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PREFACE

The innovation process, defined here to incorporate the
full cycle from invention to full commercialization, is slow.
It cannot be encompassed with time horizons of less than 29
years. Many innovations require half a c¢entury or more to
reach commercial maturity.

Management of the innovation process is critical to the
management of technology, but the slowness of the process makes
it difficult for conventional economists or policy makers, who
typically consider 15 vyears a long~term forecast or plan, to
understand or control.

The situation, in short, is one in which the absence of
theoretical understanding limits the effectiveness of manageri-
al practice. Accordingly one appropriate niche for applied sys-
tems analysis in tnis case is development, apvlication and
testing of theoretical models.

Toward this end the innovation task of IIASA's Management
and Technology Area is studying the mechanisms of technological
substitution. One phase of this work is being conducted
through construction and analysis of a series dynamic simula-~
tion models, TECH1, TECH2 ...TECH.N.

The present working paper is one of a series describing
these models. 1Its purpose is one of clarification, simplifica-~
tion and communication. It attempts, by use of static graphi-
cal figures, to make the dynamic process described in the
models more understandable. It 1is complementary to working
papers by the same author entitled "Technological Shift: A
Cybernetic Exploration", a semi~technical description of TECHI,
and "Technological Shift: As Related to Technological TULearning
and Technological Change", a discussion of some theoretical and
philosophical aspects of the structure posed in the TECH
models.
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Later papers in the series will describe TuCY2, a variant
of TECH restructured to assume a planned economy rather than
free market competition, and application of TECH to historical-
ly observed technological substitutions.

In the first six months of 1989 the entire series of work-
ing papers will be collected into a IIASA Research Report.
Various parts of the series are being adapted for separate
journal ©publication. The author welcomes comments, questions,
criticisms and suggestions on this or any related work.
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PROGRESS FUNCTIONS AND LEARNING
COSTS: A GRAPHICAL EXPLORATION

Jennifer Robinson

INTRODUCTION

The progress functions* of many technological developments
have been studied (Yelle, 1979). 1In general data relating mea-
sures of performance--such as cost, factor productivity or speed--
to measures of experience--usually cumulative output--yield re-
spectable curves, often with good statistical fits. 1Indeed,
learning phenomena are sufficiently ubiquitous and sufficiently
regular that progress functions can be argued to have general law-
like validity, and to deserve a place alongside supply curves,
demand curves, Engle's curves and other tools of the economist
trade. The law-like properties of learning curves have been
argued by Sahal (1978, 1979) who in addition to fitting curves to
industrial data has developed, using both probabilistic and deter-
ministic reasoning, a general theoretical explanation of the pro-
gress function.

Given that engineers, management scientists, and others have
proposed a new curve, what can economics do with it? Arrow (1962)
has proposed that progress functions can be employed macroeconomic-
ally to account for the embarrassingly large portion of productiv-
ity growth that Solow (1957), Abramovich (1956) and others found
could not be attributed to physically countable factors of produc-
tion. Roberts (1978) has argued that learning curves could mean-
ingfully be applied to such divergent phenomenon as automobile ac-
cident reduction and birth control and longevity, with the added
proposal that global modeling might be improved by representing
various system constraints as subject to progress functions.

*"progress function" and "learning curve" are both used in the
literature to designate relationships between performance and
experience. In this paper progress function will generally be
used to avoid the anthropomorphic connotations of the word "learning"
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Here it is proposed that progress functions may also be use-
ful in microeconomics. Specifically it is argued that just as
demand, supply and Engle curves have been worked together into a
theory of the interaction between income change and market be-
haviors, it may be.possible to combine demand, supply and progress
into a useful partial theoretical explanation of technological
substitution.

In previous papers the author used a dynamic model of compe-
tition between product lines to point out that increase of perfor-
mance with experience can critically affect the dynamics of tech-
nological substitution (Robinson 1979a, 1979b). Basically, it
was observed that progress creates strong positive feedback loops.
Experience leads to efficiency, efficiency leads to expansion of
production and thus to further experience. It was further noted
- that the relative shapes and parameters of the old and new loops
determine whether this loop turns out to be a vicious circle
(poor efficiency -# expansion —» no progress —s poor efficiency)
or a snowball effect (increased efficiency —s expansion - pro-
gress — increased efficiency). The dynamic picture was wonder-
fully and mind bogglingly complex. Here we seek simplicity and
clarity through detailed investigation of the central static fea-
tures of the model--relative and absolute progress functions.

