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ABSTRACT

The general goal of this article is to investigate the ques-
tion of how to carry out analysis when a set of mathematical
models being used are interdependent. We seek systematic ways
of linking such models to each other. The linking approaches
should preserve the structure of the original models so that
their interpretation during the analysis does not get increasingly
complicated. Although the emphasis is on linking two interdepen-
dent linear programming models, extensions to multimodel, nonlinear,
and stochastic cases' can, in principle, be straightforward.

The article has been divided into two parts. In the first
part we give a precise statement of our interdependent systems.
As well, we offer three typical examples of such systems: energy
supply~--economy, manpower-—economy, and forestry--wood processing
industry interaction systems. In the second part we consider
alternative approaches: classical decomposition principles,
approaches derived from nondifferentiable optimization techniques,
application of paremetric programming techniques as well as the
simplex method combined with a partitioning technique. By no
means does the paper provide a final solution to our linkage
problem. However, our computational experiments indicate that
some of the approaches give rise to optimism, while others remain
inconclusive.
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LINKAGE OF OPTIMIZATION MODELS

M. Kallio, W. Orchard-Hays, A. Propoi

INTRODUCTION

Mathematical modeling is widely used in operations research
and systems analysis. Among them, optimization models are prob-
ably the most common type [7,19]. Examples are energy, water and
other resource supply models; models for national settlement
planning, industrial or agricultural production planning, and
manpower and educational planning; resource allocation models;

etc.,, (see for example {5,6,11,16,17]).

However, at present models are, for the most part, analyzed
independently, without linking them into a system. This approach
has limited possibilities because many important features of the
real systems, those involving interactions, are missing. Hence,
the investigation of interrelations among separate models is

becoming more and more urgent. Examples are such linkages as

energy supply - economy
water supply - agricultural production

manpower - economy
and so on.

When investigating interrelations between models, two basic

approaches can be singled out. First, separate models may be
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integrated into a single optimization model with a joint objec-
tive function. Practically, however, this often means to build
the combined model anew. The second approach is to link the al-
ready existing models, considering the models on some independent

basisg each with its own objectives.

Naturally, both approaches have their own advantages and
disadvantages. The major advantage of the first approach is that
it allows one to combine all the constraints and variables in-
fluencing the joint behavior of the submodels in the most expe-
dient way. However, building an integrated model often leads to
a very large optimization problem, which, even if possible to

solve, is always difficult to interpret.

The second or "manual" approach, in which information ob-
tained from one model is interpreted by an analyst and provided
as input to another model, is more attractive but also much more
time consuming and may lead to uncertainty whether the "true
optimal” solution for the whole system has been obtained. There-
fore, we would like to combine features of both approaches, that
is, to develop decomposition schemes which:

- maintain the structure of the subproblems independently,
thus permitting a sequence of subproblem solutions which

are easy to interpret

- may easily permit an analyst's interference in the

linkage process

- 1lead finally to optimization of the whole integrated

problem.

This paper presents different approaches for linkage of
models, both finite step and iterative. Actually, these approaches
are based on some decomposition scheme as applied to an integrated
model. However, in a decomposition approach we begin with an
integrated model and a particular decomposition scheme implies
a particular partition of the model. 1In linkage, on the other
hand, we begin with the submodels which already exist (and are
operational) and a particular linkage scheme defines the struc-
ture of the resulting integrated model. Therefore, in the linkage



approach we have the possibility of utilizing information avail-
able from the operational submodels and, in fact, should take

care to do so.

We limit ourselves to the case where the model can be for-
mulated in the framework of linear programming (LP) or, in
particular, dynamic linear programming (DLP), though the approach
can, in principle, be extended to nonlinear or stochastic cases.
We also limit ourselves to the case where the common objective

for the integrated model can be expressed in explicit form.

The paper consists of two parts. 1In the first, we state
the problem in general terms and describe several linkage models

(energy-economy, manpower-production, forestry -wood processing) .

The second part presents methods. Since we are dealing
with partitioning schemes, we first review the Dantzig-Wolfe de-
composition principle (D-W) as applied to an integrated model.
Then we describe briefly iterative methods which amount to a
nondifferentiable optimization technique. The main attention,
however, is given to finite step methods, particularly to a basis
factorization scheme for the simplex method as applied to the
problem in question. Finally, we consider some computational
tests, extend the approach when the number of submadels is
-arbitrary, and give examples of how two=stage stochastic linear
prograruaing and dynamic linear programming can bé treated by
the linkage approach,



part I: MODELS

1. Statement of the Problem

Let us consider two LP problems Pi' i =1 and 2, in the form:

s '
maximize cixi

X.
1

subject to

(Pi) Aixi = bi (1.1)
D;X; =Yy (1.2)
x. >0
1 -

In problem P,, X, is an n;-vector, b; is an m,~vector and y; is
a k-vector. In vector products, the left factor is a row, the

right a column.

If we are considering models P, and P, separately then there
is no distinction between constraints (1.1) and (1.2) and both
vectors bi and y; are given exogenously (for i = 1 and 2). How-
ever, when we start to analyze interaction between the two models,
we have to consider variables Y1 and Yy, as endogenous, subject

to some coupling constraints.

We assume that the integrated model has an objective func-

tion.F which is a weighted sum of "local" objective function:
—_ ] ?
F = GqCq1Xq + 0yCoXy

where Qo and o, are some weight coefficients, and that the cou-

pling constraints are given in the form
R1y1 + R2y2 =r (1.3)

where r is a given vector. (There may also be nonnegativity

constraints on the yi.)
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Thus the integrated model (P) can be stated as

2
maximize _z c Xy
X;0Y5 i=1
subject to
A.x, = Db
1%1 1 %, > 0
Dyxq = vy
(P)
AXx, = Db
272 2 X2 > 0
Dyxy =¥,

where c; = aici. We shall hereafter use only Cy-

Problem P has a special block-angular structure (see Figure 1)
where I, and I, are identity matrices of appropriate dimension.
It can easily be reduced to the conventional block-angular struc-
ture (Figure 2). In fact, substituting (1.2) into (1.3), one

obtains
R1D1x1 + R2D2x2 = r

or
=r . (1.4)

On the other hand, conventional block-angular structure

(Figure 2) which is written

imiz X, +
maxim e C‘I 1 C2X2

subject to
Agxy = by
A,x, = b, (1.5)
§1x1 + R =



By
Py ™1
Ay
Py |12
R, R2
Figure 1. Constraint matrix of Problem P.

|
w|

Figure 2. Conventional block-angular structure.

Figure 3. Constraint matrix of Problem P,



can be easily transformed into the structure of Problem P. 1In
fact, if we denote

RiX; = ¥, (1.6)
then the constraint (1.4) appearing in (1.5) takes the form
Yq t ¥y, = L. Hence problems P and (1.5) are equivalent in this
sense. For our purposes, however, the formalization of the
problem in the form P, rather than in the conventional form (1.5),
is preferable. The reason for this is that separate models,

which can be singled out from the integrated model (1.5)

imi C.X.
maximize c;x;
subject to

A;x; = b, (i =1 or 2) (1.7)

x. >0
l_

do not reflect, as a rule, all features of the individual sub-

systems P, . Therefore we shall consider further only the in-

tegrated model P and associated "local" submodels P4 and P,.

