.e., the MLIP condition, holds, 23 
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 xx

y

1
2 2

DD
G

.  1 

In this case, any MLIP starting from a monomorphic resident T
a a a( , )x ys  with 2 

a 0 O( )s s  inevitably converges to the line and brings about evolutionary branching. 3 

Here we refer to Eqs. (4), (6a), (6b), and (18) as the conditions for evolutionary-branching 4 

lines, which is summarized as follows. 5 

Theorem 2: Suppose that 0s a point 0s  in a normalized trait space s  satisfies the 6 

conditions for evolutionary-branching lines below. Then, there exists an evolutionary-7 

branching line passing through 0s  and parallel with the y -axis of the trait space. In 8 

this case, any MLIP starting from a monomorphic resident T
a a a( , )x ys  with 9 

a 0 O( )s s  monotonically converges to the line and brings about a protected 10 

dimorphism, which leads to dimorphic divergence in x  without collapse, as long as 11 

theirthe deviations from 0s  are O( ) . 12 

Conditions for evolutionary-branching lines along MLIPs in normalized bivariate 13 

trait spaces: The x -and y -axes can be adjusted by rotation such that the first and 14 

second derivatives of the invasion-fitness function at 0s  satisfy all of Eqs. (4), (6a), 15 

(6b), and (18). 16 

Rescaling trait spaces such that 1  and applying tTheorem 1 proves this theorem. 17 

If these conditions for evolutionary-branching lines hold, then evolutionary branching oc-18 

curs with high likelihood in evolutionary paths even under relaxed assumptions (i.e., in OSIPs 19 

and PSIPs, as shown in Section 6). As the sensitivity difference goes to infinity, which means 20 

that the right-hand side of Eq. (4) converges to zero, the conditions for evolutionary-21 

branching lines converge to the univariate conditions for evolutionary branching, given by 22 

Eqs. (6). 23 

Notice that the MLIP condition requires that  is not infinitesimally small, but finite; oth-24 

erwise, satisfying this inequality is impossible. Thus, as long as the population is directionally 25 

evolving, its evolutionary branching requires finite mutational step sizes. Conversely,  can 26 

have large magnitudes, as long as approximation ofapproximating the invasion-fitness func-27 
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tions withby the normal form, in Eq. (3),) is appropriate inat the scale of that . In this case, 1 

Aa single large mutational step may generate a mutant such that the mutant and resident to-2 

gether straddle an evolutionary-branching line, resulting in protected dimorphism with a rela-3 

tively large phenotypic difference. Although this sounds different from the process of evolu-4 

tionary branching with small phenotypic difference, the two cases are formally equivalent as 5 

long as the invasion-fitness function is well approximated by Eq. (3), i.e., terms more thanbe-6 

yond the second order are negligible. This becomes clear when the two trait spaces isare re-7 

scaled, and thus become comparable. 8 

7.2 Conditions for evolutionary-branching lines in multivariate trait spaces 9 

The conditions for evolutionary-branching lines explained above can be applied also to 10 

multivariate trait spaces: for this we only have to extend the condition for significant 11 

sensitivity difference, as explained below. 12 

As before, an arbitrary L -variate trait space T
1( ,..., )LU US  can be normalized by an ap-13 

propriate affine transformation into a representation T
1( ,..., )Lu us  with isotropic mutation 14 

with standard deviation  (see Appendix P). In this normalized trait space, the invasion-15 

fitness function can be expanded as in the bivariate case, 16 

 T T 3
0

1( ; ) ( ) O( )
2

s s G s s s C s s D sf , (20) 17 

where T
1( ,..., )Lu us s s , G  is a L-dimensional row vector, and C  and D  are L-18 

by-L matrices. 19 

In a manner similar to the bivariate case, the trait space can be decomposed into a L̂ -20 

variate sensitive subspace T T
ˆ ˆ1 1( ,.., ) ( ,..., )L Lx x u ux  and an ˆ( )L L -variate insensitive 21 

subspace T T
ˆ1 1( ,.., ) ( ,..., )LL Ly y u uy , if trait axes can be adjusted such that 22 

 O( )j ij ji jj ij jj

i ii ii

G C C C D D
G C D

 (21) 23 

holds for all ˆ1,...,i L  and ˆ 1,...,j L L , where jG  is the j th component of G , and 24 

ijC  and ijD  are the ( , )i j th components of C  and D , respectively. 25 
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If Eq. (21) holds for ˆ 1L , i.e., the sensitive subspace is univariate, then Eq. (20) 1 

simplifies to the normal form for invasion-fitness functions with significant sensitivity 2 

difference, 3 

 2 3
x xx 0 xx y

1( ; ) ( ) O( )
2

s sf G x C x x x D x G y , (22) 4 

where x 1G G , xx 11C C , xx 11D D , y y 2 ,..., LG G GG , and y y( ) /y GG y y . 5 

See Appendix O for derivations of Eqs. (21) and (22). Notice that the insensitive subspace y  6 

contributes to the invasion fitness only through the element parallel to the fitness gradient 7 

yG . Thus, local evolutionary dynamics based on Eq. (22) can be contracted into a bivariate 8 

trait space T( , )x y . As Eq. (22) is identical to the bivariate invasion-fitness functions with 9 

significant sensitivity difference, Eq. (3), the conditions for evolutionary-branching lines in 10 

bivariate trait spaces, Eqs. (4), (6a), (6b), and (18), can be applied as they aredirectly. If 11 

0s s  satisfies those conditions, it forms in the trait space s  an ( 1)L -dimensional 12 

evolutionary-branching manifold, 0x x . Thus, tTheorem 2 is translated as follows. 13 

Theorem 3: Suppose that a point 0s  in a normalized L -dimensional trait space s  14 

satisfies the conditions for evolutionary-branching manifolds below. Then, there exists 15 

an ( 1)L -dimensional evolutionary-branching manifold passing through 0s  and 16 

vertical to the sensitive direction in the space, denoted by x . In this case, any MLIP 17 

starting from a monomorphic resident as  with a 0 O( )s s  monotonically 18 

converges to the manifold and brings about a protected dimorphism, which leads to 19 

dimorphic divergence in x  without collapse, as long as theirthe deviations from 0s  20 

are O( ) . 21 

Conditions for evolutionary-branching manifolds along MLIPs in normalized 22 

multivariate trait spaces: Trait axes can be adjusted by rotation such that the first and 23 

second derivatives of the invasion-fitness function at 0s  satisfy Eqs. (21) with ˆ 1L , 24 

and then the simplified invasion-fitness function, Eqs. (22), satisfies Eqs. (6a), (6b), 25 

and (18). 26 
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Even if the sensitive subspace is more than univariate, conditions for evolutionary 1 

branching might be constructed in a similar form, as explained in Appendix O. 2 

7.3 Finding evolutionary-branching lines without prior normalization 3 

For checking conditions for evolutionary-branching lines (or manifolds) in an arbitrary trait 4 

space S  with arbitrary dimension L , the vector G  and the matrices C  and D  of the 5 

invasion-fitness function ( ; )F S S  are all that is needed. These are given by 6 

 

T
m
T T

mm rm
T T

mm

,

( ) ,

,

G F Q B
C B Q F F Q B
D B QF Q B

 (23) 7 

where mF  is the gradient vector of ( ; )F S S  (i.e., (comprising first derivatives) with respect 8 

to S  at 0S , while mmF , rrF , and rmF  are the Hessian matrices (i.e.,comprising second 9 

derivatives) there, where the subscripts m  and r  correspond to the mutant S  and the 10 

resident S , respectively. The matrix Q , which describes the normalization of the trait space 11 

to attain isotropic mutation with standard deviation holding, fulfills T( ) ( ) , 12 

while the matrix B , which describes the adjustment of the axes by rotation, is given by  13 

 D1 D,..., LB v v , (24) 14 

where D1 D,..., Lv v  are the eigenvectors of T
mmQF Q , ordered such that the corresponding 15 

eigenvalues satisfy D1 Dj  for all 2,...,j L . See Appendix P for the derivations of Eqs. 16 

(23) and (24). 17 

Notice that the conditions for evolutionary-branching lines (or manifolds) explained above 18 

are based on locally approximated invasion-fitness functions. Thus, satisfying those condi-19 

tions at 0S  ensures the existence of an evolutionary-branching line (or manifold) only at the 20 

local scale around this point. However, it is easily shown that if 0S  satisfies those conditions, 21 

some of other points slightly deviated from 0S  are also expected to satisfy those conditions. 22 

By connecting these points, evolutionary-branching lines (or manifolds) can be found at the 23 

global scale (Ito and Dieckmann, 2012). 24 
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8 Discussion 1 

In this paper, we have analytically obtained the conditions for evolutionary branching when 2 

the invasion-fitness function has significant sensitivity differences among directions in 3 

bivariate trait spaces, by focusing on evolutionary paths, called MLIPs, composed of 4 

invasions each of which has maximum likelihood. The result, called the MLIP condition, is 5 

numerically demonstrated to be a useful indicator for the likelihood of evolutionary branching 6 

in evolutionary paths calculated under relaxed assumptions of stochastic invasions (OSIPs) 7 

and of non-rare mutations (PSIPs). The obtained conditions have been extended to 8 

multivariate trait spaces. 9 

The MLIP condition requires stronger disruptive selection than is needed for univariate 10 

branching along OSIPs (Metz et al., 1996; Geritz et al., 1997, 1998). The MLIP condition 11 

remains unchanged in multivariate trait spaces as long as the sensitive subspace is univariate, 12 

because directional evolution in the insensitive subspace can be contracted into a single 13 

dimension. Thus, the MLIP condition generalizes the univariate branching conditions to 14 

situations in which a population slowly evolves by weak directional selection in other traits. 15 

This generalization is important, as real populations feature many evolving traits with a large 16 

variation in evolutionary speeds, with the result that the slow traits are likely to keep evolving 17 

directionally after the fast traits have converged to an evolutionary singularity. 18 

One of our main assumptions is that mutational step sizes are sufficiently small mutational 19 

step sizes, so that the first- and second -order terms of the invasion-fitness functions, i.e., 20 

(quantifying the strengths of directional and stabilizing/disruptive selectionsselection 21 

pressures, respectively, provide) capture the dominant selection pressures. In this senseOn the 22 

one hand, as explained above, mutational step sizes are not necessary tomust be 23 

infinitesimally small, for approximate prediction. Rather,finite for the MLIP condition to 24 

hold, certain magnitudes of mutational step sizes are required.. On the other hand, the MLIP 25 

condition cannot be applied when the higher -order terms of invasion-fitness functions have 26 

certaina non-negligible influence. In this case, however, resulting, which implies selection 27 

pressures becomethat are more complex than combinations of directional and 28 
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stabilizing/disruptive selectionsselection. Therefore, as long as we try to understand 1 

selectionsselection pressures as combinations of directional and stabilizing/disruptive 2 

selectionsselection, our assumption of small mutational steps seems a good oneis appropriate. 3 

The conditions for evolutionary-branching lines, which are a combination of the condition 4 

for significant sensitivity difference, the condition for convergence stability, and the MLIP 5 

condition, can be used to examine the likelihood of evolutionary branching that could not be 6 

treated by previous branching conditions requiring convergence-stable singular points 7 

(Ackermann and Doebeli, 2004; Ito and Shimada, 2007). For example, Leimar (2005) and Ito 8 

et al. (2009) have numerically shown that evolutionary branching occurs in bivariate trait 9 

spaces whichthat do not contain any evolutionarily singular points that are convergence sta-10 

ble. In these cases, there exists instead an evolutionarily singular point that is convergence 11 

stable only in one direction, but unstable in the other direction. By applying ourthe conditions 12 

we have presented here, evolutionary-branching lines can be identified in the trait spaces of 13 

those models (Ito and Dieckmann, 2012). In such applications, the condition for significant 14 

sensitivity- difference condition might be relaxed further, or be omitted altogether, because 15 

this condition partly overlaps with the MLIP condition, and; the non-overlapping parts of the 16 

sensitivity-difference condition may be required only for enabling the analytical derivation of 17 

the MLIP condition. In this sense, the MLIP condition may still workswork well even when 18 

the sensitivity-difference condition does not hold. 19 

As the MLIP condition tellsdescribes how weak directional selection shouldneeds to be in 20 

comparison with disruptive selection for evolutionary branching to occur, this information 21 

canmay also be useful for predicting evolutionary branching induced byin the vicinity of evo-22 

lutionary-branching points. That isThe MLIP condition then describes how close to an evolu-23 

tionary-branching point a monomorphic population has to come, for occurrence of evolution-24 

ary branching. With to occur when mutational stesp are finite. Based on a heuristic modifica-25 

tion of the conditions for evolutionary-branching lines, the areas withpossessing high likeli-26 

hoods of evolutionary branching can thus be identified around evolutionary-branching points, 27 

i.e.,. The resultant evolutionary-branching areas (Ito and Dieckmann, 2012). These areas) are 28 

important not the least because, in reality, invasion-fitness functions are always changing at 29 
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least slowly, due to environmental changes or due to the evolution of other species, induc-1 

ingimplying slow shifts of thosethe locations of evolutionary branching points in trait spaces. 2 

