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Abstract 
 

We develop a unified approach to posterior integration of prior stochastic 
estimates (probability distributions) provided by independent statistically inaccurate 
observation methods. Our departure point is the posterior event formed in the 
product of the probability spaces associated with the prior stochastic estimates. The 
Bayesian probability conditioned to the posterior event has identical projections 
onto the coordinate spaces; its common projection is defined to be the posterior 
integrated stochastic estimate. We view integration as a binary operation on the 
set of all probabilities on a given finite set of elementary events and analyze its 
algebraic properties. We show how integration changes the information quality of 
the integrated probabilities and study integral convergence properties of infinite 
sequences of probabilities. 
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Introduction
Studies of complex systems are non-separable from analyses of partial and imprecise
information received from alternative sources. Sometimes, pieces of information received
from different sources seem to disagree with each other. In particular applications,
researchers facing such phenomena employ specific features of the systems under
investigation to reconcile alternative pieces of information and generate integrated
knowledge (see, e.g., Nilsson, et al, 2007).

We propose a unified approach to integrating pieces of information provided by
alternative sources. We restrict our study to the case where information has a probabilistic
character. We suppose that several independent methods are used to observe a
deterministic element (for example, the true value of a parameter of a complex system) and
each method represents the latter as a probability distribution. Thus, we deal with a family
of probability distributions providing alternative descriptions to the same object. Our
principle assumption is that we have no ground for giving a preference to any distribution
in the family.

The proposed approach to treating families of distibutions differs from the traditional
ones. For example, Wald’s theory of statistical decisions (Wald, 1949) focuses on the
optimal (risk minimizing) decisions made under uncertain distributions of the ’states of
nature’. As opposed to Wald’s theory, we do not consider the issue of optimization; our
approach does not involve objective functions and decisions. We intend to simply reconcile
alternative probabilistic models – we call them ’prior stochastic estimates’, to construct
an integrated model – a ’posterior integrated stochastic estimate’ – that incopropates the
features of all the prior ones.

Non-specified distributions are dealt with in theory of comparison of experiments
(Blackwell, 1951, 1953; Sulganik and Zilcha, 1997); the theory establishes rules for
comparison of the information values of experiments viewed as sets of probability
distributions. Our approach bases, in contrast, on the assumption that the prior
stochastic estimates are not ordered in information values (the underlying experiments
are informationally equivalent).

Statistics generated by different information sources, each operating with a certain
probability, are analyzed using models with mixed distributions (see, e.g., Fruhwirth-
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Schnatter, 2006). This setting implies that the information sources complement each other,
whereas we view those as alternative ones.

In our study we generally follow the Bayesian approach (see, e.g., Berger, 1985).
Our departure point is the posterior event in the product of the probability spaces
associated with the prior stochastic estimates. The posterior event reflects the fact that
all the prior stochastic estimates represent the same deterministic element. An immediate
implication is that an elementary event in the product probability space is, posteriorly,
admissible if and only if its components are identical. The collection of all admissible
elementary events forms the posterior event. The latter is, therefore, the ’diagonal’ in the
product probability space. The Bayesian probability conditioned to the posterior event
has identical projections onto the coordinate spaces. Its common projection is defined to
be the posterior integrated stochastic estimate.

To avoid technical complcations, we consider the simplest case where the prior
stochastic estimates are defined on a finite set of elementary events, Z.

In Section 1 we introduce basic notations and provide an informal motivation for our
study; we justify our definition of integration as a transformation of a finite number of
probabilities on Z (prior stochastic estimates) into a probability on Z (the integrated
posterior one).

In Section 2 we study integration as a binary algebraic operation.
In Subsection 2.1 we notice that integration as a binary operation is associative and

commutative and can therefore be interpreted as multiplication; in this interpretation,
the uniform probability acts as the unit and every concentrated probability plays the role
of a zero.

In Subsection 2.2 we keep viewing integration as multiplication and introduce integral
powers of probabilities. We prove that the n-th integral power of a probability preserves
the initial probabilistic priorities on Z and makes these priorities sharper as n grows.
Thus, integration of several identical independent observation methods sharpens the prior
stochastic estimate provided by each of those methods and the sharpness grows as the
number of the observation methods grows. Moreover, if we let n go to infinity, the n-th
integral power of a given probability, π, converges to the probability concentrated at (and
uniform on) the set of all elementary events most likely with respect to π. Following a
standard algebraic definition, we introduce integral roots of probabilities and state that
the n-th integral root of a probability π converges to the probability uniform on the set
of all elementary events likely to appear under π.

In Subsection 2.3 we define disintegration as the binary operation inverse to
integration. We state that the result of desintegration of a probability over another
one is unique if both probabilities provide non-zero likelihoods to all elementary events.
An implication is that the set of all probabilities providig non-zero likelihoods to all
elementary events forms a topological abelian group with respect to integration.

In Section 3 we study how integration changes the quality of probabilities as models
for the observed elementary event.

In Subsection 3.1 we analyze how the initial likelihoods of selected elementary events
change if an initial observation method represented by probability π1 is integrated with
another observation method represented by probability π2. We show that, generically,
integration raises the initial likelihood of every elementary event most likely with respect
to π2 and reduces that of every elementary event least likely with respect to π2.

In Subsection 3.2 we introduce measures of concentration – continuous real-
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valued functions of probabilities, which reach their highest values at the concentrated
probabilities. If the result of integration of probabilities π1 and π2 has a higher measure of
concentration than each of those probabilities does, the observation methods underlying
π1 and π2 enhance each other and provide, together, more information than each of
them does, being taken separately. In this situation, we call π1 and π2 consistent (with
respect to the given measure of concentration). Here, we restrict our analysis to the
max measure of concentration, which measures each probability via its maximum value.
We state that, generically, π1 and π2 are consistent with respect to the max measure
of concentration (max consistent) if both provide the maximum likelihoods to a same
elementary event. Based on this observation, we give a few statements on the structures
of sets of probabilities, invariant with respect to integration.

In Subsection 3.3 we introduce the marginal measure for the probabilities, which
measures every probability via its minimum non-zero value. The marginal measure is
in a sense dual to the max measure of concentration. The smaller is the marginal measure
of a probability, the ’less uniform’ is the latter. We call probabilities π1 and π2 maginally
consistent if the result of integration of π1 and π2 has a smaller marginal measure than π1

and π2 do. We show that, generically, π1 and π2 are marginally consistent if both provide
the minimum likelihoods to a same elementary event.

In Subsection 3.4 we define a max raiser for probabilities π1, . . . , πn as a probability
that, being integrated with any πi, raises its max measure of concentration. The
observation method lying behind a max raiser for π1, . . . , πn improves, through integration,
each of the observation methods lying behind π1, . . . , πn. We state that any probability
giving a sufficiently high priority to an elementary event having non-zero likelihoods with
respect to π1, . . . , πn is, generically, a max raiser for π1, . . . , πn. We show that a non-
uniform probability is a max raiser for any π1, . . . , πn sufficiently close to the uniform
probability. Finally, we prove that if n is smaller than the number of the elementary
events, then, generically, for any π1, . . . , πn one can find a max raiser sufficiently close to
the uniform probability.

In Section 4 we study the asymptotic behavior of the results of integration of the first
n elements, π1, . . . , πn, of a given sequence of probabilies, (πi)

∞
i=1, as n→∞.

Subsection 4.1 starts with definitions. If the results of integration of π1, . . . , πn converge
to some probability, π, we call (πi)

∞
i=1 integrally convergent and call π its integral limit;

otherwise, we call (πi)
∞
i=1 integrally divergent. If (πi)

∞
i=1 is integrally convergent and its

integral limit is concentrated, we call (πi)
∞
i=1 integrally concentrated. If (πi)

∞
i=1 is integrally

concentrated, observation methods 1, 2 . . . lying, respectively, behind π1, π2, . . . improve
each other, through integration, to a degree, at which we get complete information
on the observed elementary event. If (πi)

∞
i=1 is integrally convergent and not integrally

concentrated, methods 1, 2 . . ., being integrated, ’find a compromise’ and provide a definite
though incomplete information on the observed element. If (πi)

∞
i=1 is integrally divergent,

methods 1, 2 . . . disagree. We prove a few statements on integral convergence. In particular,
we state that if π1, π2, . . . give visibly the highest values to a same element, (πi)

∞
i=1 is

integrally concentrated at that element; an intepretation is that observation methods that
unambiguously agree on prioritizing a certain element enhance their common probabilistic
priority through integration so that the common priority turns into certainty. Also, we
show that (πi)

∞
i=1 is integrally convergent if (πi)

∞
i=1 prioritize the elementary events in the

same order.
In Subsection 4.2 we note that finite permutations in sequences of probabilities do not
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change the results of integration, whereas infinite ones can possess the opposite property.

1 Basic notations and motivation

1.1 Basic notations

In what follows, Z is a non-empty finite set whose number of elements is bigger than one.
As usual, a probability on Z is defined to be a non-negative function on Z such that the
sum of its values is one. A pair (Z, π) where π is a probability on Z is understood as
a probability space. We write |E| for the number of the elements of a finite set E. We
denote Π the set of all probabilities on Z; Π+ denotes the set of all positive-valued π ∈ Π;
and π̄ denotes the constant, or uniform, probability on Z, whose value is 1/|Z|. A π ∈ Π
will be said to be concentrated if π(z) = 1 for some z ∈ Z (implying π(z′) = 0 for all
other z′ ∈ Z); z will then be said to be the concentration point for π (π will be said to be
concentrated at z). For every π ∈ Π we denote Z+(π) = {z ∈ Z : π(z) > 0}.

We consider Π as a metric space equipped with the mean square metric (π1, π2) 7→
[
∑
z∈Z |π1(z)− π2(z)|2]1/2. Clearly, Π is a compactum. For every natural k, Πk will be

viewed as a the product of k copies of the metric space Π; and every subset of Πk will be
considered as its metric subspace. In the sense of these metric spaces we understand the
continuity of functions defined on subsets of Πk and taking values in R1 or in Π.