Our prime interest lies in two types of interactions be-
tween the subsystems: (i) supply from one subsystem is demand
for the other, and (ii) the subsystems share joint resources.

As will be illustrated below, examples of the first type are
energy supply from the energy sector to the rest of the economy,
skilled labor supply from the educational subsystems to other
sectors, and raw wood supply fwom forestry to wood processing
industry. Examples. of the second type are joint labor, land,
water and financial resources between the agricultural subsystem

and the rest of the economy.

Both types of interactions may be taken into account through
a k -vector y of linking variables so that y; =y + r,. For the
first type, components of r; are equal to zero and y thus denotes
supply for one system and demand for the other. For the second
type of interaction, y may refer to the demand of joint resources
for subsystem 1. Thus, if r is the total availability of re-

sources and Yy = —D2x2 is the usage by the second subsystem, then



the amount left for the first subsystem is y,; = T + DyX, =T - ¥,
rather than Y1 =Y, as in the first type of condition. Note,

however, that there is then a bound on Yor i.e. Yo < r.

Problem P will now be transformed (as noted above, without

loss of generality) into problem P:

maximlize C1X1 + 02X2

subject to

A1x1 = b1 -

D1x1 =y + r, Xq 2 0
(P)

Axxy = by

Dyx, =y + 1, X0 >0 .

The structure of the constraint matrix for P is depicted in

Figure 3.

Our task is to consider methods for solution of integrated
models. In this we can use different decomposition or partitioning
schemes. But, among possible schemes, we shall select such methods
as preserve the structure of local submodels, Py and P,, and use
the information which is available from solutions of these local

submodels.

Before considering solution methods, we will describe some

typical examples of system interactions.

2. Energy-Economy Interaction Model

For analyzing long-range energy policy in a country (region),
first the so-called energy supply system (ESS) has been described
(see [12,16] and references there). This model can be formulated
verbally as follows: for existing initial structure of the second-
ary energy production capacities and under given supply constraints
for primary energy resources and nonenergy resources (labor,
capital, etc.) which are needed for development of the ESS, find

a transition to such a mix of secondary energy production options



(fossil, nuclear, solar, etc.) which satisfies the projected
energy demand and minimizes the total cost of such transition.
In the ESS model, (endogenous) decision variables are annual
increases of secondary energy production capacities. There are
two major exogenous variables in the ESS model which represent
basic links with the rest of the economy: final demand for
energy (which is the output of an economy model) and the supply
of nonenergy resources required by the energy sector (which is
the output of the ESS model).

Clearly, the efficiency of modeling can be extended to a
great degree if the ESS model is linked with the economy model.
In this case, one can analyze not only the energy policies but
possible changes in the structure of the economy as-well, in
order to influence the demand for energy and the supply of non-
energy resources to the energy sector. Thus the analysis of
interrelations between the ESS and economy models is currently

of great practical importance.

We will start the discussion of energy-economy interaction
by combining the ESS model and the economy model. For a uniform
representation we assume that both the industrial processes of
the economy and the energy sector are described in terms of
physical flows. Furthermore, in the model we omit, for simplic-
ify, time lags in construction of production capacities. The
integrated model is just a dynamic whole-economy model where

special attention is paid to the energy sector.

A major part of the model is an input-output model of the economy.
Let x(t) be the vector of (levels of) production activities in-
cluding those for both the energy sector E and nonenergy sectors
NE. Accordingly, we will partition x into (:E ) below. If A(t)
NE then (I -A(t))x(t)

is the vector of net production. This is used for (net) export

is the matrix of input-output coefficients,

s(t), consumption w(t) and investments B(t)v(t) where v(t) is
the vector of investment activities for increasing production
capacity and B(t) is a matrix transforming investments into usage
of products of various types. In this notation, the input-output

model may be given as
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(I-A(t))x(t) = B(t)v(t) + w(t) + s(t) . (2.1)

Production x(t) is restricted both in the energy sector and

other sectors through capacity availability y(t):
x(t) < y(t) . (2.2)
For the capacity vector y(t) we have the state equation
y(t+1) = (T -A(t))y(t) + v(t) (2.3)

where A(t) is a diagonal matrix of depreciation and v(t), as

indicated above, refers to investments.

Labor availability as well as other constraints for re-
sources which are external with respect to the whole system
(land, water, etc.), the so-called WELMM factors [9], may be

written as
R(t)x(t) < r(t) (2.4)

where R = (Rij) is a matrix defining the usage of resource i per
unit of production j, and r(t) is the vector of resources avail-
able.

The accumulated consumption of primary energy resources by
the beginning of period t is denoted by a vector z(t) for which
we have the state equation

z(t+1) = z(t) + Q(t)xg(t) . (2.5)
Here the matrix Q = (Qij) shows the amount of primary energy
resource i extracted per unit of energy production activity j.
Primary energy resources are available up to an amount given by

vector z(t):

z(t) < z(t) . (2.6)
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Consumption of goods is assumed to occur according to an
externally given profile vector (or distribution) g(t) so that

consumption w(t) is given by
w(t) = g(t)u(t) , (2.7)

where u(t) (for each t) is an endogenous variable determining

the level of consumption.

- To state the complete integrated energy-economy model, we
use for illustrative purposes the total discounted consumption
as an objective function. (Many other objectives are of interest
for this integrated model, of course.) If the discounting factor
for period t is B8(t), the problem is to find nonnegative vectors
x(t), y(t), v(t), w(t), z(t), and a scalar u(t), for all t, to

maximize B (t)u(t)
t

subject to (2.1) - (2.7), for all t, and with initial state
y(0) and z(0).

This problem is a dynamic linear programming (DLP) model [17].
It allows us to investigate the interactions between (a detailed)
enerdgy sector and nonenergy sectors of an economy. Such an in-
tegrated model has been developed by G. Dantzig and S. Parikh at
the Stanford University (PILOT model). It describes, in physical
terms, technological interactions within the sectors of the U.S.

economy including a detailed energy sector .[6].

We shall now turn our discussion to two separate models, the
ESS model and the economy model, which were integrated above.
For this purpose we shall partition the input-output matrix A(t)

into

E E
A

A = E AvE (2.8)
NE NE
Ap ANE

where Ag is the coefficient matrix within the energy sector and
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Agg that one within the rest of the economy. Similarly we par-
tition all vectors and matrices of the integrated model to corre-
spond to the energy sector and the nonenergy sector for which we
shall use suffices E and NE, respectively. For instance, x

E

refers to the energy production while x refers to the production

NE
of all other goods.