Such shifts may prevent monomorphic populations’ sufficient convergencepopulations from 3 

sufficiently converging to the points required for the emergence of dimorphism, or they may 4 

destroy the initial dimorphismdimorphisms even after those have emerged (Metz et al., 1996; 5 

Metz, 2011). In such cases, by examining whether environmental changes are sufficiently 6 

slow such thatfor monomorphic populations can get inside ofto enter the evolutionary-7 

branching areas, likelihoods of evolutionary branching may be estimated also under such 8 

more realistic circumstances. 9 

A focus on MLIPs, treated as typical and deterministic paths among corresponding OSIPs, 10 

has enabled our analytical treatment of evolutionary branching in bivariate trait spaces. This 11 

analysis of MLIPs is adding to the evolutionary literature a second deterministic description 12 

of mutation-limited evolutionary dynamics. The more common alternative is the mean evolu-13 

tionary path defined by the canonical equation of adaptive dynamics theory (Dieckmann and 14 

Law, 1996). Roughly speaking, such a mean evolutionary path is formed by mutant invasions, 15 

each of which occurs by the mean mutant phenotype among all mutants that are able to in-16 

vade, weighted byaccording to their invasion probabilities. It is therefore interesting to con-17 

sider how these two deterministic descriptions of mutation-limited evolutionary dynamics are 18 

related. AnIn particular, an MLIP is identical to the corresponding mean evolutionary path 19 

given by the canonical equation, if directional evolution of a single population with a multi-20 

variate Gaussian mutation distribution is considered, although the speed ofalong the MLIPs is 21 

just 2 / 0.798 times as fast as along the corresponding mean paths (see Appendix Q).  22 

In general, however, MLIPs and mean evolutionary paths are different, because an MLIP is 23 

formed by mutants that are the modes of the invasion-event probability distribution at each 24 

invasion event, while a mean path is formed by mutants that are the means of this distribution. 25 

Thus, differences between the two descriptions can arise, especially when the mutation distri-26 

bution is discrete, as in, e.g., for the univariate fixed-step mutation distribution. As MLIPs are 27 

affected only by the global maximum of an invasion-event probability distribution, but not by 28 

any other of its features, and also as a distribution’s global and local maximum may abruptly 29 
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change their rolesits role with a local maximum, the mean evolutionary paths may be deemed 1 

more robust than MLIPs for describing directional evolution. On the other hand, by construc-2 

tion, the canonical equation is not capable of describing evolutionary branching, while MLIPs 3 

can do so. To our knowledge, MLIPs are the only way of deterministically describing evolu-4 

tionary dynamics that include evolutionary diversifications, without loss of analytical tracta-5 

bility. Therefore, MLIPs may be useful for analyzing other evolutionary phenomena in multi-6 

variate trait spaces. 7 

Our analysis conducted with analyses of invasion-event probabilities isare related to phy-8 

logeny reconstruction and ancestral -state reconstruction based on empirical data (Wiens, 9 

2000; Barton et al., 2007; Nunn, 2011). In the ), and may hint at worthwhile extensions of 10 

such methods. The standard methods for ancestral -state reconstruction, first reconstruct phy-11 

logenetic trees are reconstructed based on DNA sequences, and then reconstruct the ancestral 12 

states of the focal traits are reconstructed based on thethose trees, withusing constraints alter-13 

natively given by maximum parsimony, maximum likelihood, Bayesian methods, etc. Alt-14 

houghWhile our MLIPs maximize not path-level likelihoods but their parts (i.e., not at the 15 

level of invasion-event- sequences, but at the level likelihoods), it is possible withof invasion 16 

events, numerical calculationmethods could be devised to maximize path-levelthe likelihoods 17 

of OSIPs. When those pathsOSIPs are calculated backward from a given present composition 18 

of residents backward to their common ancestor (e.g., with theusing Markov Chain Monte 19 

Carlo methods), the past evolutionary dynamics can be reconstructed as a phylogeny in the 20 

trait space. In this case, the phylogeny and ancestral states are reconstructed at once, based on 21 

a given fitness function as a kind ofproviding prior information. Thus, thisThis alternative 22 

kind of phylogenetic reconstruction might be useful for some genera or families, if theirkey 23 

quantitative traits and associated ecological settings are known sufficiently well for such that 24 

the knowledge canto be translated into fitness functions on trait spaces, and if theexogenous 25 

changes of those functions from past are expected to be small. Comparing theresults obtained 26 

results byfrom this ecology-based reconstruction method with those by theresults from stand-27 

ard reconstruction methods might provide new understandings. insights. 28 
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In our methodapproach, it is important to identify the fast traits (, or fast phenotypic direc-1 

tions), along which the dominant parts of the pasta considered evolutionary diversifications of 2 

the focal group may be explained. There are empirical datadiversification unfolds. Empirical 3 

evidence suggests that in some taxonomic groups the directions of observed trait differences 4 

among related populations are positively correlated with the trait directions of greatestpos-5 

sessing the largest additive genetic variance within the populations,. These directions, which 6 

have been called “the lines of least resistance” (Schluter, 1996). Thus,), closely resemble the 7 

fast traits or directions might be given by the lines of least resistance.in our approach. If cor-8 

responding slow traits that may affect the fast evolutionary dynamics are can also foundbe 9 

identified, our conditions for evolutionary-branching lines orand manifolds may be applied to 10 

understand the evolutionary ecology of the underlying diversifications. 11 
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Figure captions 1 

Figure 1. Heuristic estimation of the likelihood of evolutionary branching. (a) Illustration of a 2 

fitness landscape around a population directionally evolving in trait y  under disruptive 3 

selection in trait x . The population’s resident phenotype is indicated with a small filled 4 

circle. The strength of disruptive selection in x  corresponds to the curvature of the surface 5 

along x , denoted by xxD , while the strength of directional selection in y  corresponds to 6 

the gradient of the surface along y , denoted by yG . (b-g) The small filled circles again 7 

indicate the resident phenotypes. The large circles indicate possible mutants, and their 8 

radiuses show the mutational step sizes. The dotted curves highlight the fitness contours that 9 

are tangential to these circles, with the tangential points (indicated with small white circles) 10 

corresponding to the mutants with maximum fitness. 11 

Figure 2. Coordinate transformations for normalizing the mutation probability distribution. 12 

The first transformation, (a) to (b), is a rotation, while the others cause scaling. 13 

Figure 3. Conditions for dimorphic emergence and dimorphic divergence. In panels (a) and 14 

(b), the white and light gray regions indicate positive and negative invasion fitnesses, respec-15 

tively. The thick gray curves in (a) and (b) indicate zero-countours of the invasion fitnesses 16 

for monomorphism, ( ; )f s s , and for dimorphism, 1 2( ; , )f s s s , respectively, which are para-17 

bolic curves sharing the same shape. In panels (c) and (d), the white regions indicate mutants 18 

that satisfy the conditions for dimorphic emergence and those for dimorphic divergence, re-19 

spectively. The thin parabolic curves giving the boundaries share the same shape with zero-20 

contours of the invasion fitnesses (thick gray curves). In panels (e) and (f), the mutants of 21 

maximum-likelihood invasion are included in the dark gray rectangles. If the MLIP condition 22 

1/ 2D  holds, the dark gray rectangles are included in the white regions that ensure evolu-23 

tionary branching. The dark gray and white regions touch each other only when 1/ 2D . 24 

The trait space has been normalized and rescaled so that the standard deviation of mutational 25 

step sizes equals 1 in all directions. 26 

Figure 4. Occurrence of evolutionary branching along MLIPs. (a) Occurrence of evolutionary 27 

branching when the population has directionally evolved in y  by yL , beyond what is 28 
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implied by the MLIP condition ( y0L̂ ), for y y0
ˆ 0, 100, 200L L . Results are shown for a 1 

bivariate Gaussian mutation distribution for combinations of ( 0)C  and D . The black 2 

dashed line indicates the threshold for D  given by the MLIP condition, 1/ 2D . (b-d) 3 

MLIPs (gray curves) and OSIPs (black curves) for different combinations of C  and D , 4 

shown in panel (a): D = 1.0, 0.1, 0.05 for (b), (c), (d), respectively, and 0.1C . The trait 5 

space has been normalized and rescaled so that the standard deviation of mutational step sizes 6 

equals 1 in all directions. 7 

Figure 5. Occurrence of evolutionary branching along OSIPs and PSIPs. Contour lines show 8 

the combinations of ( 0)C  and D  at which the cumulative probability of evolutionary 9 

branching occurs with a probability of more thanreaches 97% for (a), 90% for (b-d), and or 10 

95% for (e-h), when the population has directionally evolved in y  by yL , beyond what is 11 

implied by the MLIP condition ( y0L̂ ), for y y0
ˆ 0, 100, 200L L  along OSIPs (a-d), and for 12 

y y0
ˆ 0, 40, 80L L  along PSIPs (e-h). Results are shown for mutation distributions that are 13 

bivariate Gaussian (a,e), bivariate fixed-step (b,f), univariate Gaussian (c,g), and univariate 14 

fixed-step (d,h). The white dashed lines indicate the threshold for D  given by the MLIP 15 

condition, 1/ 2D . The trait spaces hashave been normalized and rescaled so that the 16 

standard deviation of mutational step sizes equals 1 in all directions. Model Parameters: 17 

1 1.0b , 0 300K  (e-h), 35.1 10  (e-f), x 0.95 , and y 0.05  (g,h). 18 
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These appendices are structured as follows. Appendices A and B are oncontain the derivation 6 

of the normal form of invasion-fitness functions with significant sensitivity difference. 7 

Appendices C to J are oncover maximum-likelihood-invasion paths (MLIPs) and on 8 

conditions for evolutionary branching along those paths under the normal form of invasion-9 

fitness functions. Appendices K to N are onprovide methods for the numerical examination of 10 

the obtained conditions for evolutionary-branching lines. Appendices O and P extend and 11 

apply these conditions for evolutionary-branching lines. Appendix Q analyzes directional 12 

evolution along MLIPs in comparison with another deterministic description of directional 13 

evolution, the canonical equation of adaptive dynamics theory (Dieckmann and Law, 1996). 14 

Appendix A: Derivation of quadratic form of invasion-15 

fitness functions 16 

Here we derive an approximate quadratic form of ( ; )f s s , Eqs. (2) in Section 3. For 17 

convenience, and without any loss of generality, we shift the origin close to the resident 18 

phenotype, so that O( )s  and O( )s . We then expand ( ; )f s s  around about this 19 

origin T
0 (0,0)s  as 20 

 T T T T 3
m r mm rr rm mr
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2 

where the subscripts ‘m’ and ‘r’ refer to mutants and residents, respectively, and where 1 

( ; ) /s sf f  for , , ,x y x y  and 2 ( ; ) /s sf f  for , , , ,x y x y  2 

denote the first and second derivatives of ( ; )f s s , respectively. We transform Eq. (A.1a) into 3 
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 (A.2) 4 

where T T T T
mm mm mm[ ]s f s s f s s f s , T T T T T T

mr mr mr rm[ ]s f s s f s s f s s f s , and 5 
T

rm mr( ) 0s f f s  are used. The attaining of a population dynamical equilibrium implies 6 

( ; ) 0f s s . Thus, any s  has to satisfy 7 

 T 3
m r mm rr rm mr

1( ; ) ( ) ( ) O( ) 0
2

f s s f f s + s f f f f s . (A.3) 8 

Therefore, all terms in the fourth row of Eq. (A.2) are 3O( ) , which gives 9 

 

T T 3
m mm rm mm

T T 3

1( ; ) ( ) ( ) ( ) ( ) O( )
2

1( ) ( ) ( ) ( ) O( ),
2

s s f s s s f f s s s s f s s

G s s s C s s s s D s s

f
 (A.4) 10 

where the second line uses the notation introduced in Eq. (2b). The substitution s s s  11 

and considering T
0 (0,0)s  give rise to Eq. (2a) in Section 3. Notice that the quadratic 12 

approximation in Ito and Dieckmann (2012), where C  is multiplied by 1/ 2 , becomes 13 

identical to Eq. (2a) by defining C  as mm rmC f f  (the convention used here) instead of 14 

as 1
mm rm2 ( )C f f  (the convention used there). 15 

Appendix B: Condition for significant sensitivity difference 16 

Here we derive the condition for significant sensitivity difference of normalized invasion-17 

fitness functions, Eq. (4) in Section 3. First, we show how sensitivity difference can be caused 18 

by the asymmetry of mutational step sizes in the original trait space. Second, we extend this 19 

relationship into a general condition for significant sensitivity difference. 20 



3 

Sensitivity difference due to mutational asymmetry 1 

We assume that the X - and Y -axes of the original trait space S  have been aligned as 2 

shown in Fig. 2b, so that XY 0V . In this space, the invasion-fitness function ( ; )F S S  is 3 

expanded similarly to Eqs. (2) as 4 

 T T 3
0 X

1( ; ) ( ) O( ),
2

S S G S S S C S S D SF  (B.1a) 5 

where 6 

 XX XYXX XY
X Y

XY YYYX YY

, ,
D DC C

G G
D DC C

G C D . (B.1b) 7 

We now consider the case that Y  is much smaller than X , such that 2
Y XO( ) . We 8 

introduce a new coordinate system T( , )x ys , where x X  and X Y( / )y Y , which 9 

results in isotropic mutation with standard deviation X  (Fig. 2c). Substituting X x  10 

and Y X( / )Y y  into Eq. (B.1a) yields the following normalized invasion-fitness 11 

function, 12 
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Y X Y X

2
x xx 0 xx y

xy 0 yx 0 yy 0

2 3
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1 O( ),
2

s sf F x y x y
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 (B.2a) 13 

where 14 

 

x X xx XX xx XX 0 0

y Y X Y xy Y X XY

2 2
yx Y X YX yy Y X YY

2 2
xy Y X XY yy Y X YY

, , , O( ), O( ),

( / ) O( ), ( / ) O( ),

( / ) O( ), ( / ) O( ),

( / ) O( ), ( / ) O( ).