1.2 Motivation

Suppose an unknown element z0 ∈ Z is observed using alternative independent
observation methods 1, . . . , n. Each method is, generally, inaccurate in a statistical sense,
namely, it represents z0 as a probability πi on Z. The probabilities π1, . . . , πn serve as
prior stochastic estimates for z0.

We consider a posterior situation that occurs after the use of methods 1, . . . , n. Our
goal is to show a way to integrating alternative pieces of knowledge provided by these
methods.

Our approach is based on a trivial observation that in the posterior situation elements
z1, . . . , zn ∈ Z resulting from n independent random tests from methods 1, . . . , n are true if
and only if z0 = z1 = . . . = zn. Since z0 is unknown, z1 = . . . = zn is a necessary posterior
consistency condition in the product probability space (Zn, P ) = (Z, π1)×, . . . × (Z, πn);
here P = π1 × . . .× πn. The posterior consistency condition determines a posterior event

E∗ = {(z1, . . . , zn) ∈ Zn : z1 = . . . = zn} = {(z, . . . , z) : z ∈ Z},

which is necessarily realized in (Zn, P ) in the posterior situation. We have

P (E∗) =
∑
z∈Z

π1(z) . . . πn(z).

If P (E∗) = 0, methods 1, . . . , n are in contradiction in the sense that for every z ∈ Z
there is a method, i, which evaluates the observed element z0 as z with a zero probability,
πi(z) = 0.

Suppose P (E∗) > 0, implying that methods 1, . . . , n are not in contradiction in the
sense that there exists a z ∈ Z such that all the methods give non-zero probabilities for
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the fact that z0 = z. Then the Bayesian conditional probability P (·|E∗) is defined on E∗:

P ((z, . . . , z)|E∗) =
π1(z) . . . πn(z)

P (E∗)

for every z ∈ Z. Set
(π1 · . . . · πn)(z) = P ((z, . . . , z)|E∗)

for every z ∈ Z Clearly, π1 · . . . · πn is a probability on Z.
In the probability space (Z, π1 · . . . · πn), for every z ∈ Z the probability of z0 = z is

proportional to π1(z) . . . πn(z) – the probability of the fact that all the methods admit
that z0 = z. The latter probability is a measure of a ’consensus’ of methods 1, . . . , n
in conjecturing that z0 = z. All the methods contribute to the value of the ’consensus
measure’ π1(z) . . . πn(z) equally, and each method, i, has a ’power of veto’ in the sense
that the ’consensus measure’ of z vanishes if πi(z) = 0. Thus, probability π1 · . . . · πn
provides an integrated knowledge on z0, which results from a posterior analysis of the
use of methods 1, . . . , n. We understand π1 · . . . · πn as a posterior stochastic estimate
resulting from the prior stochastic estimates π1, . . . , πn. The transformation of π1, . . . , πn
into π1 · . . . · πn will be called integration of π1, . . . , πn.

2 Algebraic properties of integration

2.1 Integration as multiplication

Now we study integration of probabilities (prior stochastic estimates) systematically.
Coming back to a definition given in the previous section, we say that π1, . . . , πn ∈ Π

are in contradiction if π1(z) . . . πn(z) = 0 for every z ∈ Z; otherwise, π1, . . . , πn will
be said to be not in contradiction. For every natural n, we write Π(n) for the set of all
(π1, . . . , πn) ∈ Πn, such that π1, . . . , πn are not in contradiction.

Remark 1 The following statements hold evidently:
(i) Π(1) = Π;
(ii) (π1, π2) ∈ Π(2) for every π1 ∈ Π and π2 ∈ Π+;
(iii) if (π1, . . . , πn) ∈ Π(n), then (πi1 , . . . , πin) ∈ Π(n) for any permutation, (i1, . . . , in),

in (1, . . . , n) and every natural n;
(iv) (Π+)n ⊂ Π(n) for every natural n;
(v) (π, . . . , π) ∈ Π(n) for every π ∈ Π and every natural n.

Following the preliminary definitions given in the previous section (in which we set
n = 2), introduce a map (π1, π2) 7→ π1 · π2 : Π(2) 7→ Π such that for every (π1, π2) ∈ Π(2)

(π1 · π2)(z) =
π1(z)π2(z)∑

z′∈Z π1(z′)π2(z′)
(z ∈ Z);

we call it integration (of non-contradicting probabilities). For every (π1, π2) ∈ Π(2), the
probability π1 · π2 will be said to be the result of integration of π1 and π2.

Remark 2 It is easily seen that integration is continuous.
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The next theorem shows that integration possesses the algebraic properties of
multiplication – commutativity and associativity, the uniform probability, π̄, plays the
role of a unit, and every concentrated probability acts as a zero.

Remark 3 It is clear that if (π1, π2, π3) ∈ Π(3), then ((π1 · π2), π3), (π1, (π2, π3)) ∈ Π(2).

Theorem 1 The following statements are true.
1) Integration is commutative, i.e., π1 · π2 = π2 · π1 for all (π1, π2) ∈ Π(2).
2) Integration is associative, i.e., (π1 · π2) · π3 = π1 · (π2 · π3) for all (π1, π2, π3) ∈ Π(3).
3) For every π ∈ Π it holds that (π, π̄) ∈ Π(2) and π · π̄ = π.
4) For every π, π∗ ∈ Π(2) such that π∗ is concentrated, it holds that π · π∗ = π∗.

Proof. Statement 1 is obvious. Prove statement 2. Let (π1, π2, π3) ∈ Π(3). Take an
arbitrary z ∈ Z. By definition

(π1 · π2)(z) = π1(z)π2(z)c12

where
c12 =

1∑
z′∈Z π1(z′)π2(z′)

,

and
((π1 · π2) · π3)(z) = (π1 · π2)(z)π3(z)c(12)3 = π1(z)π2(z)π3(z)c12c(12)3

where
c(12)3 =

1∑
z′∈Z(π1 · π2)(z′)π3(z′)

=
1∑

z′∈Z π1(z′)π2(z′)π3(z′)c12

.

Therefore,

((π1 · π2) · π3)(z) =
π1(z)π2(z)π3(z)∑

z′∈Z π1(z′)π2(z′)π3(z′)
.

Similarly, we state that the ratio given on the right hand side equals (π1 · (π2 · π3))(z).
Thanks to the arbitrary choice of z ∈ Z, we have (π1 · π2) · π3 = π1 · (π2 · π3). Statement
2 is proved.

Prove statement 3. Let π ∈ Π. Recall that the uniform probability, π̄, takes the single
value 1/|Z|. Then by definition, for every z ∈ Z we have

(π · π̄)(z) =
π(z)1/|Z|∑

z′∈Z π(z′)1/|Z|
= π(z).

Statement 4 is obvious. The proof is complete.

Following a preliminary definition given in the previous section, for every natural n ≥ 2
we define n-tuple integration of to be the map (π1, . . . , πn) 7→ π1 · . . . ·πn : Π(n) 7→ Π where

(π1 · . . . · πn)(z) =
π1(z) . . . πn(z)∑

z′∈Z π1(z′) . . . πn(z′)
(z ∈ Z); (1)

we call π1 · . . . · πn the result of integration of π1, . . . , πn.

Remark 4 It is easily seen that n-tuple integration is continuous for every natural n ≥ 2.

6



Theorem 1 implies the following.

Corollary 1 For every natural n and every (π1, . . . , πn) ∈ Π(n) the integration result
π1 · . . . · πn does not change if integration is carried out in any order and in any number
of steps. Namely,

π1 · . . . · πn = (πi1 · . . . · πik1
) · (πik1

+1 · . . . · πik2
) . . . · (πikm

· . . . · πin)

for any permutation (i1, . . . , in) in (1, . . . , n) and any increasing sequence (kj)
m
1 in

{2, . . . , n− 1}.

2.2 Integral powers

Based on Corollary 1 (see also Remark 1, (v)), for every π ∈ Π and every natural n we
denote πn the result of integration of n copies of π; we call πn the n-th integral power of
π.

The next theorem, which follows straightforwardly from the definition of the result of
integration of n copies of a probability, shows that an n-th integral power of a probability
preserves the initial probabilistic priorities and makes these priorities sharper as n grows.
An interpretation is that integration of several identical independent observation methods
sharpens the stochastic estimate provided be each of those methods and the sharpness
grows as the number of the observation methods grows.

Recall that Z+(π) = {z ∈ Z : π(z) > 0} for every π ∈ Π (see notations in Secition 1).

Theorem 2 Let π ∈ Π. For every natural n the following statements hold true.
1) For every z ∈ Z \ Z+(π) it holds that πn(z) = 0.
2) For every z1, z2 ∈ Z+(π) it holds that

πn(z1)

πn(z2)
=

(
π(z1)

π(z2)

)n
.

A straightforward implication from Theorem 2 is the following.

Corollary 2 Let π ∈ Π, Z∗ be the set of all maximizers of π in Z and a π∗ ∈ Π be
uniform on Z∗, i.e., π∗(z) = 0 for all z ∈ Z \Z+(π) and π∗(z) = 1/|Z∗| for all z ∈ Z∗. It
holds that πn → π∗ in Π as n→∞.

Given a π ∈ Π and a natural n, we call a π∗ ∈ Π an n-th integral root of π if πn∗ = π.
In accordance with Theorem 2, an n-th integral root of a probability π sets the same –
though less sharp – priorities to the elements of Z; in this context, the n-th integral root of
π can be interpreted as a prototype observation method lying behind the one represented
by π.

Theorem 3 For every π ∈ Π and every natural n there exists the unique n-th integral
root of π.
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Proof. Take a π ∈ Π. By definition a π∗ ∈ Π is an n-th root of π if and only if πn∗ = π
or

πn∗ (z)∑
z′∈Z πn∗ (z

′)
= π(z) (z ∈ Z).

For simplicity we order the elements of Z, i.e., set Z = {z1, . . . , zN} where N = |Z|. Then
π∗ ∈ Π is an n-th integral root of π if and only if (πn∗ (z1), . . . , π

n
∗ (zN),

∑N
i=1 π

n
∗ (zi)) solves

the system of algebraic equations

x1 − π(z1)xN+1 = 0,
. . .
xN − π(zN)xN+1 = 0,
x1 + . . .+ xN − xN+1 = 0

(2)

under the additional constraints

x1, . . . , xN ≥ 0, x
1/n
1 + . . .+ x

1/n
N = 1. (3)

Denote A the matrix of system (2). We have

A =


1 0 0 . . . 0 0 −π(z1)
0 1 0 . . . 0 0 −π(z2)

. . .
0 0 0 . . . 0 1 −π(zN)
1 1 1 . . . 1 1 −1

 .