The paper proceeds as follows: First a simple construct of
technical progress during competition between technological pro-
cesses is postulated. This leads to graphical observation of the
costs incurred in launching the new technology to a level of pro-
duction efficiency where it can survive in market competition.
Second, the construct is used to examine the way the progress
functions form affects learning costs. Third, the problem of pro-
duct (as opposed to production) learning is discussed. Finally,
comments are made about the relationship between technological
progress and technological innovation.

THE SIMPLE MODEL
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Figure 1. Established technology progress function and price

curve. Given cumulative output To, technology T will face pro-
duction cost of Co and will offer its goods at Po'
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Let us begin with the progress function of an established
technology T, putting total factor costs on the y axis and cumula-
tive output on the x axis. For simplicity a simple downward bend-
ing curve is used, later more complex forms such as S curves are
considered. Presuming prices are some margin above costs we can
then draw a price curve P somewhat above the learning curve. Pre-
suming T has a cumulative output of T units it will then be at
point A along its progress function afd have a unit cost of Y
and a sales price of Yp. a

Let us now add to this figure the progress function of a new
technology, T*¥, and follow what happens as T* accumulates produc-
tion experience. Let us take the common and interesting case
shown in Figure 2 where T* begins production at lower efficiency
and higher costs than T, but has the potential to progress to
higher efficiency through cumulative experience. Let us presume
for the time being that T*'s product is indistinguishable from T's
product, and thus that the price received for each technology's
product will be the same at any given point in time. We give T*

a price curve P¥*, to represent the prices T* would sell at if it
were alone on the market and receiving a profit margin high enough
to justify further investment. In T*'s early phases, however,

it is clear that it will operate on a market dominated by T and
will be forced to sell at a price substantially below P* as estab-
lished by T's cost position.

In Figure 2 it is apparent that for T* to move down its ef-
ficiency curve to where it is cost competitive with T it will have
to sell its goods below cost until learning brings its production
costs below T's product price. This corresponds to a region
such as the blackened region in Figure 2, whose upper bound
is established by T*'s learning curve, - and whose lower bound is

opportunity costs

absolute losses
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Figure 2. 01ld and new technology progress functions.
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established by T's price trend as mapped onto T*'s progress

down its progress function. In addition T* will forego a normal
profit margin whose upper bound is established by the new tech-

nology price curve P*¥ and whose lower bound follows T's prices.

This corresponds to the cross-hatched region in Figure 2.

The entire shaded area, that is, the sum of absolute losses
plus foregone profits, we shall term relative learning cost*. As
relative learning costs appear in the next seven diagrams, the
reader is advised to note the features of the area carefully. 1In
particular it should be noticed that the lower bounds of the learn-
ing cost region are determined by T's prices mapped onto T*'s
cumulative output--i.e., the price at which T* sells--and that the
upper bounds are determined by the curve P*--that is, the prices
T* would anticipate if it were not competing with an established
technology.

Dynamic Context

Static computations can only show part of this picture. The
magnitude of learning costs is highly susceptible to dynamic fac-
tors arising from the interaction of supply, demand, price, pro-
fitability and investment. As capacity accumulates the rate of
output accumulation, and thus of technical progress, also acceler-
ates. This process tends to be slow under high learning cost con-
ditions as T*, when showing large losses, fails to draw investment,
and may prevent substitution altogether. If progress continues,
however, a turning point is eventually reached.

As shown in Figure 3, when T* reaches the point on its pro-
gress function where costs equals price it begins to show a pro-
fit, and when it reaches a cumulative output such that its costs

market price in relation
to T's cumulative output ,
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Figure 3. Price behavior in the context of T* and T progress.

*In consistent terminology we would have to say progress costs.
"Relative" because the area is established for T* curves rela-
tive to T curves.
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drop below those of T, the tables begin to turn. T* becomes the
more profitable operation. Consequently, T* is likely to begin
rapid capacity expansion, which leads to more rapid output accumu-
lation and more rapid cost decreases. The net effect is apt to
increase supply and to drive prices from P to P*. As prices cross
T's unit cost, T will begin loosing money and will eventually be
forced out of business as T* expands into its markets.

VARIATIONS OF CURVE FORM

The extent to which learning costs impede technological sub-
stitution probably depends on the magnitude of the costs in rela-
tion to the magnitude of the expected gain. 1In the above model
we can note that learning costs vary greatly with the shape, slope
and end points of T and T*'s progress functions. Some of the
patterns of this variation can be seen by comparing Figures l4a,
4b and 4c. In each case T* is assumed to enter the market with
zero cumulate output while T has a cumulative output of T . T is
assumed to have progressed to a cumulative output T (poigt N on
its progress function) when T* reaches that value o® cumulative
output, Tn*, which is required for it to equal T*'s efficiency.