G G C C D D x x y y

G G C C

C C C C

D D D D

 (B.2b) 15 

Thus, by including all applicable terms in 3O( ) , we see that Eq. (B.2a) yields the normal 16 

form of invasion-fitness functions with significant sensitivity difference, Eq. (3) in Section 3. 17 
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Generalization of sensitivity difference 1 

The normal form in Eq. (3) can also be obtained when the sensitivity of a fitness function to 2 

variation in trait y  is weak, so that yG , xyD , yyD , xyC , yxC , and yyC  are all relatively 3 

small. To make this notion precise, we proceed as follows. We suppose an arbitrary invasion-4 

fitness function defined in a normalized trait space T( , )x ys , in which mutation is isotropic 5 

with standard deviation 1. This function is then given by Eq. (2), 6 

 T T 3
0

1( ; ) ( ) O( )
2

s s G s s s C s s D sf . (B.3) 7 

Here we assume that the value of invasion fitness is scaled such that the sensitivity of the 8 

function to trait x  is not small, i.e., x xx xxG C D  is of order 0 . On that basis, we can 9 

define a significant sensitivity difference as follows. 10 

Definition of significant sensitivity difference of invasion-fitness functions:  11 

Suppose that for a normalized invasion-fitness function the x - and y -axes can be ad-12 

justed by coordinate rotation, such that the function can be decomposed into a function 13 

depending only on x  and x , and into a residual of sufficiently small magnitude 14 

O( ) , 15 

 ( ; ) ( ; ) ( ; ),f g x x hs s s s  (B.4) 16 

where ( ; ) ( ; ) ( ; ) /h f g x xs s s s  is kept smooth and finite, i.e., its first and sec-17 

ond derivatives are 0O( ) . Then, it is said that the function f  has significant sensi-18 

tivity difference with respect to the x - and y -directions. 19 

If f  in Eq. (B.3) has significant sensitivity difference, then substituting Eq. (B.3) into Eq. 20 

(B.4) and assuming  yields 21 

 

2 3
x xx 0 xx

xy yx yy
0 0 0

yy xy2 3

1( ; ) ( ) O( ),
2
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2
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h y
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 (B.5) 22 



5 

To keep the first and second derivatives of ( ; )h s s  at 0O( ) , yG , xyC , yyC , xyD , and 1 

yyD  must all be O( ) , in which case Eq. (2a) in Section 3 can be transformed into Eq. (3). 2 

Thus, a sufficient condition for the normalized invasion-fitness function in Eq. (2a) to be 3 

transformed into the normal form in Eq. (3) is expressed as Eq. (4), 4 

 y xy yx yy xy yy

x xx xx

O( )
G C C C D D

G C D
, (B.6) 5 

where the denominator enables application to normalized invasion-fitness functions that are 6 

not yet suitably scaled. 7 

Appendix C: Approximation of invasion-event rate density 8 

Here we explain how the invasion-event rate density is approximated in Eq. (8a) in Section 4. 9 

The first row of Eq. (8a) is transformed into 10 

 
( ; )ˆ( ; ) ( ; ) ( )
( ; )

ˆ ( ) ( ; ) 1 ( ; ) ,

fE nb M
b

nM f

s ss s s s s s
s s

s s s s s s
 (C.1a) 11 

where 12 

 ( ; ) ( ; )( ; ) O( )
( ; )

b b
b

s s s ss s
s s

, (C.1b) 13 

because ( ; )b s s  converges to ( ; )b s s  as 0 , which gives s s . Thus, the 14 

approximation in Eq. (8a) applies in the leading order of s s , as long as  is sufficiently 15 

small such that ( ; ) ( ; )b bs s s s  is much smaller than ( ; )b s s , i.e., 16 

[ ( ; ) ( ; )] / ( ; ) O( )b b bs s s s s s . 17 

Appendix D: MLIP condition 18 

Here we prove that the conditions for dimorphic emergence and those for dimorphic 19 

divergence are both satisfied if and only if the MLIP condition 1/ 2D  holds, provided 20 

that 0C . 21 
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Main proof 1 

When the resident is located on the convergence-stable line, MLI mutants MLIs , given by Eq. 2 

(17) in Section 5, do not satisfy the second condition for dimorphic emergence, inequality 3 

(13b), for 1/ 2D . Thus, 1/ 2D  is necessary for dimorphic emergence. Therefore, 4 

we only have to examine whether 1/ 2D  satisfies the conditions for dimorphic 5 

emergence as well as those forand dimorphic divergence, as follows. 6 

First, we examine the conditions for dimorphic emergence, i.e., inequalities (13). For 7 

convenience, instead of the MLI mutant MLIs  itself, we use its deviation from its parental 8 

resident, MLI MLIs s s . For this MLI , the following lemma holds (see the next subsection 9 

for the proof). 10 

Lemma D.1: 11 

If the MLIP condition 1/ 2D  holds, then, for any monomorphic resident s , the 12 

MLI mutantionmutation MLI  satisfies 13 

 MLI

MLI

0 for 0
0 for 0,

x x
x x

 (D.1a) 14 

 2
MLI MLI0 y D x , (D.1b) 15 

 MLI1 2x . (D.1c) 16 

Inequality (D.1a) is identical to inequality (13a). Inequality (D.1b) is a sufficient condition for 17 

inequality (13b). Thus, Lemma D.1 ensures that conditions for dimorphic emergence hold 18 

under the MLIP condition. 19 

Next, we examine the conditions for dimorphic divergence, i.e., inequalities (14). Under 20 

dimorphism of 1s  and 2s , the MLI mutation is written asgiven by MLI MLI MLIs s s  with 21 

MLI 1 2ors s s . For this MLIs , the following lemma holds (see the last subsection for the 22 

proof). 23 
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Lemma D.2: 1 

If the MLIP condition 1/ 2D  holds, then, for any dimorphic residents 1s  and 2s  2 

satisfying 2
2 1 2 1( )y y D x x , the MLI mutation MLIs  satisfies 3 

 MLI

MLI

0 for 0
0 for 0,

x x
x x

 (D.2a) 4 

 2
MLI MLI0 y D x , (D.2b) 5 

 MLI1 2x , (D.2c) 6 

where T T
MLI 2 1 2 1 2 1( , ) ([ (2 ) ( ) / ( )] / ,0)s x y D x x x y y x x C . 7 

Below we check whether Lemma D.2 ensures that the conditions for dimorphic divergence, 8 

inequalities (14), hold under 1/ 2D . As in inequalities (14), 1 2x x  is assumed without 9 

loss of generality. First, we suppose MLIs  originates from 1s  (i.e., MLI 1s s  and 10 

MLI MLI MLI MLI 1s s s s s ), in which case inequality (14a) is expected to hold, i.e., 11 

MLI 1x x  and 2
MLI 1 MLI 1( )y y D x x , hold as explained below. Clearly, the second 12 

inequality, 2
MLI 1 MLI 1( )y y D x x , is satisfied by inequality (D.2b). The first inequality, 13 

MLI 1x x , also holds under inequalities (D.2a), because MLI MLI 1 0x x x  follows from 14 

0x : 15 

 

2 1
1 2

2 1

2
1 2 2 1

1 2

2
1 2 2 1

1 2

2 2
1 2 2 1

1 2

1 ( )

1 ( ) ( )
( )

1 ( )
( )

1 ( ) ( ) 0,
( )

y yx D x x
C x x

D x x y y
C x x

D x x y y
C x x

D x x D x x
C x x

 (D.3) 16 

where 1 2( )C x x  is positive because 0C  and 1 2 0x x .  17 

Second, we suppose MLIs  originates from 2s  (i.e., MLI 2s s  and 18 

MLI MLI MLI MLI 2s s s s s ), in which case inequality (14b) is expected to hold, i.e., 19 

MLI 2x x  and 2
MLI 2 MLI 2( )y y D x x , again hold as explained below. Clearly, the second 20 
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inequality, 2
MLI 2 MLI 2( )y y D x x , is satisfied by inequality (D.2b). The first inequality, 1 

MLI 2x x , also holds under inequalities (D.2a), because MLI MLI 2 0x x x  follows from 2 

0x : 3 

 

2 1
2 1

2 1

2
2 1 2 1

1 2

2
1 2 2 1

1 2

2 2
1 2 2 1

1 2

1 ( )

1 ( ) ( )
( )

1 ( )
( )

1 ( ) ( ) 0.
( )

y yx D x x
C x x

D x x y y
C x x

D x x y y
C x x

D x x D x x
C x x

 (D.4) 4 

Thus, the conditions for dimorphic divergence, inequalities (14), as well as those for 5 

dimorphic emergence, inequalities (13), hold under 1/ 2D . Therefore, conditions for 6 

dimorphic emergence and those for dimorphic divergence both hold if and only if the MLIP 7 

condition 1/ 2D  holds. This completes the proof. 8 

Proof of Lemma D.1 9 

Among the three inequalities (D.1) of Lemma D.1, we first analyze inequalities (D.1a). MLI 10 

mutants, which maximize ( ; )P s s  in Eq. (8b), always have positive invasion fitnesses. Thus, 11 

the subscript “+” is neglectednot needed here. For arbitrary s  and s , ( ; )P s s  satisfies 12 

 2 21
x 2

ˆ
( ; ) ( ; ) exp [ ] ,T nP P x y Cx xs s s s s s  (D.5) 13 

where T
x ( , )s x y  is identical to T( , )s x y  except that the sign of x  is 14 

reversed. When 0x , Eq. (D.5) is negative for , as 0x , because 0C . This means that 15 

when 0x , for every mutational step in the negative x -direction, there exists a step in the 16 

positive x -direction that has a higher probability density. Thus, the global maximum is 17 

reached for some 0x . When 0x , on the other hand, Eq. (D.5) is negative for 0x , 18 

which implies that MLIx  must be negative for 0x . Therefore, inequalities (D.1a) hold. 19 

Second, we examine inequalities (D.1b) and (D.1c). We analyze the extremal conditions 20 
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2 2 21

2

ˆ( ; ) exp
2

0

P T n D x Cxx y x y D x Cx x
x x

s s s
, (D.6a) 1 

 
2 2 21

2

ˆ( ; ) 1exp
2

0

P T n x y y y D x Cx x
y y

s s s
, (D.6b) 2 

which hold for MLIs s . Eq. (D.6a) is transformed into 3 

 
2

2 ( 1)( 2) ( )Cx xy D x g x
x

, (D.7) 4 

from where we define the right-hand side assecond equation defines ( )g x . Taking the 5 

difference of Eqs. (D.6a) and (D.6b), 6 

 1 ( ; ) 1 ( ; ) 0E E
x x y y

s s s s s s , (D.8) 7 

we find 8 

 ( )
2

xy h x
D x Cx

, (D.9) 9 

from where we define the right-hand side assecond equation defines ( )h x . 10 

When 0x , in which case MLIx  must be positive, MLIs  is the crossing point of the 11 

two curves given by Eqs. (D.7) and (D.9). As ( ) / 0g x x  and ( ) / 0h x x  hold 12 

for positive x  and 0D , ( )g x  and ( )h x  are monotonically decreasing and 13 

increasing functions of x , respectively, for positive x  and 0D . Suppose that 14 

1/ 2D . Then (1) (1) 0h g  and ( 2) ( 2) 0h g . Since ( ) ( )h x g x  is a strictly 15 

increasing function of x  and is zero for MLIx x , it follows that MLI1 2x  and 16 

hence that 2
MLI MLImin (1), ( 2) (1)y g h g D D x . In addition, as ( )h x  is always 17 

positive for positive x , MLI 0y  holds. Thus, inequalities (D.1b) and (D.1c) both hold 18 

for 0x . 19 

When 0x , reversing the direction of the x -axis (i.e., multiplying x  and x  by 1) 20 

yields a situation identical to the case 0x , without loss of generality. Thus, inequalities 21 