The sum of the N first rows of A equals its N + 1-th row and its left-upper N × N
submatrix is nondegenerate. Therefore, the (N + 1) × (N + 1)-matrix A has rank N .
Consequently, the set of all solutions to (2) is a one-dimensional subspace of RN+1.

Let (y1, . . . , yN+1) be a non-zero solution to (2). Taking into account that
π(z1), . . . , π(zN) ≥ 0 and not all of them are zero, and looking at (2), we see that yN+1 6= 0,
not all of yi (i ∈ {1, . . . , N}) are zero and the signs of all non-zero ones coincide with the
sign of yN+1. With no loss of generality, set yN+1 > 0 (otherwise multiply y1, . . . , yN+1 by
−1). Then y1, . . . , yN+1 ≥ 0.

Let

λ =

(
1

y
1/n
1 + . . .+ y

1/n
N

)n
(4)

and
xi = λyi (i ∈ {1, . . . , N + 1}). (5)

Obviously, x1, . . . , xN satisfy the former constraint given in (3). Furthermore,

x
1/n
1 + . . .+ x

1/n
N = λ1/n(y

1/n
1 + . . .+ y

1/n
N ) = 1; (6)

we see that the latter constraint given in (3) is satisfied too. Thus, π∗, an n-th integral
root of π exists and is given by

π∗(zi) = x
1/n
i (i ∈ {1, . . . , N}). (7)

If π∗ is an n-th integral root of π and x1, . . . , xN are defined by (7) and xN+1 =
x1 + . . . + xN , then, as stated above, x1, . . . , xN+1 solve (2) and satisfy (3). Since the
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subspace of all solutions to (2) is one-dimensional, (5) holds with some real λ. Then (3)
implies (6); hence, λ is given by (30). Thus, the n-th integral root of π is unique. The
proof is complete.

Based on Theorem 3 stating, for every natural n, the existence and uniqueness of the
n-th integral root of any π ∈ Π, we denote it π1/n.

Remark 5 From Theorem 2 it follows that given a π ∈ Π, for every z ∈ Z \ Z+(π) we
have π1/n(z) = 0 for all natural n, and for every z1, z2 ∈ Z+(π) we have

π1/n(z1)

π1/n(z2)
=

(
π(z1)

π(z2)

)1/n

→ 1 as n→∞.

The latter implies that π1/n → π∗ in Π where π∗ is uniform on Z+(π), i.e., π∗(z) = 0 for
all z ∈ Z \ Z+(π) and π∗(z) = 1/|Z+(π)| for all z ∈ Z+(π).

Referring to Theorem 3, we introduce rational integral powers of probabilities. For
every π ∈ Π and every natural n and m, we set πm/n = (πm)1/n and call it the m/n-th
integral power of π.

Remark 6 For rational integral powers of probabilities, standard arithmetic relations
are valid. More specifically, for every π ∈ Π and every natural n and m, in the definition
of πm/n the multiplication and division in m/n can follow in an arbitrary order, namely,
πm/n = (πm)1/n can also be defined as πm/n = (π1/n)m. Indeed, we have

((π1/n)m)n = (π1/n)mn = (π1/n)nm = ((π1/n)n)m = πm.

Hence, referring to the definition of the n-th integral root of a πm, we find that πm/n =
(π1/n)m.

2.3 Disintegration

From the definition of integration, it follows that Z+(π · π1) = Z+(π) ∩ Z+(π1) for every
(π, π1) ∈ Π(2). We use this observation in the following definition.

Given π1, π2 ∈ Π such that Z+(π2) ⊂ Z+(π1), a π ∈ Π will be said to be a result of
disintegration of π2 over π1 if Z+(π2) = Z+(π) ∩ Z+(π1) (implying (π, π1) ∈ Π(2)) and
π · π1 = π2.

Theorem 4 Let π1, π2 ∈ Π and Z+(π2) ⊂ Z+(π1). The following statements hold true.
1) There exists a result of disintegration of π2 over π1.
2) If π is a result of disintegration of π2 over π1, then a π′ ∈ Π is a result of

disintegration of π2 over π1 if and only if π′|Z+(π1) = µπ|Z+(π1) with some µ > 0, where
π|Z+(π1) and π′|Z+(π1) are the restrictions to Z+(π1) of π and π′, respectively.

Proof. For simplicity we order the elements of Z, namely, set Z = {z1, . . . , zN} where
N = |Z|, so that Z+(π2) = {z1, . . . , zk} and Z+(π1) = {z1, . . . , zm} with some k,m ∈
{1, . . . , N}, m ≥ k. Then

π1(zi), π2(zi) > 0 (i ∈ {1, . . . , k}), (8)
π1(zi) > 0, π2(zi) = 0 (i ∈ {k + 1, . . . ,m}), (9)

π1(zi), π2(zi) = 0 (i ∈ {m+ 1, . . . , N}). (10)
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By definition a π ∈ Π is a result of disintegration of π2 over π1 if Z+(π2) = Z+(π) ∩
Z+(π1) and

π(z)π1(z)∑
z′∈Z π(z′)π1(z′)

= π2(z) (z ∈ Z),

or, equivalently, (π(z1), . . . , π(zN),
∑N
i=1 π(zi)π1(zi)) is a solution to the system of algebraic

equations
π1(z1)x1 − π2(z1)xN+1 = 0,
. . .
π1(zN)xN − π2(zN)xN+1 = 0,
π1(z1)x1 + . . .+ π1(zN)xN − xN+1 = 0

(11)

under constraints

x1, . . . , xk > 0, xk+1, . . . , xm = 0, xm+1, . . . , xN ≥ 0, x1 + . . .+ xN = 1 (12)

(in cases k = m and m = N the second and third constraints are, respectively, omitted).
In case k < m, we set

xk+1, . . . , xm = 0; (13)

then, in view of (9), xk+1, . . . , xm satisfy the equations given in lines k+1, . . . ,m of system
(11). Looking at (10), we see that if m < N , the equations given in lines m+ 1, . . . , N of
system (11) are satisfied trivially by any xm+1, . . . , xN .

Let us now consider the rest of system (11) – its subsystem composed of its equations
given in rows 1, . . . , k and N + 1,

π1(z1)x1 − π2(z1)xN+1 = 0,
. . .
π1(zk)xk − π2(zk)xN+1 = 0,
π1(z1)x1 + . . .+ π1(zk)xk − xN+1 = 0;

(14)

the latter equation in (14) is equivalent to the (N + 1)-th one in (11) thanks to (13) and
(10). Denote A the matrix of system (14). We have

A =


π1(z1) 0 0 . . . 0 0 −π2(z1)

0 π1(z2) 0 . . . 0 0 −π2(z2)
. . .

0 0 0 . . . 0 π1(zk) −π2(zk)
π1(z1) π1(z2) π1(z3) . . . π1(zk−2) π1(zk−2) −1

 .

The sum of the k first rows of A equals its k+ 1-th row and its left-upper k×k submatrix
is nondegenerate in view of (8). Therefore, the (k + 1) × (k + 1)-matrix A has rank k.
Consequently, the set of all solutions to (14) is a one-dimensional subspace of Rk+1. Let
(y1, . . . , yk, yN+1) be a non-zero solution to (14). With no loss of generality, set yN+1 > 0
(otherwise multiply y1, . . . , yk, yN+1) by −1). Then y1, . . . , yk, yN+1 > 0. Take a c ∈ (0, 1]
and set

λ =
c

y1 + . . .+ yk
,

xi = λyi (i ∈ {1, . . . , k,N + 1}), (15)

implying
x1, . . . , xk > 0, x1 + . . .+ xk = c.
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Combining with (13), we see that the first and second constraints given in (12) are satisfied
by x1, . . . , xm.

If m = N , then, letting c = 1 and recalling (13) (provided m > k), we get that
x1, . . . , xN , xN+1 ≥ 0 solves system (11) and satisfies (12) (where the third constraint
is omitted and the second one is omitted in case m = k). If m < N , take arbitrary
xm+1, . . . , xN ≥ 0 whose sum equals 1 − c. Then x1, . . . , xN , xN+1 solve system (11) and
satisfy (12) (where the second constraint is omitted if m = k). Thus, a π ∈ Π given by

π(zi) = xi (i ∈ {1, . . . , N}) (16)

is a result of disintegration of π2 over π1. Statement 1 is proved.
Prove statement 2. Let a π′ ∈ Π be such that π′|Z+(π1) = µπ|Z+(π1) with some µ > 0;

equivalently, for
x′i = π′(zi) (i ∈ {1, . . . , N}) (17)

it holds that
x′i = µxi (i ∈ {1, . . . ,m});

the latter, in view of (13) (in case m > k), implies

x′k+1, . . . , x
′
m = 0. (18)

Let
x′N+1 = π1(z1)x

′
1 + . . .+ π1(zN)x′N . (19)

Obviously, x′N+1 = µxN+1. Since (x1, . . . , xm, x
′′
m+1, . . . , x

′′
N , xN+1) with arbitrary

x′′m+1, . . . , x
′′
N ≥ 0 (provided m < N) solves system (11) under constraints (12), we get

that (π′(z1), . . . , π
′(zN), x′N+1) = (x′1, . . . , x

′
N+1) possesses the same property, which is

equivalent to the fact that π is a result of disintegration of π2 over π1.
Conversly, let π′ be a result of disintegration of π2 over π1. Then (x′1, . . . , x

′
N+1) defined

by (17) and (19) solves system (11) and satisfies (12); in particular (18) holds if m > k.
Then necessarily

x′i = λ′yi (i ∈ {1, . . . , k,N + 1})
for some λ′ > 0. Therefore, by (15)

x′i = µxi (i ∈ {1, . . . , k,N + 1})

where µ = λ′/λ. Then, in view of (16), (17), (13) and (18) (the two latter relations holding
in case m > k) we have

π′(zi) = µπ(zi) (i ∈ {1, . . . ,m})

implying π′|Z+(π1) = µπ|Z+(π1). The theorem is proved.