Figure 4a shows that a strongly S-shaped curve greatly adds
to the new technology's learning cost. Figure 4b shows that if
T* is initially close to T's efficiency it may be profitable quite
early in its development and face minimal learning costs. Figure
4c shows three things. First, if the old technology sells its
product at very near cost (i.e., operates on a highly competitive
market) the new technology's losses are greatly increased. This
suggests that price cutting can be an effective strategy for an
established technology faced with competition by a new technology,
or, conversely, that high price margins (as in monopoly conditions)
may encourage innovation. Second it shows that if T*'s efficiency
potential is not substantially greater than T's, T* learning costs
are greatly increased. Third it shows that competing with a tech-
nology that has yet significant opportunity for technological ad-
vance is a great deal more expensive than competing with a tech-
nologically stagnant one.

We also note that all functions involved have high uncertainty.
T may make unexpected progress when faced with competition. T#*'s
growth may flood markets and depress prices below cost or T may
drop prices as a competitive strategy. T* itself may progress
either more slowly or more rapidly than anticipated. The assump-
tions of perfect knowledge static price margins and continuous
progress function implicit in Figure 2, therefore can be relaxed
to lead to a construct such as Figure 5a, in which efficiencies
and prices are shown as upper and lower bounds. Here the regions
of price uncertainty, which carry over to set the learning cost,
are shaded. Figure 5b--the learning cost mapping of Figure 5b--
shows the potential variation of learning costs resulting from ex-
treme cases. Examination of the figure reveals that delayed start
and lesser efficiency gain coulg greatly increase T*'s learning
costs, while unanticipated large efficiency gains and severe price
cutting by T have the potential to prolong T*'s region of learning
costs indefinitely.
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Figure 5a.

Figure 5b.
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PROGRESS WITH PRODUCT MARKETABILITY

Pure efficiency competition is relatively uncommon. For the
most part process innovation is accompanied by product innovation.
This results, typically, in T*'s output selling at a different
price than T's output. 1In times of rising income market condi-
tions often support innovations with higher production costs that
sell at higher market prices. For example, color television will
probably always face higher production costs than black and white.
Because consumers are willing to pay for the increase in product
quality, prices for color TV are not forced down to the level of
those for black and white, and black and white prices cannot in-
crease to the level of color.

Attractiveness factors, in that they introduce the possibility
of different prices for T and T*--greatly complicate the model.
Let us start with the case shown in Figure 6 in which T* always
faces higher costs than T (and therefore has a progress function
that is at all points higher than 7) but is consistently pre-
ferred by customers. The price at which T*'s product sells is in
all cases higher than T's price, and (barring an extremely effi-
cient monopoly) will not in the long term be more than a reason-
able margin above T*'s costs. However, if T* cannot expand supply
to keep up with demand--as may be the case of a technology with
high entry costs and/or long construction times--it may maintain
prices at an immoderate margin above costs for at least a few
years. In this case the price at which T* sells its product may
exceed P* and may for any value of T*'s cumulative output be any-
where within the bounds of the shaded region above that cumulative
output. For example, when T* has a cumulative output of Q it may
sell at a price anywhere between Pa max and Pa min.

The location of price within this region will depend on the

dynamics of supply and demand for T*'s output as described pre-
viously.
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Figure 6. Product innovation where consumers prefer T¥*,.



Marketing Progress

We can postulate that for non-commodities product attractive-
ness like production efficiency is often subject to a progress
function. For example, consumer utility of cars, radios, electric-
ity, television and telephones increased greatly as the product
and the support infrastructure for these technologies expanded and
improved. Computers are following a similar pattern. Also, in
many cases consumers learn to accept a product--even if product
quality and infrastructure remain constant there seems to be a
tendency for an innovation's appeal to increase as "the word gets
around” as values change and prejudices are overcome.

Let us for convenience define increased product attractive-
ness as an increase in the amount consumders are willing to pay,
ceterus paribus, for one unit of product. Under this definition,
technological progress will lead to a curve such as A in Figure
7. Superimposed on the production efficiency progress function E,
A reveals a new sort of learning cost--which we shall call absolute
learning cost (to indicate that we visualize it for a single tech-
nology, irrespective of competition).