~Let dE(t) be the sum of the energy sﬁpply to nonenergy sectors.
to consumption and to export, and let dNE(t) be the demand of
goods from other sectors to the energy sector. Then (2.1) yields

dg(£) = (I=Ap(£))xg (£) = BE(£) vy (t) (2.9)

and

dyp(8) = AE (£)x  (£) + BRE(£)vg(e) . (2.10)

Denote by rE(t) the usage of the WELMM resources in the energy
sector; i.e.

ra(t) = Rp(t)xg(t) . (2.11)

As an example, we may want to minimize the total discounted cost
for maintanence and construction of energy production capacity.
If this cost for period t is given by c1(t)xE(t) + cz(t)vE(t),
and B(t) is the discounting factor, then the ESS model may be
stated as follows:

find nonnegative vectors yE(t), VE(t), xE(t), and z(t), for all t to

minimize J8(t) (¢! (t)x (€) + c2(t) v ()
£ E

subject to (2.5), (2.6), (2.9) - (2.11), the energy
sector part of (2.2) and (2.3), and with the

initial state yE(O) and z(0)
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Similarly, we state the economy model for nonenergy sectors.
In this case (2.1) yields for dE(t) (the demand of energy) and
for dNE(t) (the supply of goods to the energy sector)

dg (t) = AP ()Xo (£) + BU_(£)vo(£) + wo(t) + sp(8) ,  (2.12)
and
NE NE
dp (£) = (I -ARE(£))x o (t) = BRE(£)vy (£) - woo(t) = s (€)
(2.13)

Given the WELMM resources rE(t) used by the energy sector, (2.4)
yields for the nonenergy sector

Ry (B)xgp () < r(t) - r(t) . (2.14)

If the objective function is adapted from the integrated model,

the economy model may be stated as follows:

find nonnegative vectors yNE(t), VNE(t), xNE(t), w(t), and u(t),
for all t, to

maximize }B(t)u(t)
t

subject to (2.7), (2.12) - (2.14), the nonenergy part of

constraints (2.2) and (2.3), and with the initial state yNE(O).

If the exogeneous supply and demand vectors dE(t) and dNE(t)
and the WELMM usage rE(t) of the latter two models are considered
as endogeneous coupling variables, then the ESS model and the

economy model jointly comprise an equivalent model with our

integrated energy-economy model.
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Thus, we have three models: the ESS model and the economy
model, (which represent energy and nonenergy sectors of an economy) ,
and an integrated model. Furthermore, the latter model can be
written in such a way that it will contain the two other models
as submodels. Clearly, such an integrated model has the structure
of Problem P (Fig. 3). In this case, block A is associated with

1

the energy submodel, matrix D1represents demand constraints for

secondary energy, supply constraints of nonenergy resources, and
the WELMM constraint, while block Aé and D2 are associated with the
economy submodel.

3. Skilled Labor Supply-Economy Model

The separate educational model aims to find such enrollments
to different educational institutions as will both satisfy the
availability constraints on educational capacities (e.g. teachers,
buildings, etc.) and be as close as possible to the projected
manpower demand. Hence, in this model available educational

capacities and demand for labor are exogenous variables.

When the interaction between manpower and economic develop-
ment is analyzed, two major options should be taken into account:
development of some sectors in an economy in order to absorb the
projected surplus in manpower of certain types and development
of educational capacities in order to £ill up possible shortages
in manpower for other sectors of an economy. We may also have
to consider the possibility of labor force migration into and out
of the system.

In addition, the model should be disaggregated on major
economic activities (various industrial sectors, agriculture}
construction, transportation, public administration and other
services) and on the levels of education  (primary, secondary,
higher) [15].

Thus one can see that, methodologically, a skilled labor
supply-economy interaction model is close to the energy supply-
economy model described above. Below we shall consider first a
simple integrated model.

Let m(t) be the vector of skilled manpower at time t, n(t)

be the vector (of the same dimension) of the manpower increase
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during time period t, and P(t) be the transition matrix. Then
the state equations for the manpower/educational subsystem will

be the following for each time period t:
m(t + 1) = P(t)m(t) + n(t) . (3.1)

The training of people requires resources, first of all,
teachers. We define a square matrix F(t) such that F(t)n(t) is the
need for skilled labor for training those determined by n(t).
Second, training requires physical resources; i.e. buildings
and equipment. Let ye(t) be the upper limit on trainees set

by physical resources (during period t) so that
n(t) <y (t) . (3.2)

The development of resources ye(t) can be expressed as part
of the development of the vector y(t) of production resources
(capacity) of the whole economy. Let v(t) be the vector of
investment activities for increasing production capacity, and let

4 (t) denote the matrix of depreciation. Then we have
y{E + 1) = (I = A(E))y(t) + v(t) . (3.3)

The balance of goods production and consumption for the whole

economy is given as usual:
(I - A(t))x(t) = B(t)v(t) + w(t) . (3.4)

Here x(t) is the vector of production activities, A(t) is the
matrix of input-output coefficients, matrix B(t) defines the
consumption of goods per unit of investment activities, and w(t)

is the vector of final consumption of goods.

Production x(t) is restricted by production capacity:

x(t) <y (t) | (3.5)
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where yne(t) is the noneducational part of the physical resource
vector y(t). Production is also restricted by skilled labor

availability/demand relations so that
F(t)n(t) + L(t)x(t) = m(t) + s (t) - sT(t) , (3.6)

where the matrix L(t) specifies requirement of skilled labor
for each sector of the economy and vectors s~ (t) and s+(t) express

the shortage and surplus (respectively) of skilled labor.

The consumption vector w(t) may again be given as
w(t) = g(t)u(t) ’ (3.7)

where g(t) is an exogenously given vector of consumption profile,

and the scalar u(t) expresses the consumption level (for each t).

With the above model optimal policies with different objec-
tive functions can be analyzed. For illustrative purposes, we
shall define vectors of weights A (t) and A+(t), and, as part
of the 6bjective, the weighted sum I1 of the labor shortage and
surplus as follows:

I, = JOTE)s (0) + AT st ) . (3.8)
t

The other part of the objective may again consist of the total
discounted consumption I,:

I, = I8(t)u(t) , (3.9)

where B(t) is the discounting factor.

The integrated problem is now to find nonnegative vectors
m(t), n(t), y(t), x(t), v(t), s+(t) and s (t), and scalar u(t),
forlall t, to

maximize -I, + I

1 2 !
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subject to (3.1) - (3.9), for all t, and
with the initial state y(0), m(0).
This problem has the block-angular structure of Figure 2

where block A, is now associated with the educational/manpower
model and block A

2 with the economy/production model. 1In order

to transform this model into the form of Problem P with explicit

separation of educational and economy submodels, we partition
(3.4) into

(I - A(t))x(t) = Bne(t)vne(t) + £(t) + w(t) , (3.

and

£(t) = B (E)v (t) (3.

where e and ne refer to educational and noneducational parts
(of investment activities) and f(t) is the supply of resources
for development of an educational subsystem. Furthermore,

(3.6) is partitioned into

d(t)

and

+

d(t)

Lt)x(t) , (3.

m(t) - F(t)n(t) + s (t) - s (t) , (3.

10)

11)

12)

13)

where d(t) is the demand of labor for all but educational purposes.

In this notation, the educational subproblem is to find
nonnegative vectors m(t), n(t), y,(t), v_(t), s”(t) and st (t),
for all t, to minimize I1 defined in (3.8) subject to (3.1),
(3.2), (3.11), (3,13) and the educational part of (3.3),
as well as with the initial state m(0) and ye(O), and with

externally given f(t) and d(t).
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Similarly, the problem of the economy subsystem is to find
nonnegative vectors yne(t), vne(t), x(t) and scalar u(t), for
all t, to maximize .total consumption IzAsubject to(3.5), (3.7),
(3.10), (3.12) and the noneducational part of (3.3), as well
as with the initial state yne(O) and with externally given coup-
ling variables f(t) and d(t).