Given a π1 ∈ Π and a π2 ∈ Π such that Z+(π2) ⊂ Z+(π1), we denote [π2/π1] the set of
all results of disintegration of π2 over π1. The multi-valued map (π1, π2) 7→ [π2/π1] defined
on the set of all (π1, π2) ∈ Π2 such that Z+(π2) ⊂ Z+(π1), will be called disintegration.

Corollary 3 Let π1, π2 ∈ Π and Z+(π2) ⊂ Z+(π1) The following statements hold true.
1) If Z+(π1) = Z, then [π2/π1] is one-element.
2) If Z+(π1) 6= Z and π ∈ [π2/π1] then

[π2/π1] =

{
π′ ∈ Π : π′|Z+(π1) = µπ|Z+(π1), 0 < µ ≤ 1∑

z∈Z+(π1) π(z)

}
.
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Proof. Let Z+(π1) = Z. If π′ ∈ [π2/π1] then by statement 2 of Theorem 4 π′ =
π′|Z+(π1) = µπ|Z+(π1) = µπ with some µ > 0. Since π, π′ ∈ Π, necessarily µ = 1. Statement
1 is proved.

Let Z+(π1) 6= Z. By statement 2 of Theorem 4 π′ ∈ [π2/π1] if and only if π′|Z+(π1) =
µπ|Z+(π1) with some µ > 0. The latter is feasible if and only if µ

∑
z∈Z+(π1) π(z) ∈ (0, 1],

which completes the proof of statement 2.

Remark 7 Under assumptions of Corollary 3, there is a unique π′ ∈ [π2/π1] such that
Z+(π′) = Z+(π2). Indeed, let a π′ ∈ [π2/π1] be such that

π′|Z+(π1) =
1∑

z∈Z+(π1) π(z)
π|Z+(π1). (20)

Then
∑
z∈Z+(π1) π

′(z) = 1, implying Z+(π′) ⊂ Z+(π1). Furthermore, the fact that π′ ·
π1 = π2 implies that π′(z) = 0 for every z ∈ Z+(π1) \ Z+(π2). and π′(z) > 0 for every
z ∈ Z+(π2). Consequently, Z+(π′) = Z+(π2). Conversely, if a π′ ∈ [π2/π1] is such that
Z+(π′) = Z+(π2), (20) holds necessarily.

Based on Remark 7, for every π1, π2 ∈ Π such that Z+(π2) ⊂ Z+(π1), we denote π2/π1

the single element π ∈ [π2/π1] such that Z+(π) = Z+(π2).

Remark 8 As follows from Remark 7, π2/π1 is the element of [π2/π1], which provides
the maximum probability values to all z ∈ Z+(π2) and zero probability values to all
z 6∈ Z+(π2).

Remark 9 For every π ∈ Π+ (see notations in Section 1) we have Z+(π) = Z. Therefore,
the restriction of disintegration to Π+×Π+ is defined correctly. By statement 1 of Corollary
3, the restriction of disintegration to Π+ × Π+ is single-valued. Clearly, it takes values
in Π+ implying that Π+ is invariant with respect to both integration and disintegration.
One can easily show that disintegration as a function on Π+ × Π+ with values in Π+ is
continuous. Therefore, in view of the continuity of integration (see Remark 4) and the
properties of integration given in Theorem 1, Π+ equipped with integration (understood
as multiplication) is an abelian topological group, in which the uniform probability, π̄, is
the unit.

With respect to integration, disintegration plays the same role division does with
respect to multiplication in arithmetic. Constraint Z+(π2) ⊂ Z+(π1) in the definition of
[π2/π1] is a counterpart of the standard arithmetic requirement that the divisor never
vanishes. The next theorem shows that relations between integration and disintegration,
are analogous to those between standard multiplication and division.

Theorem 5 The following statements hold true.
1) Let π1, π2, π3 ∈ Π and Z+(π3) ⊂ Z+(π2) ⊂ Z+(π1). Then

[[π3/π2]/π1] = [π3/(π2 · π1)] (21)

where
[[π3/π2]/π1] = ∪π′∈[π3/π2][π

′/π1].

2) Let π1, π2, π3 ∈ Π, Z+(π1) = Z+(π2) = Z+(π3) and π1 · π2 = π1 · π3. Then π2 = π3.
3) Let π1, π2, π3 ∈ Π and Z+(π1) = Z+(π2) = Z+(π3). Then

(π3 · π2)/π1 = (π3/π1) · π2. (22)
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Proof. Prove statement 1. Let π1, π2, π3 ∈ Π and Z+(π3) ⊂ Z+(π2) ⊂ Z+(π1). Take a
π ∈ [[π3/π2]/π1]. Then π ∈ [π′/π1] for some π′ ∈ [π3/π2]. Hence, π ·π1 = π′ and π′ ·π2 = p3,
implying π · π1 · π2 = π3 or π · (π1 · π2) = π3. Therefore, π ∈ [π3/(π2 · π1)]. We have stated
that the set given in the left hand side of (21) is included in the set given in its right hand
side. Prove the opposite inclusion. Take a π ∈ [π3/(π2 · π1)]. We have π · (π2 · π1) = π3

or (π · π1) · π2 = π3. Consequently, π′ = (π · π1) ∈ [π3/π2] and π ∈ [π′/π1]. The desired
opposite inclusion is proved. Thus, (21) is true.

Prove statement 2. Let π1, π2, π3 ∈ Π, Z+(π3) = Z+(π2) = Z+(π1) and π1 ·π2 = π1 ·π3.
Obviously, π2 = (π1 · π2)/π1 and π3 = (π1 · π3)/π1. Hence, π2 = π3.

Prove statement 3. Let π1, π2, π3 ∈ Π and Z+(π1) = Z+(π2) = Z+(π3) Denote

π = (π3 · π2)/π1.

By definition and by assumption

Z+(π3 · π2) = Z+(π1) = Z+(π) (23)

and π · π1 = π3 · π2. Let π′ = π/π2. By definition and by (23)

Z+(π′) = Z+(π) = Z+(π1) (24)

and
π = π′ · π2. (25)

Hence, π′ · π2 · π1 = π3 · π2 or

(π′ · π1) · π2 = π3 · π2. (26)

Using (24) and the assumption, we get

Z+(π′ · π1) = Z+(π1) = Z+(π2) = Z+(π3).

Then by statement 2 (26) yields π′ · π1 = π3. Hence, π′ = π3/π1. Therefore, in view of
(25), π = π′ · π2 = (π3/π1) · π2. which proves (22). The proof is complete.

3 Integration and evaluation of probabilities

3.1 Impacts of most and least probable elements

Here we consider a transition from a probability π1 ∈ Π viewed as a prior stochastic
estimate (see Section 1) to a posterior one, π1 · π2, obtained through integration of π1

with a π2 ∈ Π. We show that, generically, integration raises the prior probability of every
element z∗ most probable in the probability space (Z, π2) (Lemma 1), and reduces that
of every element z∗ least probable in (Z, π2) (Lemma 2).

Lemma 1 Let (π1, π2) ∈ Π(2), z∗ ∈ Z be such that π1(z
∗) > 0, π2(z

∗) = maxz′∈Z π2(z
′)

and there exist a z ∈ Z satisfying π2(z) < π2(z
∗) and π1(z)π2(z) > 0. Then (π1 ·π2)(z

∗) >
π1(z

∗).
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Proof. Let Z∗ = {z′ ∈ Z : π2(z
′) = π2(z

∗)}. Note that z ∈ Z \ Z∗. By definition

(π1 · π2)(z
∗) =

π1(z
∗)π2(z

∗)∑
z′∈Z π1(z′)π2(z′)

=
π1(z

∗)∑
z′∈Z∗ π1(z′) + π1(z)q(z) +

∑
z′∈Z\(Z∗∪{z}) π1(z′)q(z′)

(27)

where
q(z′) =

π2(z
′)

π2(z∗)
(z′ ∈ Z).

Since π2(z
∗) = maxz∈Z π2(z), we have q(z′) < 1 for all z′ ∈ Z \ Z∗, which, together with

π1(z)π2(z) > 0 implies that π1(z)q(z) < π1(z). Consequently, the denominator in (27) is
smaller than

∑
z′∈Z π1(z

′) = 1. Now (27) and assumption π1(z
∗) > 0 yield (π1 · π2)(z

∗) <
π1(z

∗). The lemma is proved.

Similarly, we prove the following symmetric lemma.

Lemma 2 Let (π1, π2) ∈ Π(2), z∗ ∈ Z be such that π1(z∗) > 0, π2(z∗) =
minz′∈Z, π2(z′)>0 π2(z

′) and there exist a z ∈ Z satisfying π2(z) > π2(z∗) and π1(z)π2(z) >
0. Then (π1 · π2)(z∗) < π1(z∗).

3.2 Measures of concentration

For probabilities π ∈ Π, we now introduce measures of concentration – indicators that
reach their highest values at the concentrated probabilities. A measure of concentration
of a probability π ∈ Π serves also for a measure of informativeness of π; the concentrated
probabilities, π, carry maximum information on the occurrence of events in the probability
space (Z, π); the higher is the measure of concentration of π, the more informative π
is. As argued in Section 1, integration of probabilities is a tool for synthesizing pieces
of knowledge provided by alternative, statistically inaccurate observation methods. If
the result of integration of initially given non-conflicting probabilities (acting as prior
stochastic estimates provided by alternative observation methods) has a higher measure
of concentration than each of those probabilities does, we claim that the prior stochastic
estimates enhance each other and provide, together, more information than each of them
does, being taken separately.

An opposite situation assumes that the result of integration of initially given
probabilities (prior stochastic stochastic estimates) has a lower measure of concentration
than each of those probabilities – a synthesis of the prior stochastic estimates reduces
information. This tells us that the underlying observation methods are in conflict; one of
them is misleading. This puts us in a position to accept one of the methods and reject the
other one; we need additional information to decide which of the two choices is correct.