The magnitude of absolute learning cost signifies the costs
imposed on an innovation because it starts out with high costs
and weak marketing features. It will vary greatly in size with
the shapes of the production efficiency and attractiveness progress
functions just as relative learning costs were shown to vary in
Figures 4a, 4b and U4c. For some technologies it may be zero.

cost of ignoring efficiency
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Figure 7. Absolute learning costs as derived from the combina-
tion of product and process progress functions.
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It can also be seen from Figure 7 that absolute learning
costs are greatly increased if a new technology fails either to
increase efficiency or to improve marketing attributes while
failure in both dimensions leads to infinite costs. It may be
inferred from this diagram that a nation that balances its tech-
nical progress between production efficiency improvements and
marketing efficiency improvements will have lower learning costs,
and thus probably more rapid overall rates of innovation than one
that focuses entirely on either production or marketing.

SUMMARY AND CONCLUSIONS

In the preceding text a series of theoretical propositions
were set forth and deductions drawn from them. By way of con-
clusion these propositions and deductions are reviewed and comment
made about their potential theoretical and practical contributions.

Initially, it was asserted using graphical representation that
learning costs related to production efficiency can be approximated
ceterus paribus, from the respective progress functions of an old
and a new technology, plus knowledge of the old technology's states
of technical progress at the point at which the new technology
enters the market and the point at which it equals the old tech-
nology's production efficiency. From this assertion it was shown
graphically: (1) that learning costs will vary greatly for
different relative forms and magnitudes of old and new technology
progress functions; and (2) that uncertainty concerning prices
and future rates of progress will tend to make learning costs very
uncertain.

Later attention turned to market related factors. First it
was noted that prices, rates of progress, profitability and capac-
ity accumulation are dynamically linked and that their dynamic
interaction can greatly affect learning costs. Second, it was
observed: (a) that process innovation and product innovation
often occur together and that product innovation often resulted
in competing technologies selling at different prices and, (b)
that such differentials in marketability could greatly alter
learning costs. This led to the proposition that marketability
may also be subject to a progress function and to the deduction
that products with low initial attractiveness and low initial
production efficiency may face absolute learning costs due to
their own initial constitutions on top of the relative learning
costs imposed on them by competitive necessity.

How are these propositions useful? It is too early to tell.
A model's value is best gauged by its power to explain observed
facts and to predict and permit control of future events. The
model posed above has not been empirically tested. It remains to
be seen whether data can be assembled to estimate learning costs

for specific technological innovations*. 1If it can, it remains

*The task of empirical testing will require widespread search
through o0ld trade journals, corporate records, engineering texts,
and other specialized materials and is not feasible at IIASA.
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Fo be seen whether the costs calculated will be useful in explain-
ing differing rates of technological substitution or will léad
insight into how better to manage innovations.

I anticipate that attempts to test will show the following:

1. Data are poor, however the differences between the progress
function configurations for various technological sub-
stitutions are so great that even crude estimates will
be informative.

2. Innovations confronted with extraordinarily high learning
costs have succeeded only by virtue of special circum-
stances such as war (computers, radar), highly specialized
markets or the occurrence of a complementary technological
substitution that reduced learning costs.

3. The importance of progress in product marketability has
generally been underestimated. The initial success of
the mechanized textile industry, of steel ground flour,
and of many other basic substitutions of the Industrial
Revolution was as much a consequence of consumer prefer-
ence for the new products as of added production effi-
ciency through economies of scale and division of labor.*

I expect that such findings particularly as worked into a
dynamic model may have practical and theoretical utility in:

1. Leading to improved understanding of the magnitude and
nature of the obstacles confronting various technological
substitutions that are going more slowly than society
would like, thereby leading to wiser policy decisions on

- how to expedite technological substitutions.

2. Leading toward an organized and balanced perspective on
process (efficiency) innovation and product (marketability)
innovation, thus toward improved balancing of research
and development activities between product design, pro-
duction engineering and marketing activities. 1In the

*The importance of marketability stands out to adoption of high
technology production methods in case studies on choice of tech-
nique in flour grinding and block making in Kenya (Stewart 1978).
In the flour grinding case, steel ground flour proved non-
competitive with water grinding and use of hammer mills--except
that the market supported prices for the steel ground product
that were 60% above those for the alternative methods, and that
market conditions permitted capacity utilization for the steel
ground product that was three or more times higher than for the
other techniques considered. Field studies on choice of technique
may be a good source of material for testing the learning cost
concept.
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process, the model might upgrade the debate over market
pull versus technological push by providing a framework
in which to examine how the two interact.

Providing insight into pricing strategies for new products
in non-market economies.

Focusing attention on critical factors, such as initial
and potential efficiencies and marketabilities and re-
tardations of progress that greatly increase costs,
thereby redirecting data collection and analytical in-
vestigation into more fruitful channels.
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