4. Forestry-Wood Processing Industry

We shall now consider the interdependent systems of wood
supply (forest development) and wood processing; i.e. forestry
and wood based industry [11]. The discussion. begins with  the
wood supplying part describing the growth of the forest given
harvesting and planting activities as well as land availability
over time. The wood consuming part consists of an input-output
model describing the production process as well as production

capacity and financial resaource considerations,

Let w(t) be a vector determining the number of trees of
various types (say pine, spruce and birch) in different age
categories at the beginning of time period t. We define a square
transition (or growth) matrix Q so that Qw(t) is the number of
trees at the beginning of period t + 1 given that nothing is
harvested nor planted. Thus, matrix Q describes aging and death
of the trees. Let p(t) and h(t) be vectors of planting and
harvesting activities, respectively, of ddfferent kinds (e.q.
planting of different types of trees and terminal harvesting or
thinning), and let the matrices P and H be defined so that Pp(t)
and -Hh(t) are the incremental change in the tree quantity
caused by the planting and harvesting activities. Then, for
the state vector w(t) of the number of trees we have the following

equation:
w(t +1) = Qw(t) + Pp(t) - Hh(t) . (4.17)
Planting is restricted through land availability. We may

formulate this so that the total stem volume of trees in forests

cannot exceed a given volume L(t) during t. Thus, if w is a
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vector of stem volume per tree for different types of trees in
various age groups, then the land availability restriction may

be stated as
Wwi(t) < L(t) . (4.2)

Given the level of harvesting activity h(t), there is a

minimum requirement for the planting activity p(t):
p(t) > Nh(t) (4.3)

where N is the matrix transforming harvesting activity to the
planting requirements. Such a requirement may be enforced by

law, for instance.

In our simple formulation we shall leave out other restric-
tions, such as harvesting labor or capacity. Finally, the wood
supply y(t), given the level of harvesting activities h(t), is

given for period t as
y(t) = SHh(t) . (4.4)

Here the matrix § = (Sij) transforms a tree of a certain type
and age combination j into a volume of type i of raw wood (e.q.

pine log, spruce pulpwood, etc.).

For illustrative purposes we may choose as an objective to
maximize the discounted total profit Ip of forestry. If this
profit for period t is given as c1(t)y(t) - c2(t)h(t) - c3(t)p(t),
and B(t) is the-discounting factor, we may state the forestry

model as:
find nonnegative vectors w(t), p(t), and h(t), for all t, to

Maximize I = ZB(t)(c’(t)y(t) - cz(t)h(t) - Cs(t)P(t))
t

subject to (4.1) - (4.4), and with the initial state

w(0) and specified wood supplies y(t) .
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For the industrial side, let x(t) be the vector of production -
activities for period t (such as the production of sawn goods,
panels, pulp, paper, and converted wood products), and let U be
the matrix of wood usage per unit of production activity. The
wood demand for period t is then given as

y(t) = Ux(t) . (4.5)

Note that the matrix U may also have negative elements. For
instance, sawmill activity consumes logs but produces pulpwood

as a byproduct.

Let A be an input-output table so that (I - A)x(t) is the
vector of wood produét supply to the final market. If D(t) is

the corresponding (maximum) external demand, we require

(I - A)x(t) < D(t) . (4.6)
Production is réstricted by the capacity c(t) available:

x(t) < c(t) . (4.7)
The vector c(t) in turn has to satisfy the state equation

c(t + 1) = (I - A)c(t) + v(t) , (4.8)

where A is a diagonal matrix accounting for depreciation and

v(t) is the increment from investments during period t. The
vector v(t) of investment activities is restricted through finan-
cial considerations. To specify this, let m(t) be the state
variable of cash at the beginning of period t, let G(t) be the
vector of sales revenue less direct production costs per unit

of production, let F(t) be the vector of monetary fixed costs

per unit of capacity, let g(t) be the amount of external finan-
cing employed by the industry at the beginning of period t, let

§ be the interest rate for external financing per period, let
2t(t) be new loans made during period t, let &7 (t) be loan re-

payments during t, and let E(t) be the vector of cash expenditure
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per unit of increase in the production capacity. Then, the state

equation for cash may be written as

m(t + 1) = m(t) + G(t)x(t) - F(t)c(t)
(4.9)
- sn(t) - Tt + oty - B(eYV@ER) .

Finally for the industrial model, we may write the state equation

for external financing as follows:
gt + 1) = 2(t) - 27(t) + 2T (t) . (4.10)

Again, for illustrative purposes, we may choose the total
discounted profit (before taxes), denoted by Ip’ as an objective
function for the industrial model. This then is given as follows:
find nonnegative vectors x(t), c(t), v (t), and scalars m(t), 2(t),
£¥(t), and 27 (t), for all t, to

maximize I, = JB(E) [G(E)x(B)=(F (L) E(t)A)c(t)-82(t)]
t

subject to (4.5) - (4.10) and
with the initial state c(0), m{(0), and £(0) .

For both of the models above, the wood supply y(t) from the
foresty model to the industrial model is considered as exogeneous.
For the integrated model we consiaer y(t) as an endogeneous vector
of coupling variables, for all t. Thus, if the total discounted
profit Ip + Ip is chosen as our objective, aur integrated model
for forestry and forest industry may be stated as follows:
find nonnegative vectors w(t), p(t), h(t), y(t), x(t), c(t),

v(t), and scalars m(t), &(t), 27 (t) and 27 (t), for all t, to

maximize IF + I ’

P

subject to (4.1) - (4.10), and

with initial state w(0), c(0), m(0) and 2 (0) .

The structure of constraints for period t of the integrated

model is shown in Figure 4.
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Part II: METHODS

5. Summary of Alternative Linking Approaches

In this part we consider different methods for solution of
our integrated problem
2
maximize ] c;x.
xi,y i=1

subject to

Il
o

A.x. .
171 i

\w
o
n
9]
+
lai

x. > 0 , for i =1, 2

via linking through the coupling vector y the associated local
subproblems Pi (i =1, 2):

aximize c.X.
m % i1

1

subject to

(Pi) Aixi = bi
Dixi =y + r;
x, >0
1l —

A conventional way of solving the integrated problem P is
to apply the Dantzig-Wolfe decomposition principle [7]. Appli-
cation of this principle eventually transforms problem P into
a block-angular structure where the coupling constraints imply
that vector y in both local problems are equal. The approach
leads to a price mechanism which coordinates the usage of this
common vector of resources. We shall briefly review this approach

in Section 6.

The dual approach of the decomposition principle, Benders'

decomposition [3], applies directly to the structure of problem
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P. The method results in a resource allocation scheme for the
coupling vector y so that eventually an optimal allocation y for

P is obtained. This approach might also be of interest for our
linking problem. However, it can be interpreted as an application
of Dantzig-Wolfe decomposition to the dual of (P), and, therefore,
in the following we shall not consider Benders' decomposition

separately as a linking tool.

The optimal value of the local problem Pi is a nondifferen-
tiable (piecewise linear and concave) function of the coupling
vector y. Nondifferentiable optimization techniques yield an
approach for coordinating y in such a way as to obtain the maxi-
mal value for the sum of the optimal values of the local problems.
This approach, which is discussed in Section 7, does not have
finite convergence, and convergence rate is important here. 1In
Section 8 we aim at preserving the favorable properties of the
nondifferentiable optimization approach while seeking for faster
convergence. The resulting method is a heuristic approach based
on a parametric programming technique applied to the coupling
vector y.