(D.1b) and (D.1c) both hold also for 0x . 22 
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When 0x , the MLI mutant is explicitly obtained from Eq. (17) in Section 5. Clearly, 1 

inequalities (D.1b) and (D.1c) both hold for 1/ 2D . This completes the proof. 2 

Proof of Lemma D.2 3 

For the proof in this subsection, we denote MLI mutants as functions of the resident 4 

phenotypes, i.e., MLI ( )s s  for monomorphism and MLI 1 2( , )s s s  for dimorphism. Then, the 5 

MLI mutations in these cases can be expressed as MLI MLI( ) ( )s s s s s  and 6 

MLI 1 2 MLI 1 2 MLI( , ) ( , )s s s s s s s , respectively, where MLIs  with MLI 1 2ors s s  is the 7 

parental resident of the MLI mutant MLI 1 2( , )s s s . 8 

We prove Lemma D.2 by demonstrating that the MLI mutation under a dimorphism of 1s  9 

and 2s  is identical to that under monomorphism of an appropriately chosen s , 10 

 T
MLI 2 1 2 1 2 1([ (2 ) ( ) / ( )] / ,0)s D x x x y y x x C , (D.10) 11 

i.e., MLI 1 2 MLI( , ) ( )s s s s s . Then, provided that Lemma D.1 holds, substitution of 12 

MLI MLI 1 2( ) ( , )s s s s s  and s  into Eqs. (D.1) immediately gives Lemma D.2. The proof of 13 

MLI 1 2 MLI( , ) ( )s s s s s  is as follows. 14 

The MLI mutation MLI 1 2( , )s s s  is given by the s  that maximizes Eq. (9b) in Section 4, 15 

 MLI MLI 1 2 MLI MLI 1 2ˆ( ; , ) ( ) ( ; , )P T n M fs s s s s s s s s  (D.11) 16 

for MLI 1s s  (with MLI 1P P  and MLI 1ˆ ˆn n ) or MLI 2s s  (with MLI 2P P  and MLI 2ˆ ˆn n ). 17 

Here, the invasion-fitness function under dimorphism, 1 2( ; , )f s s s , is approximately given by 18 

 2 1
1 2 2 1 2 2

2 1

( ; , ) ( ) ( )( ) ( )y yf y y D x x x x x x
x x

s s s , (D.12) 19 

as long as the dimorphic residents are still close to the base point of the expansion, 20 
T

0 (0,0)s  (see Appendix E for the derivation). This function can be expressed in the form 21 

of a monomorphic invasion-fitness function, Eq. (12a), 22 

 MLI 1 2( ; , ) ( ; )s s s s s s sf f , (D.13) 23 

by choosing s  as in Eq. (D.10). With this relationship, Eq. (D.11) yields 24 
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MLI MLI 1 2 MLI

MLI

MLI

ˆ( ; , ) ( ) ( ; )
ˆ

( ) ( ; )

ˆ
( ; ),

P T n M f
n T nM f

n
n P

n

s s s s s s s s

s s s s

s s s

 (D.14) 1 

where n  is the equilibrium population size of the monomorphic resident s . Since both 
MLI

ˆin  2 

and n  do not depend on s , any fixed 1s  and 2s  fulfill 3 

MLI MLI 1 2( ; , ) ( ; )P Ps s s s s s s . Therefore, the MLI 1 2 MLI 1 2 MLI( , ) ( , )s s s s s s s s  that 4 

maximizes MLI MLI 1 2( ; , )P  is identical to the MLI MLI( ) ( )s s s s s s  that 5 

maximizes ( ; )P . This completes the proof. 6 

Appendix E: Invasion-fitness functions under dimorphism 7 

Here we approximate dimorphic invasion-fitness functions 1 2( ; , )f s s s  by a form similar to 8 

that derived for monomorphic invasion-fitness functions, Eq. (D.12) in Appendix D. First, we 9 

assume that 2 1s s  is sufficiently small for the function f  to be approximated using theits 10 

first and second derivatives only. However, the direct Taylor expansion of f  with respect to 11 

s , 1s , and 2s  up to second order cannot generally satisfy the consistency condition 12 

1 1 2 2 1 2( ; , ) ( ; , ) 0f fs s s s s s . 13 

Under the restrictive assumption that the two residents are near an evolutionarily singular 14 

point, this problem can be solved by allowing the invasion-fitness function to have a rational 15 

form composed of its first and second derivatives (Durinx et al., 2008). In our study, however, 16 

the two residents may be distant from a singular point in the y -direction. Here we therefore 17 

generalize the result by Durinx et al. (2008) by showing that for arbitrary dimorphic residents 18 

dimorphic invasion-fitness functions can be approximated by a rational form composed of its 19 

first and second derivatives.  20 

Special case 21 

We first consider a special case that arises when the two residents 1s  and 2s  are both 22 

located exactly on the x -axis, i.e., T
1 1( ,0)s x  and T

2 2( ,0)s x , in which case the 23 

dimorphic invasion-fitness function 1 2( ; , )f s s s  can be approximated by a quadratic function 24 
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of s , 1s , and 2s  as follows. To satisfy 1 1 2 2 1 2( ; , ) ( ; , ) 0f fs s s s s s , the quadratic function 1 

must be expressed as 2 

 1 2 xx 1 2 xy yy xy1 1 xy2 2
1 1( ; , ) ( )( )
2 2

s s s yf D x x x x D x D y C x C x G y , (E.1) 3 

with unknown constant parameters xxD , xyD , yyD , xy1C , xy2C , and yG  to be specified. 4 

For satisfying 1 2 2 1( ; , ) ( ; , )f fs s s s s s , xy1 xy2 xyC C C  is required. The other parameters 5 

can be determined by comparing with the monomorphic invasion-fitness functions 6 

 T T
1 1 1 1 1 1

1( ; ) ( ) ( ) ( ) ( )
2

s s G s s s C s s s s D s sf  (E.2a) 7 

and 8 

 T T
2 2 2 2 2 2

1( ; ) ( ) ( ) ( ) ( )
2

s s G s s s C s s s s D s sf , (E.2b) 9 

where T
0 (0,0)s  is assumed without loss of generality. 10 

Now we consider a continuous shift in the resident phenotypes 1s  and/or 2s  in a way that 11 

maintains their coexistence (i.e., 1 2( ; ) 0s sf  and 2 1( ; ) 0s sf ), such that the population 12 

size of 2s , denoted by 2n̂ , converges to zero. Then 1 2( ; , )s s sf  has to converge to 1( ; )s sf . 13 

As derived in the last subsection in this appendix, 2ˆ 0n  while 1̂ 0n  implies 14 

2 1( ; ) 0s sf  and 1 2( ; ) 0s sf . This consideration yields the consistency condition 15 

 1 2 1( ; , ) ( ; ) s s s s sf f  for 2 1( ; ) 0s sf  and 1 2( ; ) 0s sf . (E.3a) 16 

In the same manner, considering the case of 1̂ 0n  while 2ˆ 0n  yields another 17 

consistency condition, 18 

 1 2 2( ; , ) ( ; ) s s s s sf f  for 1 2( ; ) 0s sf  and 2 1( ; ) 0s sf . (E.3b) 19 

First, we examine the consistency condition Eq. (E.3a). The condition 2 1( ; ) 0s sf  is 20 

transformed into 21 

 xx 1 x
2 1

xx

2 2C x Gx x
D

, (E.4) 22 

which upon substitution into 1 2 1( ; , ) ( ; )s s s s sf f  gives 23 
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D D
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s s s

2
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1

1( )
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( ; ).

D x x y D y

G y C x y

f s s

 (E.5) 1 

This equation must be satisfied for arbitrary 1x x , 1x , and y  as long as 1 2( ; ) 0s sf . 2 

Comparing the coefficients for 1x x , 1x , and y  at each order, we can specify the un-3 

known parameters as 4 

 
xx xx xy xy yy yy

xx xy xy x xy xy
xy y y

xx xx xx xx

, , ,

( ) ( )
, ,

2( )

D D D D D D

D C D G C D
C G G

D C D C
 (E.6) 5 

where xx xx 0D C  is ensured by 1 2( ; ) 0s sf  and 2 1( ; ) 0s sf . 6 

As the parameters thus specified also satisfy the other consistency condition, Eq. (E.3b), 7 

Eq. (E.1) with EqEqs. (E.6) is an appropriate quadratic approximation of the dimorphic 8 

invasion-fitness function 1 2( ; , )s s sf . It can be shown that Eq. (E.1) with EqEqs. (E.6) can be 9 

further transformed into 10 

 1 2 1 1 2 1( ; , ) ( ; ) ( ; ) ,s s s s s s sf w f w f h  (E.7) 11 

where 1 12 12 21/ ( )w f f f , 2 21 12 21/ ( )w f f f , and 12 21 12 21/ ( )h f f f f , with 12 

12 1 2( ; )s sf f  and 21 2 1( ; )s sf f . 13 

General case 14 

Next, we consider the general case in which the two residents 1s  and 2s  are located neither 15 

located on the x -axis (as in the previous subsection) ornor near an evolutionarily singular 16 
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point (as in Durinx et al., 2008). As the dimorphic invasion-fitness function obtained for the 1 

special case above, Eq. (E.7), has a form independent of the coordinate system (i.e., 2 

independent of how the x - and y -axes are chosen), it is expected that even in this general 3 

case the function is obtained in a form identical to Eq. (E.7). Below, we confirm this 4 

conjecture. 5 

First, to treat this general case analogously to the special case, we introduce a new coordi-6 

nate system T( , )s x y  so that 1s  and 2s  are both located on the x -axis, i.e., T
1 1( ,0)s x  7 

and T
2 2( ,0)s x , by an affine coordinate transformation, 8 

 
1 1

01 0
,

1
s As b

x x
y axy a y

 (E.8) 9 

with 2 1 2 1( ) / ( )a y y x x . Then, in the new coordinate system, 1( ; )s sf  and 2( ; )s sf  10 

are expressed as 11 

 
1 1 1

T T
1 1 1 1 1

( ; ) ( ; ) ( ; )
1( ) ( ) ( ) ( )
2

s s s s As b As b

G s s s C s s s s D s s

f f f
 (E.9a) 12 

and 13 

 
2 2 2

T T
2 2 2 2 2

( ; ) ( ; ) ( ; )
1( ) ( ) ( ) ( ),
2

s s s s As b As b

G s s s C s s s s D s s

f f f
 (E.9b) 14 

where T
0 (0,0)s , i.e., 0s b , is assumed without loss of generality, and where G GA , 15 

TC A CA , and TD A DA . Therefore, in the same manner as in the special case, we obtain 16 

the quadratic approximation of the dimorphic invasion-fitness function, in a form identical to 17 

Eq. (E.7), 18 

 1 2 1 1 2 1( ; , ) ( ; ) ( ; ) ,s s s s s s sf w f w f h  (E.10) 19 

where 1 12 12 21/ ( )w f f f , 2 21 12 21/ ( )w f f f , and 12 21 12 21/ ( )h f f f f , with 20 

12 1 2( ; )s sf f  and 21 2 1( ; )s sf f . 21 

Here, Eq. (E.10) directly gives the dimorphic invasion-fitness function 1 2( ; , )s s sf  in the 22 

original coordinate system, 23 
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 1 1 1
1 2 2 2 1 2( ; , ) ( ( ); ( ), ( )) ( ; , )s s s A s b A s b A s b s s sf f f . (E.11) 1 

In addition, 1 1( ; ) ( ; )s s s sf f  and 2 2( ; ) ( ; )s s s sf f  both hold according to Eqs. (E.9a) 2 

and (E.9b), which upon substitution into Eq. (E.10) yields Eq. (E.7), as expected. Therefore, 3 

in general a dimorphic invasion-fitness function can be approximated by a rational form 4 

composed of its first and second derivatives, Eq. (E.7).  5 

Even if the trait space is multivariate, with arbitrary dimension L , denoted by 6 
T

1( ,..., )s Lu u , we can find, for arbitrary s , 1s , and 2s , a bivariate subspace that contains 7 

all three of these phenotypes. In this subspace, Eq. (E.7) holds, where the monomorphic and 8 

dimorphic invasion-fitness functions defined on T
1( ,..., )s Lu u  can be directly used, as long 9 

as we consider s  to be restricted to this subspace. As we can always find such a subspace 10 

for any s , 1s , and 2s , the dimorphic invasion-fitness function 1 2( ; , )s s sf  on 11 
T

1( ,..., )s Lu u  is given by Eq. (E.7), by using the monomorphic function ( ; )s sf  on 12 
T

1( ,..., )s Lu u . 13 

Finally, substituting the monomorphic invasion-fitness function in Eq. (12a) in the main 14 

text into Eq. (E.7) yields the corresponding dimorphic invasion-fitness function, Eq. (D.12). 15 

Derivation of consistency condition 16 

Here we derive the consistency condition 1 2 1( ; , ) ( ; )s s s s sf f  for 2 1( ; ) 0s sf  and 17 