An intermediate situation may occur, in which the result of integration of initially
given probabilities has a higher measure of concentration than one of those probabilities
and a lower measure of concentration than the other one. In this situation we may consider
the latter method to be a tool for raising the accuracy of the former one.

Our primary interest is to characterize the former situation, in which the result of
integration of probabilities π1 and π2 has a higher measure of concentration than each of
those probabilities does; in this situation we will say that the pair (π1, π2) is consistent
(with respect to the given measure of concentration).
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Formally, we can define a measure of concentration to take value one on the
concentrated probabilities and value zero on all the other ones. Such a discrete definition
would not be informative because it would not capture the degree of closedness of any non-
concentrated probability to a concentrated one. An informative measure of concentration
would range the probabilities within a solid interval of reals, whose right end point
would be occupied by the concentrated probability measures. We arrive at an informative
definition if we require the measures of concentration to be continuous functions on Π.

Let us give an exact definition. We define a measure of concentration to be an arbitrary
continuous function µ : Π 7→ (−∞, 1] such that µ(π) = 1 if and only if π is concentrated.

We shall say that a (π1, π2) ∈ Π(2) is consistent with respect to a measure of
concentration µ if µ(π1 · π2) > max{µ(π1), µ(π2)} and inconsistent with respect to µ
if µ(π1 · π2) < min{µ(π1), µ(π2)}.

Remark 10 Statement 3 of Theorem 1 implies that if a (π1, π2) ∈ Π(2) is consistent
or inconsistent with respect to any measure of concentration, then neither π1, nor π2 is
uniform.

The simplest measure of concentration is π 7→ maxz∈Z π(z); we call it the max measure
of concentration. In this pilot study, we deal with the max measure of concentration only.

Remark 11 Let us give a few additional examples of measures of concentration:
(i) π 7→ maxz∈Z π(z)−minz∈Z π(z);
(ii) π 7→ ∑

z∈Z π
k(z) where k > 1;

(iii) π 7→ 1 − ∑z∈Z [ξ(z) − ∑z′∈Z ξ(z
′)π(z′)]2π(z) where ξ is an arbitrary real-valued

one-to one function on Z; the value of the latter measure of concentration on a π ∈ Π is
the dispertion of the random variable ξ on (Z, π);

(iv) π 7→ 1 +
∑
z∈Z π(z) log π(z) (here it is set π(z) log π(z) = 0 if π(z) = 0); the latter

sum taken with the opposite sign is known as the entropy of π.

Remark 12 It is clear that the lowest possible value for the max measure of concentration
equals 1/|Z| and is achieved on the uniform probability, π̄.

Remark 13 It is easy to show that the max measure of concentration is a convex function
on Π treated as a convex subset of the linear space of all real-valued functions defined on
Z.

For brevity, a (π1, π2) ∈ Π(2) consistent (respectively, inconsistent) with respect to
the max measure of concentration will be said to be max consistent (respectively, max
inconsistent).

Using Lemma 1, we now characterize a typical situation, in which a (π1, π2) ∈ Π(2) is
max consistent. Generically, this is the case if the sets of the most probable elements in
the probability spaces (Z, π1) and (Z, π2) intersect.

Theorem 6 Let (π1, π2) ∈ Π(2) and there exist a z∗ ∈ Z maximizing both π1 and π2 on
Z. The following statements are true.

1) z∗ maximizes π1 · π2 on Z.
2) If there exists a z ∈ Z such that

0 < π1(z) < max
z′∈Z

π1(z
′), 0 < π2(z) < max

z′∈Z
π2(z

′),

then (π1, π2) is max consistent.
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Proof. Statement 1 follows straightforwardly from the definition of π1 ·π2. Let us prove
statement 2. Obviously, π1(z

∗) > 0. By assumption π2(z) < π2(z
∗) and π1(z)π2(z) > 0.

Thus, all the assumptions of Lemma 1 are satisfied. Applying Lemma 1, we get (π1 ·
π2)(z

∗) > π1(z
∗) = maxz′∈Z π1(z

′). Changing the roles of π1 and π2 in the above argument,
we come to a symmetric statement, (π1 · π2)(z

∗) > π2(z
∗) = maxz′∈Z π2(z

′). The proof is
complete.

A straightforward corollary from Theorem 6 is the following.

Corollary 4 For every non-concentrated non-uniform π ∈ Π, (π, π) is max consistent.

Let us extend the definition of max consistency of pairs (π1, π2) ∈ Π(2), to n-tuples
(π1, . . . , πn) ∈ Π(n) for n ≥ 2. Namely, for every natural n ≥ 2, let us call a (π1, . . . , πn) ∈
Π(n) to be max consistent if

max
z∈Z

(π1 · . . . · πn)(z) > max{max
z∈Z

π1(z), . . .max
z∈Z

π1(z)}.

Theorem 6 yields the following.

Corollary 5 Let a n ≥ 2 be natural, (π1, . . . , πn) ∈ Π(n) and there exist a z∗ ∈ Z
maximizing π1, . . . , πn on Z simultaneously. The following statements are true.

1) z∗ maximizes π1 · . . . · πn on Z.
2) If there exists a z ∈ Z such that

0 < πi(z) < max
z′∈Z

πi(z
′)

for all i ∈ {1, . . . , n}, then (π1, . . . , πn) is max consistent.

The following immediate implication from Corollary 4 concerns the topological
structure of sets invariant with respect to integration. A G ⊂ Π is said to be invariant
with respect to integration if every π1, π2 ∈ G are not conflicting and π1 · π2 ∈ G for every
π1, π2 ∈ G.

Theorem 7 Let a nonempty G ⊂ Π do not contain concentrated probabilities and be
invariant with respect to integration. Then one and only one statement holds true:

(i) G is one-element and its single element is the uniform probability, π̄;
(ii) G is not closed in Π.

Proof. Let G be one-element and π be its element. Then π · π = π. Suppose π 6= π̄.
Then by Corollary 4 (π, π) is max consistent, i.e., maxz∈Z(π ·π)(z) > maxz∈Z π(z), which
is impossible in view of π · π = π.

Let G be not one-element. Then G contains a non-uniform probability. Suppose G is
closed. Let p = supπ∈G maxz∈Z π(z). As soon as G contains a non-uniform probability, p
is greater than the value taken by the uniform probability, p > 1/|Z|. Since G is closed,
there is a π∗ ∈ G such that maxz∈Z π∗(z) = p. In view of p > 1/|Z|, π∗ is non-iniform.
Moreover, π∗ is not concentrated, since G does not contain concentrated probabilities by
assumption. Therefore, by Corollary 4 (π∗, π∗) is max consistent, i.e., maxz∈Z(π∗ ·π∗)(z) >
maxz∈Z π∗(z) = p. On the other hand, (π∗, π∗) ∈ G; hence, maxz∈Z(π∗ · π∗)(z) ≤ p. The
contradiction completes the proof.

A straightforward corollary from Theorem is the following.
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Corollary 6 Let a nonempty G ⊂ Π be invariant with respect to integration G do not
contain concentrated probabilities and G 6= {z̄}. Then G is not finite.

As a complement to Corollary 6, let note that there are countable sets of non-
concentrated probabilities in Π, wich are invariant with respect to integration – see the
following example.

Example 1 Let a π ∈ Π be non-uniform and not concentrated. Then G = {πn : n ∈
{1, 2, . . .}} consists of non-concentrated probabilities, is countable and is invariant with
respect to integration.

Remark 14 If G ⊂ Π is invariant with respect to integration and G contains a
concentrated probability, then there is no other concentrated probability contained in
G, since every pair of concentrated probabilities having different concentration points is
in conflict.

The situation, in which a (π1, π2) ∈ Π(2) is max inconsistent implies, generically, that
elements having high probabilities in space (Z, π1) have small probabilities in space (Z, π1)
and vice versa, which is an indication of a contradiction between π1 and π2 (see an example
below).

Example 2 Let Z = {z1, z2}, π1(z1) = 3/4, π1(z2) = 1/4, π2(z1) = 1/4, π2(z2) = 3/4.
Then (π1 · π2)(z1) = (π1 · π2)(z2) = 1/2 < 3/4 = maxz∈Z π1(z) = maxz∈Z π2(z).

3.3 Marginal measure

For every non-concentrated π ∈ Π let us introduce the set of all elements of Z whose
probabilities in (Z, π) are less than one and bigger than zero, Z+

1 (π) = {z ∈ Z : 0 <
π(z) < 1}, and define the marginal measure of π to be minz∈Z+

1 (π) π(z).
Clearly, minz∈Z+

1 (π) π(z) ≤ 1/|Z| for every non-concentrated π ∈ Π, and
minz∈Z+

1 (π) π(z) = 1/|Z| if and only if π is the uniform probability, π = π̄. In this context,
the smaller is the marginal measure of a non-concentrated π, the ’less uniform’ is π.
Since total uniformity is interpreted as total non-informativeness, the probabilities whose
marginal measures are small can be viewed as more informative than those whose marginal
measures are high.

We shall say that a (π1, π2) ∈ Π(2) is marginally consistent if

min
z′∈Z+

1 (π1·π2)
(π1 · π2)(z

′) < min

{
min

z′∈Z+
1 (π1)

π1(z
′), min

z′∈Z+
1 (π2)

π2(z
′)

}

and is marginally inconsistent if

min
z′∈Z+

1 (π1·π2)
(π1 · π2)(z

′) > max

{
min

z′∈Z+
1 (π1)

π1(z
′), min

z′∈Z+
1 (π2)

π2(z
′)

}
.

Remark 15 Statement 3 of Theorem 1 implies that if a (π1, π2) ∈ Π(2) is marginally
consistent or marginally inconsistent, then neither π1, nor π2 is uniform.

Remark 16 It is easy to show that the marginal measure is a concave function on Π.
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Lemma 2 allows us to characterize a typical situation, in which a (π1, π2) ∈ Π(2) is
marginally consistent; generically, this takes place if the sets of the least probable elements
in the probability spaces (Z, π1) and (Z, π2) intersect.