In Section 9 we consider the simplex method as a linking
technique. This approach may be interpreted as a basis factori-
zation scheme applied to the integrated problem P. The resulting
method deals with local problems Pi having simple side constraints
on the coupling vector y.

Finally, some computational experiments will be reported.
The decomposition principle and the simplex method (resulting
from our basis factorization) are applied to link moderate sized
models of forestry and wood processing industry, such as described

in Section 4 above.

6. Dantzig-Wolfe Decomposition Principle

The Dantzig-Wolfe Decomposition principle--D-W for short--
is so well known that- it is unnecessary to describe it. It is clear
that a D-W approach can be applied to our problems.
Procedurally, a D-W algorithm is less..intricate than most other

schemes—--at least if one ignores the problem of getting final
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results in terms of the original variables. The amount of infor-
mation to be transmitted appears modest--one pricing row must

be sent to each subproblem, each of which sends back one or more
candidate columns (which, however, can be massive in the aggtre-
gate). So why look for some other approach? There are valid

reasons.

First, the technique of driving a model exclusively with
prices is inappropriate for some cases. (Although the existence
of unboundedness in a subproblem is inconclusive in a D-W approach,
this does not appear to be a serious consideration in the present
context). In fact, the real problem is frequently to find appro-
priate allocations of resources and a more direct approach than

a pricing mechanism seems desirable.

Second, D-W..algorithms may have poor convergence properties.
While it may be true that a mathematically proven optimal solution
is frequently not required, the potentially large number of grand

cycles before reaching an acceptable solution is a disadvantage.

Third, the highly composite nature of a solution cannot be
ignored. The local center performing the calculations for a sub-
problem must recompute the actual final solution which can be a
sizeable job in itself. 1In order to do this, either this center
must keep track of all candidate columns and be given back final
composite variable values with suitable identification, or the
controlling center must keep all candidate columns, multiply them
by the final composite variable values and send their sum back
to the subproblem center. Even this rigamarole may actually be
the lesser of two evils. The composite candidate columns hide
the meaning of their component columns, i.e., the true variables,
so that no intuition can be brought to bear in adjusting the
derived problem. Furthermore, these columns are almost always
dense and tend to be nearly linearly dependent, the more so as

optimality is approached. This is not only the cause of slow
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convergence but contributes to digital instability in the de-

rived problem.*

Against these and one or two other disadvantages of a D-W
appradch can be set a number of potential advantages. Perhaps
the greatest one is that the interpretation of prices by the
subproblem and the returned mappings are strictly local matters.
That is, the controlling center does not need to know how the
subproblem is solved or what meaning is attributed to the pre-
ferred candidate columns. When this degree of decentralization

is desirable, a D-W approach may be found appropriate.

It is perhaps worthpointing out that the real problem can
be interpreted as a resource allocation problem as well. Let

the coupling constraints have the form

} A X = b, (6.1)

BX =b , X >0 , p>0 . (6.2)

If one knew the optimal contribution to b0 of the products

bOp = Apxp, the whole problem would decompose into P + 1 inde-
pendent problems. If this were done, the optimal price vectors
WOp for the common resources bOp (computed by the subproblems

p, for all p) would not necessarily have the same values compared
0 for the

coupling constraints (6.1) computed directly as an optimal price

with each other and compared with the price vector =

vector for the integrated problem. Hence the concept of uniform

prices is to some degree arbitrary.

With respect to the foregoing, the dependence of D-W on

the prices as driving forces for the subsystems creates another

*We distinguish between the original master problem (coupling
constraints) and the derived problem of mappings used in the
D-W approach.
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difficulty in making adjustments at the control level. For
example, if by chance an optimal set of prices were submitted
to each subproblem on the first cycle, this would remain unde-
tected and many grand cycles would still be carried out, with
various alterations in the pricing row. An optimal set of
allocations bOp’ on the other hand, would immediately be recog-
nized as such.

7. WNondifferentiable Optimization Approach

A straightforward approach to the solution of problem P

leads to the following constructions:

Let us define (i = 1, 2):
= = - = .y B 7.1
£,(y) =max {c;x;|A;x; = b,; Dyx; = y+r;i ¥; > 0} (7.1)
and
X, (y) = {Xi|AiXi = b.; D;x, = y+r;i x5 > 0y . (7.2)

Xi(y) is the feasible set for subproblem P, if y is fixed;

fi(Y) is the optimal value of subproblem P, for this y:

f. =
1 (¥) gix( )Cixi
Xi=oi Y

Define also Y as a set of all y, for which X1(y) N Xz(y)
1s nonempty. For all y € Y both subproblems P, have a solution.
We shall also call the set Y feasible.

Clearly, the integrated problem P is equivalent to:

2

max[£; (y) + £,(y)] = max ) max c.x; - (7.3)
yeEY YEY i=1 Xiexi(y) )

Therefore the solution of problem'ﬁ is reduced to the solu-
tion of local subproblems P, and then optimization of linkage

(coupling) variable y. However, there are major difficulties in
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such an approach: first, the functions £, (y) are nondifferentiable
and, second, the feasible set Y is not given explicitly. Based on
the theory of linear programming, and nondifferentiable optimization
methods, the following lemma states the result concerning nondiffer-

entiability of fi(y):

Lemma 7.1 Let Y be bounded and let Xi(y) be bounded for all

y €ycC Rk. Then fi(y) is a continous concave piece-wise linear

function. The derivative of this function in direction g is given

by

£! (y) = min v.g , (7.4)
19 VeV (y) *

where Vi(y) is the set of optimal dual variables for problem Py

associated with the constraint DiX; = y+r,.

These constructions give a basis for developing different
linkage methods based on the nondifferentiable technique. The most
simple for realization is the general gradient method [18]. For
problem P it yields:

v+1 _ Vv V vV .
y = PY[y + pv(v1 + v2)] , (7.5)

where v is the iteration count, PY(z) is projection operator of
vector z on set Y, vz is an optimal dual price for the constraints

v : L
Dixi = y-+ri ln.subproblgm Pi (1 =1,2).

Theorem 7.1 [18] Let

v=0 v
then
V AY *
> * . > X,
Yy Yy ’ xl i ’

where xz is an optimal solution of Pi for y = yv, and {y*,x?,x;}

is an optimal solution of the integrated problem P.
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The major advantages of the algorithm (7.5) is that it re-
guires minimal information from solutions of subproblems (prac-
tically only optimal dual variables vz for coupling resources)
and thus, it is simple in realization. Another advantage of this
approach is that it can be easily generalized to nonlinear and

stochastic cases [8].

However, convergence of the algorithm (7.5) may be rather slow;
i.e. it requires many subsequent solutions of subproblems Pi with
different yv and thereby many projection operations as well. The
latter difficulty may be overcome by taking into account the fact
that projection should be done subsequently for different vectors

yv, which are very close to each other.

Another difficulty which should be underlined here is that
the algorithm (7.5) is hard to control manually in the sense that
a concrete value of yv in fact does not mean much as only average

tendency is important.