1 2( ; ) 0s sf , by proving that 2ˆ 0n  holds for 2 1( ; ) 0s sf  while 1 2( ; ) 0s sf .  18 

First, we assume a protected dimorphism of 1s  and 2s , i.e., 2 1( ; ) 0s sf  and 19 

1 2( ; ) 0s sf . This is possible only when the resident phenotypes 1s  and 2s  are both in the 20 

neighborhood of an evolutionarily singular point in the one-dimensional trait subspace 21 

defined by the x -axis in Eq. (E.8). Then, the population dynamics of 1s  and 2s  can be 22 

approximated by Lotka-Volterra equations (Durinx et al., 2008), giving a unique interior 23 

stable equilibrium 1 2ˆ ˆ( , )n n ; see also Appendix M. Thus, when 2 1( ; )s sf  converges to zero 24 

while 1 2( ; ) 0s sf , 1̂n  converges to zero, while 2ˆ 0n . In this case, 1 2( ; , )s s sf  must 25 

converge to 1( ; )s sf . Therefore, 1 2 1( ; , ) ( ; )s s s s sf f  for 2 1( ; ) 0s sf  and 1 2( ; ) 0s sf  26 

holds. 27 
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Appendix F: Mutational step sizes of MLI mutants 1 

Here we prove that MLI mutants MLIs , which maximize Eqs. (11) in Section 4, satisfy 2 

MLI MLI 2s s , where MLIs  is the parental resident, when invasion-fitness functions are 3 

approximated by quadratic functions of s  (e.g., Eqs. 2) and mutation probability 4 

distributions are approximated by multivariate Gaussian functions. 5 

Main proof 6 

We consider a multivariate trait space T
1( ,..., )s Lu u  with arbitrary dimension L  that is 7 

normalized and rescaled so that mutation is isotropic with standard deviation 1. We assume 8 

that the mutation probability distribution is approximated by a multivariate Gaussian function 9 

 21
2/2

1( ) exp
(2 )

s sLM , (F.1) 10 

with standard deviation 1 in all directions. 11 

In a manner similar to Appendix A, we can expand the invasion-fitness function in 12 

around s  about MLIs  as 13 

 T
1

1( ; ,..., ) h.o.t.
2

s s s G s s D sNf , (F.2) 14 

where MLIs s s , G  is an L -dimensional row vector, and D  is an L L  symmetric 15 

matrix. Notice that G  and D  are both functions of 1,...,s sN  so that 1( ; ,..., ) 0s s si Nf  16 

holds for all 1,...,i N . For example, 1( ; ,..., )s s sNf  for 2N  (i.e., for a dimorphism) is 17 

given by Eq. (E.7) in Appendix E. We assume that the higher-order terms in Eq. (F.2) can be 18 

neglected. 19 

According to Eq. (11) in Section 4, MLI MLI MLIs s s  maximizes 20 

 
MLI 1 MLI 1

2 TMLI 1
2/2

ˆ( ; ,..., ) ( ) ( ; ,..., )
ˆ 1exp ,

(2 ) 2

s s s s s s s

s G s s D s

N N

L

P T n M f
T n  (F.3) 21 

where 
MLIMLIs si , 

MLIMLI iP P , 
MLIMLIˆ ˆin n , and the conversion of negative invasion fitnesses 22 

to zero (subscript “+”) is not needed here, as MLI MLI MLIs s s  always provides positive 23 

invasion fitnesses. 24 
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First, we consider the special case G 0 . In this case, D 0  is required for neglecting 1 

the higher-order terms. When D  is negative definite, the MLI mutation is given by 2 

MLI 0s , otherwise, MLI 12s v , where 1v  is the eigenvector of the maximum 3 

eigenvalue of D , with 1 1v . Thus, MLI 2s  holds for G 0 . 4 

Second, we consider the case G 0 . We express s  as zs ez , where ze  is the unit 5 

vector parallel to the mutational step s , with z 1e , and z  is a scalar. Substituting 6 

zs ez  into Eq. (F.3) yields 7 

 2 21
MLI 1 0 z z2

1( ; ,..., ) exp ( )
2NP A z G z D z H zs s s , (F.4) 8 

where /2
0 MLIˆ( ) / (2 ) 0LA T n , z zGeG , T

z z ze DeD , and the second equality defines 9 

( )H z . 10 

Lemma F.1: 11 

The MLIz z  that maximizes ( )H z  always satisfies MLI 2z  for arbitrary zG  12 

and zD , except for the special case z z 0G D . 13 

If there exists an ze  with z z 0G D , then ( ) 0H z  for all z , so MLIz  cannot be 14 

determined. However, as G 0 , there always exist other ze  with z 0G , which yield 15 

( ) 0H z  for some z  (e.g., for z z0 2 /z G D  when T
ze G ). Thus, MLIs  is chosen 16 

along those ze , which satisfy MLI 2z  according to Lemma F.1. Therefore, MLI 2s  17 

holds also for G 0 . This completes the proof. 18 

Proof of Lemma F.1 19 

When z 0G , zD  must be non-zero, as Lemma F.1 excludes the special case z z 0G D . 20 

Then, MLIz  is given by MLI 2z  for z 0D , or by MLI 0z  for z 0D . Thus, 21 

MLI 2z  holds. 22 

When z 0G , we multiply ze  by 1 as necessary so that z 0G  always holds, 23 

without loss of generality. Then, for any negative z , ( ) ( )H z H z  holds. Thus, MLIz , 24 

which maximizes ( )H z , satisfies MLI 0z . In addition, as ( ) 0H z  holds for MLIz , the 25 

expression in the square bracket in Eq. (F.4) satisfies 1
z z MLI2 0G D z . Thus, MLIz  satisfies 26 
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 MLI0 z  for 0zD , (F.5a) 1 

and 2 

 z
MLI

z

20 Gz
D

 for 0zD . (F.5b) 3 

Notice that ( )H z  is a smooth function of z . As (0) 0H , ( ) 0H , and ( ) 0H z  for 4 

z z2 /z G D , ( )H z has a positive maximum for finite MLIz z , fulfilling 5 

 2 2 21
0 z z2

d ( ) 1exp (1 ) (2 ) 0.
d 2

H z A z G z D z z
z

 (F.6) 6 

Thus, when z 0D , the MLIz , which satisfies both Eqs. (F.5a) and (F.6), must satisfy 7 

MLI1 2z . On the other hand, when z 0D , Eq. (F.6) can be expressed as 8 

 2 21
0 z z z2

d ( ) 1 1exp ( )(1 ) 0
d 2 2

H z A z G D z z D z
z

, (F.7) 9 

where 1
z z2 0G D z  holds for MLIz z  according to Eq. (F.5b). Then, the MLIz , which 10 

satisfies both Eqs. (F.5b) and (F.7), must satisfy MLI0 1z . Therefore, MLI 2z  holds 11 

for both z 0G  and z 0G . This completes the proof. 12 

Appendix G: Proof of Lemma 1 (conditions for dimorphic 13 

emergence) 14 

Here we prove Lemma 1 in Section 5, specifying conditions on MLI mutants to ensure 15 

dimorphic emergence. While this lemma refers to MLI mutants, it also holds for non-MLI 16 

mutants as long as they satisfy the conditions for dimorphic emergence, inequalities (13). 17 

Thus, here we do not distinguish between s  and MLIs , and denote mutants simply by s . 18 

We consider a monomorphic resident T( , )x ys . A sufficient condition for protected 19 

dimorphism of s  and s , and thus for dimorphic emergence, is given by mutual invasibility, 20 

 
2

2

( ; ) 0,
( ; ) ( ) 0.

f y D x Cx x
f y D x C x x x

s s
s s

 (G.1) 21 

These inequalities can be combined into 22 

 2 20 (2 )y D x Cx x D C x . (G.2) 23 
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We first suppose that the population is not close to the convergence-stable line 0x , so that 1 

x  is significantly larger than 1. Since the magnitudes of x  and y  are of order 1, 2 
2(2 )D C x Cx x  holds. In this case, inequalities (G.2) cannot hold. This means that 3 

invasion by s  always replaces s , which corresponds to directional evolution. To satisfy 4 

inequalities (G.2), the population has to come close to the convergence-stable line through 5 

directional evolution, such that x  becomes sufficiently small. Such convergence is ensured 6 

if all invading mutants satisfy 7 

 
for 0
for 0.

x x x
x x x

 (G.3) 8 

This implies 0x  for 0x  and 0x  for 0x . The population monotonically 9 

converges to the convergence-stable line if all invading mutants satisfy this condition, as long 10 

as the resident is monomorphic. 11 

On this basis, we now suppose that the population has come close to the convergence-12 

stable line and that a mutant has arisen such that the resident and the mutant straddle the 13 

convergence-stable line, 0xx . As C  is negative, both 2( )Cx x C xx x  and 14 
2( ) ( )C x x x C x xx  are always positive. Thus, inequalities (G.2) hold if 15 

 0x x  (G.4) 16 

and 17 

 2

y
D

x
. (G.5) 18 

Since directional evolution proceeds toward the convergence-stable line under inequalities 19 

(G.3), the situation 0xx  inevitably occurs, unless protected dimorphism emerges even 20 

before that. Thus, for an arbitrary initial resident as , if all subsequent invading mutants 21 

satisfy inequalities (G.3) and (G.5), then the population monotonically converges to the line 22 

0x , until protected dimorphism has emerged, which inevitably occurs once s  and s  23 

straddle the line. Inequalities (G.3) and (G.5) are identical to inequalities (13) in Section 5. 24 

This completes the proof. 25 
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Appendix H: Proof of Lemma 2 (conditions for dimorphic 1 

divergence) 2 

Preparation 3 

Here we prove Lemma 2 in Section 5, specifying conditions on MLI mutants to ensure 4 

dimorphic divergence. Similarly to Lemma 1, Lemma 2 also holds for non-MLI mutants as 5 

long as they satisfy the conditions for dimorphic divergence, inequalities (14). Thus, as in 6 

Appendix G, here we do not distinguish between s  and MLIs , and denote mutants simply by 7 

s . 8 

After the emergence of a protected dimorphism, composed of two residents denoted by 1s  9 

and 2s , the next invasion event occurs based on the dimorphic invasion fitness 1 2( ; , )f s s s . 10 

As long as the two residents remain close to the base point of the expansion, T
0 (0,0)s , this 11 

dimorphic invasion fitness is approximately given by Eq. (D.12), 12 

 2 1
1 2 2 1 2 2

2 1

( ; , ) ( ) ( )( ) ( )y yf y y D x x x x x x
x x

s s s , (H.1) 13 

as shown in Appendix E. This dimorphic invasion-fitness function 1 2( ; , )s s sf  and the 14 

monomorphic invasion-fitness function ( ; )s sf  given by Eq. (12a) together determine 15 

whether a sequence of invading mutants can bring about dimorphic divergence. 16 

Conditions for a single step of dimorphic divergence 17 

We define dimorphic divergence as the directional evolution of two resident morphs in 18 

opposite directions along the x -axis. Such a compound evolutionary process is formed by 19 

repetition of a unit process defined as follows. 20 

Definition of a single step of dimorphic divergence: An invading mutant replaces 21 

only either of the two residents and coexists with the other resident, and the phenotyp-22 

ic distance along the x -axis between the new residents is larger than that between the 23 

previousold residents. 24 

 25 
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For a more formal description, we now consider arbitrary phenotypes s , 1s , and 2s . The 1 

resident that is replaced by s  is denoted by ps  (i.e., p 1s s  or p 2s s ). The other 2 

resident that coexists with s  is denoted by qs  (i.e., q 2s s  for p 1s s , or q 1s s  for 3 

p 2s s ). Although s  usually replaces its parental resident (i.e., ps  is its parental resident), 4 

s  may replace the other non-parental resident (i.e., ps  is the non-parental resident) when 5 

the two residents are close to each other. Then, the definition above of a single step of 6 

dimorphic divergence is fulfilled under the following conditions. 7 

Sufficient conditions for a single step of dimorphic divergence: 8 

(a) p q( ; , ) 0f s s s  ( s  can invade) 9 

(b) q( ; ) 0f s s  and q( ; ) 0f s s  ( s  coexists with qs , i.e., qs  owing to mutual in-10 

vasibility) 11 

(c) p q( ; , ) 0f s s s  ( s  excludes ps ) 12 

(d) q 2 1x x x x  (phenotypic divergence along the x -axis becomes larger) 13 

On this basis, we prove the following lemma in Appendix I. 14 

Lemma H.1: 15 

Sufficient conditions for satisfying conditions (a) to (d) above are given by 16 

 2
2 1 2 1( )y y D x x , (H.2a) 17 

 p q( ) 0x x x , (H.2b) 18 

and 19 

 2y D x , (H.2c) 20 

where 
T T

p p p( , ) ( , )x y x x y y s s . 21 

Therefore, for dimorphic residents 1s  and 2s  satisfying inequality (H.2a), any mutant 22 

satisfying inequalities (H.2b) and (H.2c) ensures a single step of dimorphic divergence. 23 