Theorem 8 Let (π1, π2) ∈ Π(2), π1, π2 ∈ Π be non-concentrated and there exist a z∗ ∈ Z
minimizing π1 on Z+

1 (π1) and π2 on Z+
1 (π2) simultaneously. The following statements are

true.
1) z∗ minimizes π1 · π2 on Z+

1 (π1 · π2).
2) If there exists a z ∈ Z such that

π1(z) > min
z′∈Z+

1 (π1)
π1(z

′), π2(z) > min
z′∈Z+

1 (π2)
π2(z

′),

then (π1, π2) is marginally consistent.

A proof is similar to that of Theorem 6. A straightforward corollary from Theorem 8
is the following.

Corollary 7 For every non-concentrated and non-uniform π ∈ Π, (π, π) is marginally
consistent.

Extending the definition of marginal consistency of pairs (π1, π2) ∈ Π(2) to n-tuples
(π1, . . . , πn) ∈ Π(n) for n ≥ 2, we will say that a (π1, . . . , πn) ∈ Π(n) ismarginally consistent
if

min
z∈Z

(π1 · . . . · πn)(z) < min{min
z∈Z

π1(z), . . .min
z∈Z

π1(z)}.

Theorem 8 yields the following.

Corollary 8 Let a n ≥ 2 be natural, a (π1, . . . , πn) ∈ Π(n) be non-concentrated and there
exist a z∗ ∈ Z minimizing π1, . . . , πn on Z simultaneously. The following statements are
true.

1) z∗ minimizes π1 · . . . · πn on Z.
2) If there exists a z ∈ Z such that

πi(z) > max
z′∈Z

πi(z
′)

for all i ∈ {1, . . . , n} then (π1, . . . , πn) is marginally consistent.

The situation, in which a (π1, π2) ∈ Π(2) is marginally inconsistent, is, essentially,
similar to the situation, in which (π1, π2) is max inconsistent; both situations imply,
generically, that elements having high likelihoods in space (Z, π1) have small likelihoods
in space (Z, π1) and vice versa. Example 2 given in the previous section is an elementary
illustration.

3.4 Max raisers

Given a natural n ≥ 2, a π ∈ Π will be said to be a max raiser for a (π1, . . . , πn) ∈ Πn if
(π, πi) ∈ Π(2) and

max
z∈Z

(π · πi)(z) > max
z∈Z

πi(z)

for all i ∈ {1, . . . , n}. The observation method lying behind a max raiser for (π1, . . . , πn)
improves, through integration, each of the observation methods lying behind π1, . . . , πn.

At first, we give a note on max raisers for pairwise max consistent n-tuples of
probabilities.
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Theorem 9 Let an n ≥ 2 be natural, a (π1, . . . , πn) ∈ Πn be such that (πi, πj) belong
to Π(2) and be max consistent for every different i, j ∈ {1, . . . , n}. Then for every i ∈
{1, . . . , n}, πi is a max raiser for (π1, . . . , πn).

Proof. Let i, j ∈ {1, . . . , n} and j 6= i. We have (πi, πi) ∈ Π(2) by Remark 1, (v), and
we have (πi, πj) ∈ Π(2) by assumption. The max consistency of (πi, πj) implies that πi is
non-uniform (see Remark 10); hence, (πi, πi) is max consistent by Corollary 4; therefore,

max
z∈Z

(πi · πi)(z) > max
z∈Z

πi(z).

Furthermore, (πi, πj) is max consistent by assumption, implying

max
z∈Z

(πi · πj)(z) > max
z∈Z

πj(z).

In view of the arbitrary choice of j 6= i, πi is a max raiser for (π1, . . . , πn). The proof is
complete.

The next theorem shows that, generically, a probability giving a sufficiently high
priority to an element having non-zero likelihoods in spaces (Z, π1), . . . , (Z, πn) is a max
raiser for (π1, . . . , πn).

Theorem 10 Let an n ≥ 2 be natural, (π1, . . . , πn) ∈ Πn, π1, . . . , πn be non-concentrated
and a z∗ ∈ Z be such that πi(z∗) > 0 for all i ∈ {1, . . . , n}. Then every π ∈ Π such that
π(z∗) is sufficiently close to one is a max raiser for (π1, . . . , πn).

Proof. Let a π∗ ∈ Π be concentrated at z∗. Clearly, (π∗, πi) ∈ Π(2) for every i ∈
{1, . . . , n}. As follows from statement 4 of Theorem 1, for every i ∈ {1, . . . , n} it holds
that π∗ · πi = π∗, implying

max
z∈Z

(π∗ · πi)(z) = 1 > max
z∈Z

πi(z);

the latter inequality is ensured by the fact that πi is non-concentrated. Thanks to the
continuity of integration (see Remark 4) and the continuity of the max concentration
measure, the above inequality is preserved for all i ∈ {1, . . . , n} if one replaces π∗ with an
arbitrary π ∈ Π such that π(z∗) is sufficiently close to one. The proof is complete.

The next theorem deals with probabilities sufficiently close to the uniform one.

Theorem 11 Let an n ≥ 2 be natural and a π ∈ Π be non-uniform. Then π is a max
raiser for any (π1, . . . , πn) ∈ Πn such that π1, . . . , πn are sufficiently close to the uniform
probability, π̄.

Proof. By Theorem 1 (see statement 3) we have π · π̄ = π. Hence,

max
z∈Z

(π · π̄) = max
z∈Z

π(z) > max
z∈Z

π̄(z) = 1/|Z|;

the latter inequality is ensured by the fact that π is not uniform. Thanks to the continuity
of integration and continuity of the max concentration measure, the above inequality is
preserved if one replaces π̄ with arbitrary π1, . . . , π2 ∈ Π sufficiently close to π̄. The proof
is complete.

Let us show that if n < |Z|, then, generically, for a given (π1, . . . , πn) ∈ Πn one can
find a max raiser sufficiently close to the uniform probability; an interpretation is that n
given observation methods can simultaneously be improved, being integrated with some
observation method whose information value is poor.
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Theorem 12 Let N = |Z|, a natural n satisfy 2 ≤ n < N , π1, . . . , πn ∈ Πn, Z =
{z1, . . . , zN}, for every i ∈ {1, . . . , n} the maximizer of πi in Z, zki

, is unique,

vik =

{
0 if k 6= ki
1 if k = ki

(i ∈ {1, . . . , n}, k ∈ {1, . . . , N}),

and the rank of the matrix

A =


π1(z1)− v11 π1(z2)− v12 . . . π1(zN)− v1N

. . .
πn(z1)− vn1 πn(z2)− vn2 . . . πn(zN)− vnN

1 1 . . . 1

 (28)

is not smaller than n+ 1. Then for every ε > 0 there exists a max rasier π for π1, . . . , πn
such that the distance in Π between π and the uniform probability, π̄, is smaller than ε.

Proof. Let π∗ = (π(z1), . . . , π(zN)) ∈ RN for every π ∈ Π. For every h =
(h1, . . . , nN) ∈ RN such that

h1 + . . .+ hN = 0 (29)

and every sufficiently small real λ we have

π̄∗ + λh ∈ Π∗ = {π∗ : π ∈ Π}. (30)

Let for every p = (p1, . . . , pN) ∈ RN

gik(p) =
πi(zk)pk∑N
j=1 πi(zj)pj

(i ∈ {1, . . . , n}, k ∈ {1, . . . , N}). (31)

Obviously,
gik(π

∗) = (πi · π)(zk) (i ∈ {1, . . . , n}, k ∈ {1, . . . , N}) (32)

for every π ∈ Π; in particular,

gik(π̄
∗) = (π̄i · π)(zk) = π(zk) (i ∈ {1, . . . , n}, k ∈ {1, . . . , N}). (33)

In view of (32) and (30) holding for all h ∈ RN satisfying (29) and for all sufficiently
small real λ, we see that in order to finalize the proof it is sufficient to show that there
exists an h ∈ RN such that for all sufficiently small λ > 0 we have

max
k=1,...,N

gik(π̄
∗ + λh) > max

k=1,...,N
πi(zk) (i ∈ {1, . . . , n})

or, equivalently,
giki

(π̄∗ + λh) > πi(ziki
) (i ∈ {1, . . . , n}) (34)

where ziki
∈ Z is the maximizer of πi in Z (here we refer to the assumption that the latter

maximizer is unique). Given an h ∈ RN , for all sufficiently small λ > 0, (34) is equivalent
to

giki
(π̄∗) + 〈grad giki

(π̄∗), h〉λ > πi(ziki
) (i ∈ {1, . . . , n})

and, thanks to (33), to

〈grad giki
(π̄∗), h〉 > 0 (i ∈ {1, . . . , n}); (35)
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here grad gik(π̄∗) is the gradient of p 7→ gik(p) at π̄∗ and 〈·, ·〉 is the scalar product in RN .
We will complete the proof by showing that there exists an h ∈ RN satisfying (29),

for which (35) holds. Referring to (31), we find that

grad giki
(p̄) = (γ

(1)
i , . . . , γ

(N)
i )

where
γ

(k)
i = − πi(zki

)πi(zk)(1/N)(∑N
j=1 πi(zj)(1/N)

)2 = −Nπi(zki
)πi(zk) for k 6= ki,

γ
(ki)
i =

πi(zki
)
∑N
j=1 πi(zj)(1/N)− πi(z)πi(zk)(1/N)(∑N

j=1 πi(zj)(1/N)
)2 = N [πi(zki

)− π2
i (zki

)];

here we take into account that
∑N
j=1 πi(zj) = 1. Thus, for an arbitrary h = (h1, . . . , nN) ∈

RN we have

〈grad giki
(π̄∗), h〉 = −Nπi(zki

)

ki−1∑
k=1

πi(zk)hk + (πi(zki
)− 1)hki

+
N∑

k=ki+1

πi(zk)hk

 (36)

(i ∈ {1, . . . , n}).
Let a1, . . . , an < 0. Consider the following system of algebraic equations with respect to
h1, . . . , hN :

ki−1∑
k=1

πi(zk)hk + (πi(zki
)− 1)hki

+
N∑

k=ki+1

πi(zk)hk = ak (37)

(i ∈ {1, . . . , n}),
h1 + . . .+ hN = 0. (38)

Rewrite it in a matrix form as
AhT = aT (39)

where A is given by (28), a = (a1, . . . , an, 0) and T marks transposed row vectors. By
assumption the rank of A is not smaller than n+ 1 – the number of its rows (the number
of equations in (37), (38)), the latter number is not smaller than N – the number of its
columns (the number of the unknown values in (37), (38)), and N ≥ n + 1. Therefore,
the system of equations (37), (38) (equation (39)) is solvable. Let h = (h1, . . . , hN) be
a solution to (37), (38). Since a1, . . . , an < 0, the right hand sides in (36) are positive;
consequently, inequalities (35) hold. The proof is complete.