Another implementation of nondifferentiable technique is based

on the idea of feasible directions. Suppose that {xIB, xIN} is
an optimal basic solution of subproblem Pi for y = yV and Bi is

the basis, associated with this solution. Then

v -1 b. \. v V..V L 7.6)
X._. = B. il x.., + 0.y (1 = 1.2) (7.
iB 1 (y\)+rl) 1B 1

and
v Voo
xig 20 o+ ¥y =0

As {XIB, sz} is optimal solution of subproblem Pi (for both i)
for 4y = yv, then the solution of the integrated problem P can
be improved only by changing yv. Let gv be a vector in Rk and

define, for a scalar ev, y\)+‘I as follows:

v+1 v Voo (7.7)

The problem is to find an appropriate direction gv for changing yv

and the corresponding step size ev.
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Using (7.4) and (7.6) the general problem for defining an

optimal gv can be stated as

max min | }v.g
o vievi(y yi
(7.8)
v . v Do
[q)lg]]io ]eJir 1—112

Here ii is the index set of active constraints in (7.6); that is

= 1. TV v Vv =
J; = {Jilxjp + ¢y 15.= 08

and vector g should be normalized in order to avoid unbounded

solutions.

The length of step is defined then straightforwardly:

e\)

min {61, 62} ’
0. = max {elizB + ¢X(yv + 6g”) > 0y , i=1, 2.

This algorithm gives, in principle, monotonic convergence
and requires less iteration than (7.6). However, implémentation
of particular'S£eps of the algorithm (especially choice of feasible
direction (7.8) 1is a rather complicated problem. Other approaches
to solution of problem P based on nondifferentiable technique are
described in [ 2,81].

As one can see above,both these schemes consist of subsequent
solution of local subproblems Pi with fixed y, then improving y
and so on. This approach leads immediately to the necessity of
handling nondifferentiable functions fi(y). In order to avoid
this difficulty we may try to change simultaneously y and X, .

Such an approach is the simplex method discussed in Section 9,

for instance.
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8. Parametric Programming

The two primary forms of parametric programming--changes to
the right-hand-side column (RHS) and changes to the objective row
(OBJ)--are the oldest extensions to the simplex method, dating
back to 1953-4. Later, application of both forms under a single
parameter was developed (usually called RIM for the "rim" of the
model) as well as parametrization of a structural column or struc-
tural row. These five forms essentially exhaust the practicable
possibilities since more general sets of parametrized coefficients

lead to virtually intractable computational problems [13].

In spite of the fact that elaborate computer programs for
all these forms have existed for about fifteen years, and longer
for the first two, they seem to be used relatively infrequently.
One reason for this may be the numerical instability often encoun-
tered. Except possibly for the OBJ form, the usual difficulties
of pivot selection and threshhold tolerances are compounded in
the parametrics. Also, by their nature, they will ultimately
push a model toward a point of either extreme degeneracy or singu-
larity. Nevertheless, the parametrics and their twin ranging
procedures produce more information per iteration than any other
solution algorithms. This can also be a difficulty: there is so
much information that it is difficult to comprehend and utilize.
However, it is not necessary to drive parametrics to ultimate

limits in order to make good use of them.

The ranging procedures compute the maximal changes possible
in objective, demand, availability, or technological coefficients--
individually or by unmixed vector amounts--which do not require
a change in the set of active variables, i.e. a change of basis.
They also give incremental costs and may indicate the change of
basis which would be required to move further. The parametrics
compute exactly the same sort of information but use it to drive

the parametrized part of the model to new values, step by step.

These two forms of post-optimal analysis--they both.work
properly only from initial optimal solutions--can be used together.
A ranging procedure can be used selectively to indicate desirable
directions of change for critical commodities and, roughly, weights

to be applied to each. Combining these weighted directions into
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a single vector, the latter can be considered a parametric change
and the twin parametric algorithm used to achieve a nontrivial
amount of change. At least this is conceptually possible. A
practical difficulty is that a single direction which the feasible
space limits to a zero amount can result in a zero change for all
directions. This is not quite the same as the usual problem of
degeneracy. Variables corresponding to critical values are al-
ready at a limit (or they would not be critical) and this may

or may not engender degeneracy. The more likely question to be
resolved is whether the current limit values are arbitrary or
absolute. For example, if the amount of a fuel resource allowed
to supply model limits the availability of useful energy to
satisfy demand, the amount of resource is not usually the point
at issue, but whether the proper mix of secondary forms has

been produced. Of course, if new requirements imply still more
fuel, the resulting amount of change will probably be zero.
Often, however, one is looking for the best scedule of activities
to convert primary resources to useful forms. It is the vari-

ability of the latter which must be adjusted.

Suppose a feasible allocation is known and two submodels
have been solved with this allocation. Suppose one model repre-
sents supply and the other demand. The supply model will likely
have_certain resources left over--it would be nonoptimal to use
more resources than necessary just because they are {(arbitrarily)
available. The demand model will tend to use all commodities
allowed to it in the most profitable way. Generally speaking,
each such commodity (input to demand) will have a dual value
indicating the incremental value of having more (conceivably
less in some situations such as undesireable byproducts which
must be utilized). Some judgment may have to be applied to
these dual values; a figure of 1000, say, is not necessarily
100 times better than a figure of 10. Essentially, however,
these values may be used as weights to form a linear vector sum
which is treated as a change column to the original allocation.
Each submodel then makes a parametric RHS run. In doing so,
each model generates a piecewise linear objective function in

which a vertéex corresponds to a change of basis. Such piecewise
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linear functions are continuous and convex. However, some dual
values are discountinous at a change of basis while others are
constant. The initial slope of the objective function may be
positive or negative. For an infeasible step size, the functional

value is defined to be -», These functions can be plotted as

follows:
z,(9)
i
A_,.Supply systemn
]
; k/,Demand system
1 |
| [
! i
: : : S~_ 8
0 a b g

z(0) = z,(8) + z,(8)
! )
{
| : é('Integrated system
! '
| |
— :

0 a b \
Figure 5. Optimal values z; of the subsystems as a function

of parameter 6.
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A maximum of the sum in the illustration occurs for any value
of the parameter 6 between a and b. The maximum must always occur
on such a segment or at a point where one model changes basis.

As shown, the demand basis changes at a and the supply basis at

b and one pair of bases is optimal for the two models. This pro-
cess can be repeated giving, presumably, different weighted vector
sums to parametrize. There is no problem of improvement so long
as the initial slope for the sum is positive and the parameter
achieves a positive value with this slope, since then the'global
functional must improve (maximization being assumed). However,
considerable care must be taken that the effective initial slope
is in fact positive. What can happen is that an immediate change
of basis changes a (discountinuous) dual enough to cause a positive
slope to turn negative before any actual movement is made. To
guard against this, the submodels should invoke the RHS ranging
procedure before reporting dual values. Changes in an allocation
which would require an immediate change of basis must be reported
with the less favorable dual value. The effective incremental
rate of change in the functional cannot then be overstated, though
it may be understated due to cancellations. As the optimal allo-
cation is approached, the sums of dual values may not give good

change ratios and the procedure may terminate suboptimal.