The set of mutants s  that satisfy inequalities (H.2b) and (H.2c) is illustrated as the white 24 

regions in Fig. 3d. 25 
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Conditions for the whole process of dimorphic divergence 1 

We suppose that an invading mutant s  and residents 1s  and 2s  satisfy inequalities (H.2). 2 

Without loss of generality, we assume p 2s s  and q 1s s  (differently from Lemma 2, 3 

which assumes 1 2x x  instead). Then, s  excludes only 2s  and coexists with 1s . In 4 

addition, as proved in Appendix I, the new dimorphism composed of s  and 1s  satisfies 5 

 2
1 1( )y y D x x . (H.3) 6 

When s  is renamed as its replacingthe replaced resident 2s , inequality (H.3) gives 7 

inequality (H.2a). Thus, for the next step of dimorphic divergence, only inequalities (H.2b) 8 

and (H.2c) have to hold, and the same applies for subsequent steps of dimorphic divergence. 9 

Therefore, for any initial dimorphic residents satisfying inequality (H.2a), the whole process 10 

of subsequent dimorphic divergence is ensured, if all of the subsequent invading mutants 11 

satisfy inequalities (H.2b) and (H.2c). In addition, any initial protected dimorphism emerged 12 

under the conditions for dimorphic emergence, inequalities (13) in Section 5, clearly satisfies 13 

inequality (H.2a). Thus, provided that the initial dimorphism has emerged under the 14 

conditions for dimorphic emergence, sufficient conditions on the subsequent invading 15 

mutants for dimorphic divergence are given by inequalities (H.2b) and (H.2c). Inequalities 16 

(H.2b) and (H.2c) are equivalent to inequalities (14) in Section 5 when 1 2x x  is assumed. 17 

This completes the proof of Lemma 2. 18 

Appendix I: Proof of Lemma H.1 (conditions for a single 19 

step of dimorphic divergence) 20 

Here we prove Lemma H.1 in Appendix H. We also show that conditions for a single step of 21 

dimorphic divergence, inequalities (H.2), ensure inequality (H.3). 22 

Main proof 23 

Without loss of generality, we assume that p 2s s  and q 1s s  (differently from Lemma 2, 24 

which assumes 1 2x x ). Then, the conditions (a) to (d) in Appendix H, for a single step of 25 

dimorphic divergence, become 1 2( ; , ) 0f s s s , 1( ; ) 0f s s , 1( ; ) 0f s s , 2 1( ; , ) 0f s s s , 26 
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and 1 2 1x x x x . We denote the phenotypic differences of the original and the new 1 

residents by p q 2 1s s s s s , i.e., T T
2 1 2 1( , ) ( , )x y x x y y , and qs s s , i.e., 2 

T T
1 1( , ) ( , )x y x x y y , respectively. We also define tan /y x  and 3 

tan /y x . 4 

On this basis, we prove the following two lemmas in the subsequent subsections. 5 

Lemma I.1: 6 

All inequalities 1 2( ; , ) 0f s s s , 1( ; ) 0f s s , 1( ; ) 0f s s , 2 1( ; , ) 0f s s s , and 7 

1 2 1x x x x  hold if 8 

 0 andx x x x  (I.1a) 9 

and 10 

 tan tan D x x . (I.1b) 11 

 12 

Lemma I.2: 13 

 Inequalities (I.1) hold if inequalities (H.2) hold. 14 

 15 

By these Lemmas I.1 and I.2lemmas, the proof of Lemma H.1 is completed. 16 

Proof of Lemma I.1 17 

We assume that inequalities (I.1) hold. Inequalities (I.1a) immediately give 1 2 1x x x x . 18 

As for the signs of the invasion fitnesses, dividing 1 2( ; , )f s s s  by 2x x x x  yields 19 

 
1 2 2 2 1

1 2 1
2 2 1

( ; , ) [( ) ( )]

(tan tan ) .

f y y y y D x x x x
x x x x x x

D x

s s s
 (I.2a) 20 

Similarly, 1( ; )f s s , 1( ; )f s s , and 2 1( ; , )f s s s  satisfy the following equations, 21 

 1 2 1( ; ) ( ; )tan tan ( )f fD x x
x x

s s s s , (I.2b) 22 
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 1 1 2( ; ) ( ; )tan tan ( ) ( )f fD x x C x x
x x

s s s s , (I.2c) 1 

and 2 

 2 1( ; , ) (tan tan ) ( )f D x x
x

s s s . (I.2d) 3 

When 0x , Eq. (I.1a) gives 0x  and 0x x . As 0D  and 0C , and 4 

2 1( ; ) 0f s s  and 1 2( ; ) 0f s s , all inequalities 1 2( ; , ) 0f s s s , 1( ; ) 0f s s , 1( ; ) 0f s s , 5 

and 2 1( ; , ) 0f s s s  hold under inequality (I.1b), according to Eqs. (I.2). When 0x , Eq. 6 

(I.1a) gives 0x  and 0x x . Thus, in the same manner, all inequalities 7 

1 2( ; , ) 0f s s s , 1( ; ) 0f s s , 1( ; ) 0f s s , and 2 1( ; , ) 0f s s s  hold under inequality (I.1b). 8 

This completes the proof. 9 

Proof of Lemma I.2 10 

We assume that inequalities (H.2) hold. Inequality (H.2b) can be expressed as 11 
2

2 1( ) ( ) 0x x x x x x x x x , which gives inequalities (I.1a). In addition, 12 

inequalities (I.1a) give x x x . Thus, inequalities (H.2a) and (H.2c) yield inequality 13 

(I.1b), 14 

 
2 2

tan tan

.

y y y x y x y
x x x x

x y x y
x x

D x x D x x
x x

D x x x x
x x

D x D x x

 (I.3) 15 

This completes the proof. 16 

Proof of inequalities (H.2) ensuring inequality (H.3) 17 

We assume that inequalities (H.2) hold. In this case, inequality (H.2b) gives 0x x . Then, 18 

inequalities (H.2a) and (H.2b) yield inequality (H.3), 19 
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2 2

2

2 2

( ) 2
( ) .

y y y

D x D x
D x x D x x
D x x D x

 (I.4) 1 

This completes the proof. 2 

Appendix J: Directional evolution sufficient for 3 

evolutionary branching 4 

Here we derive Eq. (19) in Section 5, specifying the sufficient amount of directional evolution 5 

along y  for the emergence of a dimorphism of 1s  and 2s  satisfying *
2 1x x x x  6 

for an arbitrary * 0x . Provided that inequality (18), 1/ 2D , holds, Lemmas D.1 and 7 

D.2 in Appendix D ensure that 8 

 MLI

MLI

0 for 0
0 for 0

x x
x x

 (J.1a)  9 

for a monomorphic resident population, and that 10 

 MLI MLI 1

MLI MLI 2

0 for
0 for

s s
s s

x
x

 (J.1b) 11 

for a dimorphic resident population, where T
MLI MLI MLI MLI MLI( , ) s s sx y , MLIs  is the 12 

parental resident of MLIs , and 1 2x x  is assumed without loss of generality. Also, for both 13 

monomorphic and dimorphic populations, Lemmas D.1 and D.2 ensure that 14 

 MLI1 2x , (J.2a) 15 

 MLI
10 .
2

y  (J.2b) 16 

Then, under inequalities (J.1) and (J.2), the process of evolutionary branching along an MLIP 17 

amounts to monotonic monomorphic convergence toward 0x , followed by monotonic 18 

dimorphic divergence after the emergence of a dimorphism. Thus, if ax  is negative, this 19 

evolutionary dynamics in the trait space traces the shape of a lower-case letter “y” . By 20 

contrast, if ax  is positive, the shape is that of a mirrored “y”. 21 



26 

The sum of the lengths of all branches and trunks of such a tree shape is given by 1 

 a p
1 1

( ; ) ( ) ( ) ( ) ,I s s s s
K K

k k
l k k k MLI a MLI MLI MLI

1 1
( ; ) ( ) ( ) ( ) ,

K K

k k
l k k kI s s s s  (J.3) 2 

where T( ) ( ( ), ( ))k x k y ks T
MLI MLI MLI( ) ( ( ), ( ))k x k y ks  is the MLI mutant invading at the 3 

k th invasion event, T
p p p( ) ( ( ), ( ))k x k y ks T

MLI MLI MLI( ) ( ( ), ( ))k x k y ks  is its parental 4 

resident, K  is the total number of invasion events, 5 

( (1),..., ( ),..., ( ))I s s sk K MLI MLI MLI MLI( (1),..., ( ),..., ( ))k KI s s s , and as  is the initial resident 6 

phenotype. Eq. (J.3) describes the length of the evolutionary path formed by the mutant-7 

invasion sequence I MLII  from as . By projecting this evolutionary path onto the x - and y -8 

axes, we obtain its lengths along x  and y  as 9 

x a p
1 1

y a p
1 1

( ; ) ( ) ( ) ( ) ,

( ; ) ( ) ( ) ( ) ,

I s

I s

K K

k k
K K

k k

l x k x k x k

l y k y k y k

x MLI a MLI MLI MLI
1 1

y MLI a MLI MLI MLI
1 1

( ; ) ( ) ( ) ( ) ,

( ; ) ( ) ( ) ( ) ,

K K

k k
K K

k k

l x k x k x k

l y k y k y k

I s

I s
(J.4) 10 

respectively. We furthermore decompose xl  into the portions before and after dimorphic 11 

emergence, 12 

 

D

D

1

x MLI a MLI MLI
1

xC xD

( ; ) ( ) ( )

,

I s
k K

k k k
l x k x k

l l
 (J.5) 13 

where MLI MLI MLI( ) ( ) ( )x k x k x k , and the Dk th invasion event is assumed to bring about 14 

the emergence of dimorphism. 15 

Under inequalities (J.1) and (J.2), the population monotonically converges toward the evo-16 

lutionary-branching line until it becomes dimorphic, which inevitably occurs before the resi-17 

dent and mutant straddle the line 0x . In other words, the population starts diversification 18 

before the length of its evolutionary path along x  exceeds ax . Thus, 19 

 xC al x . (J.6) 20 

In addition, monotonic diversification along x  continues after the emergence of 21 

dimorphism, with 22 
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 xD 2 1( ) ( )l x K x K . (J.9) 1 

Moreover, as MLI MLI/ 1/ 2y x  always holds under inequaliesinequalities (J.3) and 2 

(J.42), 3 

 
y MLI a MLI

1

MLI xC xD a 2 1
1

( ; ) ( )

1 1 1( ) ( ) ( )
2 2 2

I s
K

k
K

k

l y k

x k l l x x K x K
 (J.7) 4 

holds. In addition, obviously, 5 

 1 2 y MLI a a( ) max( ( ), ( )) ( ; )I sy K y K y K l y , (J.8) 6 

where ( )y K  is the mean value of y  after K  invasion events, given by ( ) ( )y K y K for 7 

monomorphism and by 1 1 2 2 1 2ˆ ˆ ˆ ˆ( ) ( ( ) ( ) ( ) ( )) / ( ( ) ( ))y K n K y K n K y K n K n K  for 8 

dimorphism. Substituting inequality (J.8) into inequality (J.7) yields 9 

 a 2 1
a

( ) ( )
( )

2
x x K x K

y K y . (J.9) 10 

Thus, for the emergence of dimorphism with *
2 1( ) ( )x K x K x , Eq. (19) in Section 5, 11 

 
*

a
a 2

x x
y y  (J.10) 12 

is the sufficient amount of directional evolution, where ( )y y K . Analogously, the 13 

sufficient number of invasion events can be derived as *
ax x . 14 

Appendix K: Procedures for the numerical calculation of 15 

evolutionary dynamics 16 

Here we explain the procedures for the numerical calculation of the evolutionary dynamics 17 

shown in Section 6. These calculations are conducted in a normalized and rescaled trait space 18 

such that mutation is isotropic with standard deviation 1. For calculating MLIPs, the MLI 19 

mutant at each invasion event is determined so that it maximizes the invasion-event 20 

probability density defined in Eq. (9b) in Section 4. For calculating OSIPs, each invading 21 

mutant is stochastically chosen according to the invasion-event probability density (see also 22 
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Ito and Dieckmann, 2007). See Appendix M for the details of how to calculate invasion-event 1 

probability densities. When an invasion has occurred, the coexisting phenotypes at the next 2 

population dynamical equilibrium are determined by checking invasion fitnesses among 3 

residents and the mutant. 4 

For each calculation of an MLIP or OSIP, the trait ax  of the initial resident is drawn 5 

randomly from a uniform distribution with a10 10x , while the trait ay  of the initial 6 

resident is set to 0 without loss of generality. For evaluating the occurrence of evolutionary 7 

branching in OSIPs, it is numerically observed that 99.997 percent of failures (i.e., collapse of 8 

protected dimorphisms) occur for 10x , where 2 1x x x  describes the phenotypic 9 

difference in x  between the two residents. Thus, we conclude that evolutionary branching 10 

has occurred when a dimorphism with 10x  has emerged. Then, the sufficient directional 11 

evolution in y  along MLIPs is given by y0 y0 a a
ˆ ( ,10) ( 10) / 2L L x x , according to 12 

inequality (19) in Section 5. 13 

We calculate PSIPs using the polymorphic stochastic model (Dieckmann and Law, 1996), 14 

which describes individual births and deaths as stochastic events. For illustration, we use the 15 

birth and death rates defined for the resource-competition model studied by Ito and 16 