4 Integrable sequences of probabilities

4.1 Integral limits

We call a sequence (πi)
∞
i=1 in Π integrable if (π1, . . . , πn) lies in Π(n) (is not in conflict)

for every natural n; note that for an integrable sequence (πi)
∞
i=1 the integration result

π1 · . . . · πn is defined correctly for every natural n.
Given an integrable sequence (πi)

∞
i=1 in Π, we call every partial limit of sequence

(π1 · . . . · πn)∞n=1 in Π a partial integral limit of (πi)
∞
i=1; in case the partial integral limit of

(πi)
∞
i=1 is unique, we call the latter the integral limit of (πi)

∞
i=1.
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Remark 17 As mentioned in Section 1, Π is a compactum. Therefore, every integrable
sequence in Π has a partial limit.

An integrable sequence in Π will be said to be integrally convergent if its integral limit
exists, and integrally divergent otherwise. An integrally convergent sequence in Π will be
said to be integrally concentrated if its integral limit is concentrated.

Interpretations of the above definitions are straightforward. If a sequence (πi)
∞
i=1

is integrally concentrated, observation methods 1, 2 . . . lying, respectively, behind
probabilities π1, π2, . . . improve each other, through integration, to a degree, at which we
get complete information on the observed element in Z. If (πi)

∞
i=1 is integrally convergent

and not integrally concentrated, methods 1, 2 . . ., being integrated, ’find a compromise’
and provide a definite though incomplete information on the observed element. If (πi)

∞
i=1

is integrally divergent, methods 1, 2 . . . disagree.
Let us give an example of an integrally divergent sequence in Π.

Example 3 (an integrally divergent sequence). Let Z = {z1, z2}, π(1), π(2) ∈ Π be such
that

π(1)(z1) > π(1)(z2) > 0, π(2)(z2) > π(2)(z1) > 0

and (πi)
∞
i=1 be defined by

πi = π(1) (i ∈ {1, . . . , k2j−1}, j ∈ {1, 2, . . .}),
πi = π(2) (i ∈ {k2j−1 + 1, . . . , k2j}, j ∈ {1, 2, . . .})

where 1 < k1 < k2 < k3 . . .. It is clear that (πi)
∞
i=1 is integrable. Let

π∗j = π1 · . . . · πkj
, π∗j,j+1 = πkj+1 · . . . · πkj+1

(j = 1, 2, . . .), (40)

q(1) =
π(1)(z2)

π(1)(z1)
, q(2) =

π(2)(z2)

π(2)(z1)
.

Obviously,
q(1) < 1, q(2) > 1.

We have

π∗1(z1) =
π(1)k1(z1)

π(1)k1(z1) + π(1)k1(z2)
=

1

1 + q(1)k1
.

Take a positive sequence (εj)
∞
j=1 convergent to zero. Set k1 to be so large that q(1)k1 < ε1.

Then
π∗1(z1) >

1

1 + ε1

. (41)

Furthermore,

π∗1,2(z1) =
π(2)(k2−k1)(z1)

π(2)(k2−k1)(z1) + π(2)(k2−k1)(z2)
=

1

1 + q(2)(k2−k1)
(42)

and

π∗2(z1) = (π∗1 · π∗1,2)(z1)

=
π∗1(z1)π

∗
1,2(z1)

π∗1(z1)π∗1,2(z1) + π∗1(z2)π∗1,2(z2)

22



<
π∗1(z1)π

∗
1,2(z1)

π∗1(z2)π∗1,2(z2)

=
π∗1(z1)

π∗1(z2)

π∗1,2(z1)

1− π∗1,2(z1)
(43)

Based on (42) and on the fact that q(2) > 1, we set k2 > k1 to be so large that the right
hand side in (43) is smaller than ε2. Then

π∗2(z1) < ε2. (44)

Arguments similar to those used to state (41) and (44) lead us to choices of k3, k4, . . . such
that

π∗2j−1(z1) >
1

1 + ε2j−1

, π∗2j (z1) < ε2j (j ∈ {1, 2, . . .}).

Therefore, limj→∞ π
∗
2j−1 is concentrated at z1 and limj→∞ π

∗
2j is concentrated at z2. By

(40) both limits are partial integral limits of (πi)
∞
i=1. Consequently, (πi)

∞
i=1 is integrally

divergent.

Theorems 13, 14 and 15 given below provide simple conditions ensuring a sequence
of probabilities to be integrally concentrated. Theorem 13 follows straightforwardly from
the fact that concentrated probabilities are zeros with respect to integration understood
as multiplication (see Theorem 1, statement 4).

Theorem 13 Let (πi)
∞
i=1 be an integrable sequence in Π and there be a natural k such

that πk is concentrated. Then (πi)
∞
i=1 is integrally concentrated and its integral limit is πk.

The next theorem following from the definition of a measure of concentration provides
a general criterion for an integrable sequence to be integrally concentrated.

Theorem 14 Let µ be a measure of concentration. An integrable sequence (πi)
∞
i=1 in Π

is integrally concentrated if and only if limn→∞ µ(π1 · . . . · πn) = 1.

The next theorem states that if all the probabilities in an integrable sequence give
visibly highest values to a same element, z∗, the sequence is integrally concentrated at z∗.
An interpretation is that observation methods that unambiguously agree on prioritizing a
certain element enhance their common probabilistic priority through integration so that
the common priority turns into certainty.

Theorem 15 Let a sequence (πi)
∞
i=1 in Π be integrable and there be a z∗ ∈ Z and a

positive q < 1 such that πi(z)/πi(z∗) < q for all z ∈ Z \ {z∗} and all natural i. Then
(πi)

∞
i=1 is integrally concentrated and its integral limit is concentrated at z∗.

Proof. For every z ∈ Z and every natural n let

vn(z) =
(π1 · . . . · πn)(z)

(π1 · . . . · πn)(z∗)
=

π1(z) . . . πn(z)

π1(z∗) . . . πn(z∗)
. (45)

Obviously, vn(z) ≤ qn for every z ∈ Z \{z∗} (n ∈ {1, 2, . . .}. Therefore, (π1 · . . . ·πn)(z)→
0 as n → ∞. Consequently, (π1 · . . . · πn)∞n=1 converges in Π to the probability whose
concentration point is z∗. The proof is complete.

The next example shows that if in assumptions of Theorem 15 we set q = 1 (implying
that the observation methods lying behind π1, π2, . . . may have no clear consensus in
prioritizing z∗), the statement of the theorem is no longer valid.
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Example 4 Let Z = {z, z∗}, π1, π2, . . . ∈ Π and qi = πi(z)/πi(z∗) ∈ (0, 1) for all natural
i. Furtheremore, let qi+1 > qi for all natural i, and the series

∑∞
i=1 | log qi| converge.

Then sequence (vn)∞n=1 given by (45) takes values in (0, 1) and decreases; consequently,
vn → v ∈ [0, 1) as n→∞. Therefore, (πi)

∞
i=1 is integrable and integrally convergent. Since∑∞

i=1 | log qi| converges, v = limn→∞ q1 . . . qn > 0. Hence, the integral limit of (πi)
∞
i=1 is not

concentrated.

Let us give a few conditions sufficient for an integrable sequence of probabilities to be
integrally convergent. The next statement follows straightforwardly from definitions and
the continuity of integration (see Remark 4).

Theorem 16 Let (πi)
∞
i=1 be an integrable sequence in Π, there be a natural k ≥ 2 such

that (πi)
∞
i=k is integrally convergent and π be its integral limit. Then (πi)

∞
i=1 is integrally

convergent and its integral limit is π1 · . . . · πk−1π.

The next theorem generalizes Theorem 15.

Theorem 17 Let a sequence (πi)
∞
i=1 in Π be integrable, all πi (i ∈ {1, 2, . . .}) have the

common set of maximizers, Z∗, and there be a positive q < 1 such that πi(z)/πi(z∗) < q
for all z ∈ Z \ Z∗, all z∗ ∈ Z∗ and all natural i. Then (πi)

∞
i=1 is integrally convergent and

its integral limit, π, is uniform on Z∗, i.e., π(z) = 1/|Z∗| for all z∗ ∈ Z∗ and π(z) = 0 for
all z ∈ Z \ Z∗.

We omit the proof (similar to that of Theorem 15). The next theorem states that a
sequence of probabilities is integrally convergent if all the probabilities in the sequence
prioritize the elements in the same order.

Theorem 18 Let a sequence (πi)
∞
i=1 in Π be integrable and there be a sequence (zk)

N
k=1 in

Z such that {z1, . . . , zN} = Z and πi(z1) ≤ . . . ≤ πi(zN) for all natural i. The following
statements hold true.

1) (πi)
∞
i=1 is integrally convergent and for its integral limit, π, it holds that π(z1) ≤

. . . ≤ π(zN).
2) If there exist a positive q < 1, an l ∈ {1, . . . , N − 1} and a subsequence (πim)∞m=1 of

(πi)
∞
i=1 such that πim(zl)/πim(zN) < q for all natural m, then π(z1) = . . . = π(zl) = 0.

Proof. Prove statement 1. Let j ∈ {1, . . . , N} be the minimum of all k ∈ {1, . . . , N}
such that πi(zk) > 0 for all natural i. Obviously, for every natural k < j we have (π1 ·
. . . · πn)(zk) = 0 for all sufficiently large n. If j = N , we get (π1 · . . . · πn)(zk) = 1 for all
sufficiently large n, which completes the proof. Let j ≤ N−1. For every k ∈ {j, . . . , N−1}
and every natural n let

vkn =
(π1 · . . . · πn)(zk)

(π1 · . . . · πn)(zk+1)
=

π1(zk) . . . πn(zk)

π1(zk+1) . . . πn(zk+1)
.