Perhaps the easiest way to describe both the procedure and

its difficulties is with a tiny numerical example:

DEMAND SUPPLY
maximize 2w1 + W, minimize X + 1.8x2
subject to subject to

.Sw,| + .3w2 > 5 0 < X <9
.2w1 + .7w2 > 6 0 < x2 < 9
< Wy <y, .2x1 + .6x2 2 Yy
< v, Y, .6x1 + .3x2 > Y,

A feasible allocation for both models is Yy, = 6, Y, = 8. The ini-
tial and optimal simplex tableaux, set up as usual with slacks and

for minimizing, for both models are as follows:



{uo u, u, uy; ou, W, w2} B, vy v, v, vy Vo ¥y x,} B,
K P F_J 1 11 81 rg
1 -5 -.3 -5 1 1 9
1 -.2 -.7| |-6 1 1 9
1 1 6 1 1—.2 -.6 -6
1 el L 1 |-.6 -.3] |8
- - R ar
1 2 1 20 1 2.6 6 ~24.6
1 5 3 .4 1 1 9
1 2.7 .8 2 1 1a0/3 1/3
1 1 6 -1 1 =2 1
1 1 2 ~10/3 1| 26/3
" . Li _ ’ 44 /

Table 1. 1Initial and optimal simplex tableau for the DEMAND and
SUPPLY problems.

The slacks u u, correspond to Yqr Y, for DEMAND, and the slacks

3" 74
Vi Vy correspond to Yqir Y5 for SUPPLY. 81, 62 are the basic
solution vectors for the two models and the dual values appear
in the top lines. The functional zq for DEMAND is 20, Z, for

SUPPLY is =-24.6, giving a total functional z = z, + 2z, = -l.6.

DEMAND would like to increase both Y4 and Yor with Y, pre-
ferred by a ratio of 2 to 1, as indicated by the dual values for

u, and u,. Both can increase indefinitely but Yy, can decrease

3
only by .8 (.4/.5) and Y, by 1.1428 (.8/.7). However, changes
in either direction are finite. SUPPLY on the other hand, would

like to decrease Y, with a weight of 6 but is indifferent about
Y, up to an increase of 1 unit. (The reversal of signs for the
third and fourth constraints in the tableau must be taken into

account in interpreting directions).
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If we set up a parametric RHS change column reflecting both
desires, we are assured of a nonzero step size. Let A represent

this column and y,, y, be its representation in both models (tableaux)

with due regard to signs (which are contrary). Then
l_0..! FOT 0 i 1 -30
0 .5 0
= — — _1 -— = —1 =] -
A = + =| 0|, v, =-B; b =31 » Yy =B, 4 16.66
2 -2 12
] [e] s 5 | 16.66 |
Taking ratios with the B-columns gives 91 = .8/3.1 = .258 for
DEMAND and 62 = 1/12 = .0833 for SUPPLY. Thus up to .08334,
the rate of improvement in z is ‘(Y01 + YOZ) = 29 or a change

of 29/12 = 2.4166 is obtained. DEMAND is free to move further but

SUPPLY must make a change of basis at this point, with v, replacing v,.
When it does so, the new value of Y02 is 1.2 so that, since Y01

is positive, any further change would decrease z rather than

increase 1it.

If the indicated change of basis is made in SUPPLY, its

new tableau is:

g v vy vy % %) By
1 2.6 .8 =221 ]
1 -2 |1 9
1 2 -.66 1.722
1 -1 2 0
B 2 -7.33 1L 7,277

Now it wants to decrease Yy and Y,i say, in the ratios 2.6 to .8.
The desired change for the DEMAND systen remains unchanged, on
the other hand. Thus, the new direction of change A in RHS and

the updated columns vy and vV, may be given as follows:
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~ = B — -
0 0 0 E- | -1.4
0 0 0 .24 ~1.0
bzfofl +[ o |=]o0}, yy={.05 , y,=[-2.33
2 -2.6| |-.6 .6 1
1] |L--8] |..2] -.2 | -2.66]

Although Yo1 * Yo2 has the correct sign, 62 = 0 and no movement
can be made. To move further, SUPPLY must make another change

of basis with Vs replacing Vs i.e. cancelling the previous change
but Y02 then changes to 1.2 and would lead to a degradation in z.
This impasse could have been predicted by a ranging procedure on
the nonbasic slacks v and v,- However, the best rule to adopt
here is that, since DEMAND is not binding and SUPPLY is, the
reduction requested by SUPPLY should be honored to the next change
of basis, provided the overall effect is favorable. (It can be
shown that no combination of the requests of both models is both
feasible and favorable at this point but this much information is
not readily available to a controlling center). Taking SUPPLY

prices with the first optimal basis we have the following:

= m P T
0 6 ] -36
0 1.8 0
pb=| 0|, vy ={b.2], Y, =|-20| , 8= .1314 , 8, = .3806
0 0 12
-6 | | 6 J | 20

At this point, the prices which previously led to an impasse again
hold but now permit a change of .0079 limited by 61. Cumulative
results so far are as follows:

y; = 5.8619, y, = 6.89683, z, = 18.62063, = -20.75847

1 23

giving a combined value of z = -2.13784, a considerable improve-

ment but not optimal. The main variables have values

Wy o= 5.8619, W, = 6.89683, X, = 7.93171, X, = 7.12598.
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If the combined problem is solved, the optimal solution is:

W = 5.61538, w, = 7.30769, X4 = 9.0, X, = 6.35897

with z = -1.90769 and implied values for Y

Note that the first step above gave a significant improve-
ment with no difficulty. Thereafter, either the step size was
small or the proper choice for A somewhat problematical. Even
in this tiny problem, it is not clear how to proceed further

toward optimality.

9. A Basis Factorization Approach

We shall now develop a version of the revised simplex method
for P, which may be characterized as follows: At each iteration
all the columns of y are basic and the nonbasic variables of one
or the other of the vectors Xy but not both, are considered for
entering the basis. One set is considered as long as it can
provide an entering variable. Thereafter the roles of X and X,
are interchanged. Switches back and forth will be made until P
has been solved. While allowing components from one of the X,
vectors to enter, the nonnegativity constraints of the currently
basic variables in the other X, vector will be treated in a special
way. In effect, this will allow us to work with what we call the
local basis matrices of the dimensions (mi + k)x(mi + k).

We aim at developing for this approach an implementation which
can be done easily given that we have an existing computer code
for the simplex method utilizing the product form for the inverse.
While doing so, we may assume that a feasible allocation for the
coupling variabley y is known in advance. 1In practice, such

knowledge may be available from past experience, for instance.
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Let the current basis B for P have the following partitioning

_ 5 -
A
D],? -I
B = B ’
By
B
I D2
b -
where AE and D? correspond to basic columns in X for i = 1, 2,

and the rest of the columns in B refer to y. We shall refer to

B as a global basis. Without loss of generality, assume that

the columns of y are permuted so that the square submatrix

in B is nonsingular. Here we denote by I, an ki x k. identity

i
matrix for some 0 < k; < k, such that k; +k, =k . We say
that k2 of the columns of y in B belong to the (k + mz)x(k + m2)
subbasis B,- Accordingly, we partition vy into
Y1
Y = Y2 4
ki
where yie R

Let A? and D? be the columns in Ai and Di corresponding to

the nonbasic variables in Xy and partition Xs and c; similarly
B
*i B N =
into x; = and ¢, = (Ci’ ci). In this notation P may be de-

N
X

picted as in Figure 6 below.
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Figure 6. Problem P,

Because B, is assumed to be nonsingular, we obtain for Y,

B
N
Y2\ |/ P2 0 22\ .n (9.1)
)~ B2 A )Y\ n x|
x2 r2 0 D

and X,
2

We shall now consider a simplex iteration which starts with
the basis B and allow only nonbasic variables in X4 to enter the

basis. For this purpose we may set xN in (9.1) to zero to obtain

2
Yo =Yy = F ¥y, (9.2)
B —B
X, = X, - G y1 ’ (9.3)
where vy., %8, F and G are defined according to (9.1) with xN = 0.
2 2 2

Substituting Yo and xg from (9.2) and (9.3) into P yields the

restricted problem, called subproblem (S1L as follows:
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find X, and yq to

(84) maximize c X, + d1y1
(s?) s.t A,x, = b
1 T 11 1
s3) D,x, + Hy, = b]
(85 1%1 Yq 0
4
(S1) X, 2 0
5 =B

and subject to an additional requirement which prevents a compo-
nent of xg from re-entering after it has left the basis of (P) .