Dieckmann (2007), which is a linear combination of the MacArthur-Levins resource-17 

competition model (MacArthur, 1972) in x  and a constant selection gradient in y . This 18 

model (detailed in Appendix N) is a simple but ecologically plausible realization of the nor-19 

mal form for invasion-fitness functions with significant sensitivity difference considered in 20 

this study, as given by Eq. (3). The initial monomorphic phenotype is assigned as described 21 

for OSIPs above. To examine the process of evolutionary branching, phenotypes whose phe-22 

notypic distance is less than 2 are clustered together. When an initial single cluster splits into 23 

two clusters, x  is calculated as the phenotypic distance between the averages of x  with-24 

in the two clusters. We conclude that evolutionary branching has occurred when x  ex-25 

ceeds 10, analogous to the criterion used for OSIPs, as described above. 26 
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Appendix L: Mutation distributions 1 

Here we specify three additional mutation distributions used in our numerical calculations, 2 

which are the bivariate fixed-step distribution, the univariate Gaussian distribution, and the 3 

univariate fixed-step distribution. 4 

The bivariate fixed-step distribution describes mutations that are limited to an ellipse 5 
2 2 2 2

X Y/ / 1X Y , as illustrated in Fig. 4b5b. Along this ellipse, mutations are distribut-6 

ed uniformly. The standard deviations of the mutational step sizes, calculated according to Eq. 7 

(1) in Section 3, are X XX X / 2V  and Y YY Y / 2V , with XY 0V . 8 

The univariate Gaussian distribution describes separate mutations in X  and Y , with the 9 

corresponding relative mutation rates given by X  and Y  ( X Y 1), respectively, as 10 

illustrated in Fig. 4c5c. The mutational step sizes follow Gaussian distributions with standard 11 

deviations X  and Y , respectively. The standard deviations of mutational step sizes, 12 

calculated according to Eq. (1) in Section 3, are X X X  and Y Y Y , with 13 

XY 0V . 14 

The univariate fixed-step distribution describes separate mutations in X  and Y , with the 15 

corresponding relative mutation rates given by X  and Y  ( X Y 1), respectively. 16 

The only possible mutations are T
X( ,0)S , T

X( ,0) , T
Y(0, ) , and T

Y(0, ) , which 17 

occur with probabilities X / 2 , X / 2 , Y / 2 , and Y / 2 , as illustrated in Fig. 5d. The 18 

standard deviations of mutational step sizes, calculated according to Eq. (1) in Section 3, are 19 

X X X Y X/( )  and Y Y X Y Y/( ) , with XY 0V . 20 

After normalizing and rescaling the trait space T( , )X YS into T( , )x ys  such that the 21 

standard deviations of mutational step sizes become equal to 1 in all directions, the MLIP 22 

condition is applied. MLIP conditions for the additional three mutation distributions described 23 

above are applied by using the X Y  for these distributions in Eqs. (12c) and (18). 24 

For clarity, here we refer to these conditions as approximate MLIP conditions (as they were 25 

derived for bivariate Gaussian distributions, but are now applied to other distributions). 26 

Alternatively, MLIP conditions for the three other distributions can be derived directly by 27 

using these mutation distributions in the invasion-event probability function, analogously to 28 

the derivation for bivariate Gaussian distribution, as defined by Eq. (15) in Section 5. If the 29 
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X - and Y -axes correspond to the sensitive and insensitive directions, respectively, the 1 

resultant exact conditions are obtained as 2
X XX Y Y( ) / (2 ) 3 / 2D G , 2 

2
X X XX Y Y Y( ) / (2 ) / 2D G e , and 2

X X XX Y Y Y( ) / (2 ) 1D G  for the bivariate 3 

fixed-step, univariate Gaussian, and univariate fixed-step distributions, respectively. These 4 

results can be compared with 2
X XX Y Y( ) / (2 ) 1/ 2D D G  for the bivariate Gaussian 5 

distribution. 6 

As it turns out, the exact MLIP conditions tend to overestimate the likelihood of 7 

evolutionary branching in OSIPs and PSIPS when univariate fixed-step or univariate 8 

Gaussian mutations with large X Y/  are considered (results not shown). Thus, using the 9 

approximate MLIP conditions seems to be more robust than using the exact ones. 10 

Appendix M: Calculation of invasion-event probability 11 

densities in MLIPs and OSIPs 12 

Necessary elements for calculation 13 

Here we explain how invasion-event probability densities, as defined by Eq. (9b) in Section 4, 14 

are determined in the calculation of MLIPs and OSIPs. For any given composition of resident 15 

phenotypes, their equilibrium frequencies and the invasion fitness of possible mutants are 16 

required for the calculation (absolute population sizes are needed only for determining the 17 

waiting time for each invasion event, which is not needed for the numerical results we present 18 

in this study). 19 

As for invasion-fitness functions, we have those for monomorphism, Eq. (12a) in Section 5, 20 

and for dimorphism, Eq. (D.12) in Appendix D. Invasion-fitness functions for higher degrees 21 

of polymorphism are not needed, because trimorphism is impossible under the dimorphic 22 

invasion-fitness function, Eq. (D.12). Thus, the monomorphic and dimorphic invasion-fitness 23 

functions are sufficient for the calculation of invasion-event probability densities. 24 

As for equilibrium frequencies of resident phenotypes, the frequency of a monomorphic 25 

resident is of course always 1. For a dimorphism of 1s  and 2s , the corresponding 26 
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frequencies are approximately given by 1 1 2 1 2 2 1( ; ) / [ ( ; ) ( ; )]s s s s s sq f f f  and 2 11q q , 1 

as explained in the next subsection. 2 

Equilibrium frequencies of dimorphic phenotypes 3 

Here we approximate the equilibrium frequencies of the dimorphic residents 1s  and 2s . 4 

Without loss of generality, we consider a normalized but notnon-scaled trait space, so that 5 

mutation is isotropic with standard deviation 1. 6 

As explained in Appendix E, the population dynamics of 1s  and 2s  can be approximated 7 

by Lotka-Volterra equations, 8 

 

1 1 12 2
1

1 1

2 21 1 2
2

2 2

d1 1 ,
d

d1 1 ,
d

n n nr
n t K

n n nr
n t K

 (M.1) 9 

where 2 1r r , 21 12 , and 2 1K K  are 2 1O( )s s . The corresponding equilibrium 10 

population sizes are given by 11 

 

1 12 2
1

12 21

2 21 1
2

12 21

ˆ ,
1

ˆ ,
1

K Kn

K Kn
 (M.2) 12 

while 1 2( ; )f s s  and 2 1( ; )f s s  are given by 13 

 

1
1 2 1 12 2

1

2
2 1 2 21 1

2

( ; ) [ ],

( ; ) [ ].

rf K K
K
rf K K
K

s s

s s
 (M.3) 14 

Then, the following relationship holds, 15 
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1 1 2

1 21 2
1 2 2 1

2 1

1 2

1 2 2 1

1 2

2 11 2 2 1

1 2 2 1

2
1 2

2
1 1 2

ˆ ( ; )
ˆ ˆ ( ; ) ( ; )

( ; )
( ; ) (1 ) ( ; )

( ; ) 1
( ; )( ; ) ( ; ) 1

( ; ) ( ; )

1 O( )

O( ),

s s

s s s s

s s
s s s s

s s
s ss s s s

s s s s

n f
r Kn n f f
r K

f
f f

f
ff f

f f

w w

w w w

 (M.4) 1 

where 1 1 2 1 2 2 1( ; ) / [ ( ; ) ( ; )]s s s s s sw f f f , 2 11w w , and 1 2 2 1( ) / ( ) 1r K r K  2 

2 1O( )s s . Notice that 1 2( ; ) 0f s s  and 2 1( ; ) 0f s s  both hold for a protected 3 

dimorphism of 1s  and 2s . Thus, as long as 2 1 O( )s s , 4 

 1
1

1 2

ˆ
O( )

ˆ ˆ
n w

n n
 (M.5) 5 

is a good approximation. Therefore, after rescaling this trait space such that the standard 6 

deviation of mutational step sizes is equal to 1, Eq. (M.5) is a good approximation as long as 7 

2 1s s  is of order 1. 8 

Appendix N: Specific model for calculation of PSIPs 9 

Here we explain the model used for the calculation of PSIPs in Section 6. We consider a 10 

normalized bivariate trait space T( , )x ys , in which mutation is isotropic with standard 11 

deviation 1. We define individual birth and death rates following Ito and Dieckmann 12 

(2007), as explained below. The trait x  affects the death rate through resource competition 13 

(as, e.g., when beak size in birds determines the size of seeds they compete for). The death 14 

rate 1( ; ,..., )i Nd s s s  of phenotype T( , )i i ix ys  depends on the trait values ix  and jx , as 15 

well as on the abundances jn  of extant phenotypes 1,...,j N , 16 

 1

( )
( ; ,..., )

( )
j i j

i N
j i

x x n
d

K x
s s s . (N.1) 17 

Here 18 

 2 21
0 K2( ) exp /i iK x K x  (N.2) 19 
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is the carrying capacity of phenotype is , given by a Gaussian function with variance 2
K  1 

and mean 0ix . The function 2 

 2 21
2( ) exp ( ) /j i j ix x x x  (N.3) 3 

describes the strength of competition between phenotype ix  and phenotype jx ; it is also 4 

given by a Gaussian function, with variance 2  and mean 0j ix x . Accordingly, the 5 

strength of competition is maximal between identical phenotypes and monotonically declines 6 

with phenotypic distance. If the birth rate 1( ; ,..., )i Nb s s s  is assumed to be constant and equal 7 

to 1, the birth and death rates imply the MacArthur-Levins resource-competition model 8 

(MacArthur, 1972), d
1 1d [ ( ; ,..., ) ( ; ,..., )]i i N i N it n b d ns s s s s s  for 1,..,i N , in the limit of 9 

infinite population size.  10 

Directional selection on y  can be due to any ecological interaction (e.g., competition, 11 

exploitation, or mutualism) and may act on any morphological, physiological, or life-history 12 

.trait y . A simple way of introducing a fitness gradient in y  is 13 

 1 1( ; ,..., ) 1 ( )i N ib b y ys s s , (N.4) 14 

where y  denotes the population average of trait value y , /j j jj j
y y n n , and 1b  is 15 

a constant describing the constant directional selection pressure on y . 16 

We now consider a monomorphic resident s  with sufficiently large population size. The 17 

invasion fitness of s  with respect to s  is given by 18 

 
1

( ; ) ( ; ) ( ; )
ˆ( )1 ( ),

( )

f b d
x x n b y y
K x

s s s s s s
 (N.5) 19 

where ˆ ( )n K x  is the equilibrium population size of s . Since trait y  contributes to 20 

invasion fitness only through the linear term 1( )b y y , the condition for significant 21 

sensitivity difference, Eq. (4) in Section 3, is immediately satisfied whenever 1b  is 22 

sufficiently small such that y 1 O( )G b . In this case, the invasion fitness can be expanded 23 

aroundabout T
0 0(0, )ys  with arbitrary 0y , in the form of Eq. (3) in Section 3, 24 

 2
x xx xx y

1( ; )
2

s sf G x C x x D x G y , (N.6) 25 
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where 1 

 0

0

x

y 1

( ; ) 0,

( ; ) ,

fG
x

fG b
y

s s s

s s s

s s

s s
 (N.7) 2 

and 3 

 0 0

0

2 2

xx 2 2
K

2

xx 2 2 2
K

( ; ) ( ; ) 1 ,

( ; ) 1 1 .

s s s s s s

s s s

s s s s

s s

f fC
x x x

fD
x

 (N.8) 4 

Since x 0G  and xx 0C  hold, 0x  is a convergence-stable line. Then, C  and D , in 5 

the rescaled trait space, are given by 6 

 

xx
2

1 Ky

xx
2 2

1 Ky

,

1 1 .
22

CC
bG

DD
bG

 (N.9) 7 

As C  is always negative, the convergence-stable line is an evolutionary-branching line if the 8 

MLIP condition, 1/ 2D , holds. 9 

Appendix O: Extension of conditions for evolutionary-10 

branching lines to multivariate trait spaces 11 

Here we extend the conditions for evolutionary-branching lines – Eqs. (4), (6a), (6b), and (18) 12 