By assumption for every k ∈ {j, . . . , N − 1} vk1 ≤ 1 and sequence (vkn)∞n=1 is non-
increasing; hence, vkn ≤ 1 for all natural n. Consequently,

(π1 · . . . · πn)(zk) ≤ (π1 · . . . · πn)(zk+1)

for all k ∈ {j, . . . , N − 1} and all natural n. To complete the proof, it is sufficient to show
that sequence ((π1 · . . . · πn)(zk))

∞
n=1 converges for every k ∈ {j, . . . , N − 1}. Let us note

here that for every k ∈ {j, . . . , N − 1} the non-increasing sequence (vkn)∞n=1 converges.
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Let us prove that sequence ((π1 · . . . · πn)(zN))∞n=1 is non-decreasing; here we slightly
modify the argument used in the proof of Lemma 1. By definition

(π1 · π2)(zN) =
π1(zN)π2(zN)∑N
k=1 π1(zk)π2(zk)

=
π1(zN)∑N−1

k=1 π1(zk)q(zk) + π1(zN)

where q(zk) = π2(zk)/π2(zN) for k ∈ {1, . . . , N−1}. Since q(zk) ≤ 1 for k ∈ {1, . . . , N−1},
we get (π1 ·π2)(zN) ≥ π1(zN). Similarly, using induction, we state that (π1 ·. . .·πn+1)(zN) ≥
(π1 · . . . · πn)(zN) for an arbitrary natural n. Thus, sequence ((π1 · . . . · πn)(zN))∞n=1 is non-
decreasing; therefore, it converges. Furthermore,

(π1 · . . . · πn)(zN−1) = vN−1 n(π1 · . . . · πn)(zN)

for all natural n. Since both (vN−1 n)∞n=1 and ((π1 · . . . · πn)(zN))∞n=1 converge, ((π1 · . . . ·
πn)(zN−1))

∞
n=1 does, too. Similarly, using induction, we state that ((π1 · . . . · πn)(zk))

∞
n=1

converges for every k ∈ {j, . . . , N − 1}. Statement 1 is proved.
Prove statement 2. Let the assumptions of statement 2 be satisfied. Then for all

sufficiently large natural n it holds that

wn =
(π1 · . . . · πn)(zl)

(π1 · . . . · πn)(zN)
=

π1(zl) . . . πn(zl)

π1(zN) . . . πn(zN)
≤ qs(n)

where s(n) is the maximum of all im (m ∈ {1, 2, . . .}) such that im ≤ n. Since s(n)→∞
as n→∞, we have wn → 0 as n→∞. Consequently, π(zl) = limn→∞(π1 · . . . ·πn)(zl) = 0.
Since π(z1) ≤ . . . ≤ π(zl), we get π(z1) = . . . = π(zl) = 0. Statement 2 is proved.

Taking into account Theorem 16, we immediately deduce from Theorem 18 that for
the integral convergence of a sequence of probabilities it is sufficient that the absolute
majority of those prioritize the elements in the same order.

Corollary 9 Let a sequence (πi)
∞
i=1 in Π be integrable and there be a sequence (zk)

N
k=1 in

Z such that {z1, . . . , zN} = Z and πi(z1) ≤ . . . ≤ πi(zN) for all sufficiently large natural
i. Then (πi)

∞
i=1 is integrally convergent and statement 2 of Theorem 18 holds true.

4.2 Permutations in infinite integration

Here we show that finite permutations in integrable sequences of probabilities do not
change the results of integration (Corollary 10), whereas infinite ones can possess the
opposite property (Example 5).

As noted in Corollary 1, the result of integration of a finite number of probabilities
is insensitive to the order, in which these probabilities are integrated. A straightforward
implication is that any finite permutation in a sequence of probabilities does not change
the set of its partial integral limits.

Corollary 10 Let (πi)
∞
i=1 be an integrable sequence in Π, (i1, i2, . . . , ik) be an arbitrary

permutation in (1, 2, . . . , k) for some natural k and

π∗j =

{
πij if j ∈ {1, . . . , k}
πj if j ∈ {k + 1, k + 2, . . .} .

Then the sets of all integral partial limits of (πi)
∞
i=1 and (π∗i )

∞
i=1 coincide.

25



The next example shows that generally, the above statement does not hold for infinite
permutations in sequences of probabilities.

Example 5 Let Z = {z1, z2} and π(1)
i , π

(2)
i ∈ Π (i ∈ {1, 2, . . .}) be such that

π
(1)
i (z1) = 1− εi, π

(1)
i (z2) = εi, π

(2)
i (z1) = εi, π

(2)
i (z2) = 1− εi

where εi ∈ (0, 1) and limi→∞ εi = 0. For every natural i and j ≥ i denote

π
(1)
ij = π

(1)
i · . . . · π

(1)
j , π

(2)
ij = π

(2)
i · . . . · π

(2)
j .

By Theorem 15
π

(1)
ij → π(1) in Π, π

(2)
ij → π(2) in Π (46)

where π(1) and π(2) are concentrated at z1 and z2, respectively. Take natural k1, k2 . . . and
let

π′j = π
(1)
j (j ∈ {1, . . . , k1}),

π′k1+1 = π
(2)
1 ,

π′j = π
(1)
j (j ∈ {k1 + 2, . . . , k1 + 2 + k2}),

π′k1+k2+3 = π
(2)
2 ,

. . .

π′j = π
(1)
j (j ∈ {ms, . . . ,ms+1}),

π′ms+1+1 = π
(2)
s+1,

. . .

where
ms =

s∑
l=1

kl + s+ 1.

Obviously, (π′j)
∞
j=1 is integrable. Take positive δ1, δ2, . . . such that lims→∞ δs = 0.

Based on (46), the fact that π(1) is a zero with respect to integration (understood as
multiplication) and the continuity of integration, set, sequentially, k1, k2, . . . to be so large
that

(π′1 · . . . · π′ms+1+1)(z1) = (π′1 · . . . · π′ms+1 · π
(1)
ms+1 ms+1

· π(2)
ms+1+1)(z1)

= (π
(1)
ms+1 ms+1

· (π′1 · . . . · π′ms+1 · π
(2)
ms+1+1))(z1)

> 1− δs.
Then, using Theorem 6, for every k ∈ {ms+1 + 2, . . . ,ms+3} = {ms+2, . . . ,ms+3} we get

(π′1 · . . . · π′k)(z1) = ((π′1 · . . . · π′ms+1+1) · π′ms+2
· . . . · π′k)(z1)

= ((π′1 · . . . · π′ms+1+1) · π(1)
ms+2
· . . . · π(1)

k )(z1)

> (π′1 · . . . · π′ms+1+1)(z1)

> 1− δs.
Thus, (π′j)

∞
j=1 integrally converges to π(1). Now define π′′1 , π′′2 , . . . ∈ Π by changing the

places of π(1)
j and π(2)

j in the definition of π′1, π′2, . . .. Using a similar argument, we state
that (π′′j )∞j=1 integrally converges to π(2). It is clear that (π′′j )∞j=1 is the result of an infinite
permutation in (π′j)

∞
j=1. Thus, an infinite permutation in (π′j)

∞
j=1 changes its integral limit.
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Conclusion
The study presented here is motivated by problems of assessment of diverse inaccurate
data characterizing uncertain complex systems. The paper suggests an approach to
integration of pieces of information provided by alternative error-corrupted observation
methods modeled by probability distributions. Our departure point is the posterior
Bayesian probability in the product of the probability spaces associated with the
observation methods.

We find that integration as a binary operation in the set of all probabilities on a
given finite carrier possesses algebraic properties similar to those of multiplication; a
particular implication is that the set of all probabilities providing a non-zero likelihood to
all elementary events forms a topological abelian group, in which the uniform probability
acts as the unit.

We pay special attention to cases, in which integration raises the information value of
the integrated probabilities, imlying that the underlying observation methods enhance,
via integration, each other in resolution; roughly speeking, such cases assume that the
integrated probabilities give extreme likelihoods to same elements. In this analysis, the
max measure of concentration plays an important role.

In the final section, we study infinite processes, in which new probabilities are
sequentially integrated with the existing ones. We state, in particular, that if all
sequentially integrated probabilities, π1, π2, . . ., give an unambiguous priority to a same
elementary event, z∗, the results of sequential integration raise the likelihood of z∗ to one.
Another observation is that if π1, π2, . . . prioritize the elementary events identically, the
results of sequential integration sharpen prioritization and converge.

The paper presents a pilot study, dealing with the simplest objects. Questions for
further exploration include: extensions to infinite sets of elementary events; listing the
results of integration of standard probability distributions (an ’integration calculus’);
assessment of the impact of integration on the information value of the integrated
probabilities in terms of various measures of concentration; extensions to random
processes; analysis of the impact of localized permutations in sequences of probabilities
on their integral convergence properties; problems of optimal integration; and other.

27



References
[1] J.O.Berger, 1985. Statistical Decision Theory and Bayesian Analysis. Springer, New York.

[2] D.Blackwell, 1951. Comparisons of experiments. Proceedings of the Second Berkeley Symposium
on Mathematical Ststistics and Probability, University of Califormia Press, 93-102.

[3] D.Blackwell, 1953. Equivalent comparisons of experiments. Annals of Mathematical Statistics, 24,
Issue 2, 265-272.

[4] S.Fruhwirth-Schnatter, 2006. Finite Mixture and Markov Switching Models. Springer.

[5] S.Nilsson, A.Shvidenko, M.Jonas, I.McCallum, A.Thompson, H.Balzter, 2007. Uncertanties of a
regional terrestrial biota full carbon account: a system analysis. In: Accounting for Climate Change.
Uncertainty in Greenhouse Gas Inventories - Verification, Compliance, and Trading, Springer
Netherlands, 5-21.

[6] E.Sulganik, I.Zilcha, 1997. The value of information: the case of signal-dependent opportunity sets.
Journal of Economic Dynamics and Control, 21, 1615-1625.

[7] A.Wald, 1949. Statistical decision functions. Annals of Mathematical Statistics, 20, Issue 2,165-205.

28


	IR_frontpages_final27Nov
	Abstract

	_TEXT-07a-no-acknowl