– to multivariate trait spaces. We consider an arbitrary L -variate trait space T
1( ,..., )LU US  13 

with a mutational variance-covariance matrix , which has real and non-negative 14 

eigenvalues, 2 2
1 ,..., L . The maximum eigenvalue of , denoted by 2

1 , gives the 15 

maximum standard deviation 1  of mutational step sizes among all directions. The trait 16 

space is normalized by an affine coordinate transformation of S  into T
1( ,..., )Lu us  with 17 

isotropic mutation 1  (see Appendix P). 18 
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The invasion fitness in the normalized space can be written analogously to the bivariate 1 

case (Appendix A) as 2 

 T T 3
0

1( ; ) ( ) O( )
2

s s G s s s C s s D sf , (O.1) 3 

where G  is a row vector of length L , and C  and D  are L L  matrices, with D  being 4 

symmetric. In a manner similar to the bivariate case, we can define 5 

Significant sensitivity difference in multivariate trait spaces: After normalization 6 

to make mutation isotropic, the normalized invasion-fitness function, Eq. (O.1), can be 7 

made to satisfy 8 

 O( )j ij ji jj ij jj

i ii ii

G C C C D D
G C D

 (O.2) 9 

for all ˆ1,...,i L  and all ˆ 1,...,j L L , by rotating the axes, where L̂ L , jG  is the 10 

j th component of G , and ijC  and ijD  are the ( , )i j  components of C  and D , re-11 

spectively. 12 

If the invasion-fitness function, Eq. (O.1), has significant sensitivity difference, the trait space 13 

can be decomposed into an L̂ -variate sensitive subspace T T
ˆ ˆ1 1( ,.., ) ( ,..., )L Lx x u ux  and an 14 

ˆ( )L L L -variate insensitive subspace T T
ˆ1 1( ,.., ) ( ,..., )LL Ly y u uy . Notice that Eq. (O.2) 15 

allows decomposition of Eq. (O.1) into ( ; ) ( ; ) ( ; )f g hs s x x s s  with a small O( ) , 16 

while ( ; )h s s  is kept smooth and finite, as in the bivariate case (Appendix B). In this case, 17 

Eq. (O.1) is transformed into 18 

 

ˆ ˆ ˆ

0
1 1 1

ˆ ˆ
3

ˆ
ˆ1 1 1

T T 3
x 0 xx xx y

T T 3
x 0 xx xx y

( ; ) ( )

1 O( )
2

1( ) O( )
2
1( ) O( ),
2

s s

G x x x C x x D x G y

G x x x C x x D x G

L L L

i i ii i i i
i i i

L L L

ii i i j j L
i i j L

f G x C x x x

D x x G y

y

 (O.3) 19 

where y y( / )G G yy  is the element of y  parallel to the fitness gradient yG  in the 20 

insensitive subspace. Notice that the insensitive subspace contributes to the invasion fitness 21 
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above only through this element y . Thus, the dimensionality of the local evolutionary 1 

dynamics can be contracted to ˆ 1L . If the sensitive subspace is univariate, then xG , xxC , 2 

and xxD  become scalars, in which case Eq. (O.3) yields 3 

 2 3
x xx 0 xx

1( ; ) ( ) O( )
2 ys s Gf G x C x x x D x y . (O.4) 4 

Thus, the local evolutionary dynamics acoundaround 0s  can be contracted into that in a 5 

bivariate trait space T( , )x y . Then, by denoting yG  by yG , the conditions for 6 

evolutionary-branching lines in bivariate trait species can be applied as they are, 7 

providingdirectly, yielding Theorem 3 in Section 7. 8 

On the other hand, when the sensitive subspace is more than univariate, the MLIP condition 9 

cannot be applied. Yet, the following considerations apply. For y 0G , it is expected that an 10 

evolutionarily singular point bx  in the sensitive subspace (i.e., x 0G  for 0 bx x ) will 11 

attract a monomorphic population and induce its evolutionary branching, if the following 12 

conditions hold. First, bx  is strongly convergence stable, i.e., 13 

 C 0i , (O.5) 14 

for all ˆ1,...,i L , where ˆC1 C,..., L  are the eigenvalues of xxC  (Leimar, 2008). Second, 15 

bx  is also evolutionarily unstable, i.e., 16 

 Dmax 0 . (O.6) 17 

Here Dmax  is the maximum eigenvalue of xxD , with eigenvector Dmaxv . This Dmax  is 18 

always real, as xxD  is a symmetric matrix. The inequality above means that the fitness 19 

landscape has a positive curvature (i.e., second derivative) in the direction of Dmaxv  with 20 

selection favoring evolutionary diversification mainly in this direction. As mutual invasibility 21 

in this direction is also ensured in this case, i.e., T
Dmax xx xx Dmax( ) 0v D C v  always holds 22 

under inequalities (O.5) and (O.6), dimorphic divergence may proceed without collapse, 23 

resulting in evolutionary branching (Dieckmann and Metz, in preparation). In this case, it is 24 

expected that the diversifying residents stay in the neighborhood of the line b Dmaxx v  25 

(with real parameter ). Thus, if the x -axis is chosen as T
Dmax b( )x v x x , then the 26 

condition 27 
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 Dmax

y

1
2 2G

D  (O.7) 1 

and inequalities (O.5) together may be a useful indicator of the likelihood of evolutionary 2 

branching. 3 

In summary, Eq. (O.2) allows a multivariate trait space to be decomposed into a sensitive 4 

subspace and an insensitive one; if the sensitive subspace is univariate, the situation is 5 

reduced to a bivariate one, in which case the MLIP condition is applicable. On the other hand, 6 

if the sensitive subspace is more than univariatemultivariate, there is no assurance of the 7 

validity of the MLIP condition. Yet, inequalities (O.5) and (O.7) may still be useful. 8 

Appendix P: Checking conditions for evolutionary-9 

branching lines without prior normalization 10 

Here we explain how conditions for evolutionary-branching lines can be checked without the 11 

prior normalization of trait spaces. We consider a non-normalized L-variate trait space 12 
T

1( ,..., )S LU U  that has a mutation variance-covariance matrix , which is diagonalized as 13 

 

2
1

1

2

0 0
0 ... 0
0 0 L

, (P.1) 14 

where  is an orthogonal matrix, 1 T , and the square roots of all eigenvalues 15 

1,..., L  are positive. TheWithout loss of generality, 1  is assumed to be the largest one 16 

without loss of generalityeigenvalue. 17 

In this trait space, the invasion-fitness function can be written analogously to the bivariate 18 

case (Appendix A) as 19 

 T T 3
0 1

1( ; ) ( ) O( ),
2

S S G S S S C S S D SF  (P.2) 20 

where mG F , mm rmC F F , and mmD F , with the subscripts m  and r  corresponding 21 

to the mutant S  and the resident S , respectively, and where 
0

m ( ; ) /
S S S

F S S SF  is 22 

the gradient row vector at 0S , while 
0

2 2
mm ( ; ) /

S S S
F S S SF  and 23 

0

2
rm ( ; ) /

S S S
F S S S SF  are the Hessian matrices. 24 
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This trait space can first be normalized to yield isotropic mutation with standard deviation 1 

1, where  otherwise is arbitrary, by an affine transformation to coordinates s , 2 

 T ,S Q s  (P.3a) 3 

with 4 

 
1

T

0 0
1 0 ... 0 ,

0 0 L

 (P.3b) 5 

because T( ) ( )  gives T 1S S  
T 1 2T 2 T T 2/Q s Q Q Q s s (see 6 

also Appendix Q). (Notice that the matrix Q  can be interpreted as the Cholesky 7 

decomposition of 2
1/ .) If 1 1, then it is natural to choose 1 . 8 

Next, to adjust the axes of T
1( ,..., )s Lu u  so as to maximize the sensitivity difference 9 

between these two traits, we add a coordinate rotation to Eq. (P.3), 10 

 TS Q Bs , (P.4) 11 

with an orthogonal matrix B  for describing the rotation. Substituting this equation into Eq. 12 

(P.2) yields 13 

 T T 3
0

1( ; ) ( ; ) ( ) O( )
2

s s QBs QBs G s s s C s s D sf F , (P.5a) 14 

where 15 

 

T

T T

T T

,

,
,

G GQ B

C B QCQ B
D B QDQ B

 (P.5b) 16 

which are Eqs. (23) in Section 7. 17 

Finally, we explain how to rotate the axes of T
1( ,..., )s Lu u  such that the condition for 18 

significant sensitivity difference, Eq. (21) with ˆ 1L ,  19 

 1 1 1

1 11 11

O( )j j j jj j jjG C C C D D
G C D

 (P.6) 20 
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for all 2,...,j L , may hold ( 2L  gives the condition for significant sensitivity difference 1 

for the bivariate case, Eq. (4)). The exact approach is to find the matrix *B  that minimizes 2 

the left-hand side of Eq. (P.6). However, this *B  may not be easy to determine. Fortunately, 3 

as explained below, *B  can be obtained approximately without such minimization when the 4 

MLIP condition, inequality (18) in Section 5, holds. In particular, when the condition for sig-5 

nificant sensitivity difference and the MLIP condition both hold, all components of D  are 6 

O( ) , except for 11D , which is of order 0 . In this case, when the trait space is bivariate 7 

( 2L ), each of the two eigenvectors of D  is almost parallel to one axis of the trait space, 8 

wherewith the corresponding eigenvalues satisfying D1 11 O( )D  and D2 O( ) . In 9 

other words, *B  approximately diagonalizes the symmetric matrix TQDQ . In this case, 10 
*B  is approximately obtained by requiring that *T T *B QDQ B  becomes diagonal, i.e., 11 

 *
D1 D2( , )B v v , (P.7) 12 

where D1v  and D2v  are the eigenvectors of TQDQ . 13 

Analogously, when the trait space is more than bivariate ( 2L ), *B  is approximately ob-14 

tained as in Eq. (24) in Section 7, 15 

 *
D1 D( ,..., )B v v L , (P.8) 16 

where D1 D,..., Lv v  are the eigenvectors of TQDQ , corresponding to the eigenvalues 17 

D1 D,..., L , where the eigenvalues are assumed to be ordered such that D1 Dj  for all 18 

2,...,j L , without loss of generality. (When D2 D,...,v v L  are difficult to obtain, possibly 19 

because of too small D2 D,..., L , those vectors can be chosen arbitraryarbitrarily, as long as 20 

D1 D,..., Lv v  form an orthogonal coordinate system.) If conditions for evolutionary-branching 21 

lines hold for this *B , an evolutionary-branching line passes through 0S . 22 

Appendix Q: Directional evolution in MLIPs 23 

Here we derive MLIPs of monomorphic populations when directional selection is the 24 

dominant selection pressure. We consider an arbitrary L -variate trait space T
1( ,..., )LU US  25 

and a monomorphic population with phenotype S . The invasoninvasion-fitness function is 26 

written as Eq. (P.2) in Appendix P, 27 
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 T T
0

1( ; ) ( ) h.o.t.
2

S S G S S S C S S D SF . (Q.1) 1 

Here we assume a mutation distribution given by a multivariate Gaussian function, 2 

 T 11
21/2/2

1( ) exp
(2 )

S S S
L

M , (Q.2) 3 

where  is an L L  variance-covariance matrix. By normalizing this trait space using 4 
TS Q s  in Eq. (P.3a) in Appendix P, the argument of the exponential function in Eq. (Q.2) is 5 

transformed into 6 

 

T 1 T 1 T

T 1 T 1 T
2

2

2

1 1
2 2

1 ( )
2

.
2

S S s Q s

s QQ Q Q s

s

 (Q.3) 7 

Then, the mutation distribution in the normalized trait space is given by 8 

 2 20 1
0 21/2/2

( ) ( ) exp /
(2 )

s Q s s
L

AM A M , (Q.4) 9 

where 0A  is determined by ( ) 1s d sM . In addition, substituting TS Q s  into Eq. 10 

(Q.1) gives the normalized invasion-fitness function 11 

 T T T T T 3
0

1( ; ) ( ) O( )
2

s s GQ s s s QCQ s s QDQ sf . (Q.5) 12 

Without loss of generality, we chose the base point of 0s  of the expansion, 0s , at as the 13 

resident phenotype 0s s  after each invasion event. If the gradient TGQ  is the dominant 14 

component of the invasion fitness, such that we can neglect the higher-order terms, the MLI 15 

mutant MLIs  is obtained as 16 

 
T

MLI T

QGs s
QG

, (Q.6) 17 

by substituting Eqs. (Q.4) and (Q.5) into Eq. (8a) in Section 4. The expected waiting time for 18 

the next invasion event is given by 19 
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T

2
ˆQG

T
n

. (Q.7) 1 

Then, the directional change of the resident s  per unit time is given by 2 

 
2

TMLI ˆ2
22

s s QGn
T

. (Q.8) 3 

Substituting T 1( )s Q S  yields 4 

 

T 2 T TMLI

T

ˆd 2
d 22

ˆ2 .
2

s sS Q Q QGn
t T

n
 (Q.9) 5 

As the canonical equation of adaptive dynamics theory (Dieckmann and Law, 1996) is given 6 

by 7 

 Tˆd
d 2

n
t
S , (Q.10) 8 

we see that Eq. (Q.9) differs from the canonical equation only in speed, by a factor of 9 

2 / 0.798 . 10 