. . . B
According to our previous notation, we have in (S1),d1 = -CZG’

I 0
Y 1T _ _{_ : 1
H _(—F) . and b0 = r1. (Yz). The term d1y1 in (51) accounts

for the change in the objective function of P which is caused by
a change in the bagic variables x?. (S?) is the nonnegativity
requirement for the basic components X, of X,. The final addi-
tional requirement in (S1) is taken into account so that a compo-
nent of Yq is eliminated from (S1) each time a constraint (S?)
becomes binding. The elimination is carried out via solving a
component of Y1 from the binding constraints. This approach
allows a special treatment for the constraints (S?) thereby
yielding a particularly attractive solution technique for (S1).
In the following, we shall discuss in detail how (S1) is solved

while carrying out simplex iterations for P.

According to our definitions, the matrix

B
A} 0
B, = ' (9.4)
B
D1 H
comprises a basis for (S?) and (S?). We shall consider B, as an

initial basis while solving (S1). We treat (S?) as side-constraints
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which we may forget for a moment. The pricing operation for

problem (S} - S?) is carried out as usual in the simplex method.

An entering variable e is chosen among the nonbasic variables

xT, the alpha-column a = B;1a, where a is the column for e in

A
, is computed, and the minimum ratio test subject to the con-

DN

1
straint x? > 0 is carried out to determine a step size ® in the
usual way.

At this point we shall return to the side constraints (S?).

X
We partition a into(?y), where oY refers to the change in Yq-

Thus, if ?1 is the current value for Yqr the maximum step size

% allowed by the side constraints (S?) (the nonnegativity of the
variables xg) can be computed as the maximizer of the following
minimum ratio test:

B

max ©(Ga¥) < Xo - Gy, . (9.5)
5 S X2 1 ,

If § < 5, a component of x? leaves the basis B1 as well as
the global basis B, and column a of the entering variable replaces
the column of the leaving variable in both of these bases.

In relatively rare cases 0 > 8. 1In this case, a component
of xg leaves the global basis B, and a slightly more complicated
update is needed for the inverse of the local basis B1. Using
the binding constraint, which by the last requirement in (S1) must
be an equality, we eliminate one component of”y1 from (S1).

The following results show that updating the inverse of the
local basis B1 now requires pre-multiplication by two elementary

matrices instead of only by one which is the case if § < 8.

Lemma 9.1 Let g be the row of G corresponding to the binding
constraint in (S;). Then gay # 0, and, in particular, there
exists p, such that gp # 0.
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; we shall define two elementary matrices
R and E such that ERB-{1

For updating B
is the updated local basis inverse.

We define

Iy for j = m, +k, +1 and for 1 < 1 < k1

2 .
] 0 otherwise , (9.6)

and, because gay # 0, we may define

1/guy of j = m, + k2 +p

j = -ocj/gay otherwise , (9.7)

where pis defined according to Lemma 1. 1In this notation

we have the following result:

Theorem 9.2 Consider the case § > 5, and define pP. according to

Lemma 1. Let R and E be (k + my)x(k + m,) elementary matrices,

whose (m1 + k 4—p)'th row (for R) and column (for E) are defined

2
by (9.6) and (9.7), respectively. Then the updated local basis

inverse for subproblem (S1) is given by

where B;1 is the current local basis inverse for (S1). Further-
more, the updated objective function coefficient vector for Y,

is obtained if the ith element of the vector d1R_1 is omitted.

An interpretation for this partitioning scheme can be found
from the block-product algorithm described in [14] or from
other approaches which can be viewed as extensions of the gener-
alized upper bounding technique (see e.g. [10]). 1In this frame-
work, our approach does not allow a nonbasic variable from a
subblock to enter the basis. As a result, only the most simple
cases of the block-product algorithm can occur. When only the
subblock variables allow improvement for the objective function,
we interchange the roles of the two subsystems; i.e., the current
subblock becomes the master block. Also the proofs of Lemma
9.1 and Theorem 9.2 may be found as special cases of the results

derived in [10,14], for instance.
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It is worth noting that a parametric approach is inter-
mediate between sole reliance on prices, as in D-W, and careful
control of feasibility, as in our partitioning scheme (for
carrying out what amounts to a variant of the simplex mehtod on
the global problem). In all three cases, prices or reduced
costs are only indicative and never guarantee the best move.
However the assumptions regarding initial feasibility are some-

what different in the three approaches:

D-W: Enough candidate columns must be gleaned from the submodels
to provide a feasible basis for the derived problem. It
is assumed that the submodels are themselves feasible but
a phase 1 pricing must be used until a feasible derived
basis is obtained. There is no way to bypass this except
by utilizing a previous solution to essentially the same
problem.

Parametrics: It is assumed that a common feasible allocation

exists for the submodels and that such an allocation can

be prescribed ab initio.

Partitioned Simplex: Although in principle a phase 1 could be
carried out, in reality it is assumed that a feasible
allocation can be made ab initio (see Section 10 below).

For a more extensive discussion of this, see Chapter 12.8 in [13].

10. Computational Experiments

We shall now report a few computational tests which were
carried out using the version of the simplex method developed
above and the Dantzig-Wolfe decomposition principle. Our simplex
method was not actually implemented but rather standard features
of the SESAME mathematical programming system (implemented in
IBM/370 and operating under VHM/CMS) were used to carry out an
accurate simulation of what our simplex approach does. Basically
the interactive system was used to control the set of variables
which were allowed to enter the basis at each simplex iteration.
The experimentswith the D-W decomposition technique were carried
out by Dr. Etienne Loute with his implementation in the MPSX/370
system. In both cases experiments were performed on a dynamic
forestry-industry interaction model, such as described in Section 4.
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For the test with the simplex method the forestry model
consists of 260 rows and 280 columns while the model of wood
processing industry has 350 rows and 541 columns. Both of these
include 20 columns corresponding to the linking variables of the
integrated model. For linking the two models we may assume that
a value for the coupling vector is known which is feasible for
both of the models. Such a vector may be available from past
experience, for instance. (In our case this vector shows the
wood supply form forestry to the industry for all time periods).
In our experiment, however, we ran the Phase I of an ordinary
simplex method in order to get such an initial solution to start
with. We may note in Table 2 that our initial solution was fairly
poor: the objective function which represents the increment

of the forest sector to the GNP was initially negative.

Given the initial solution, we first solved the industrial
model (i.e., we ran the simplex method on the integrated model
without letting the activities form the forestry to enter the
basis). After no industrial activity is able to improve the
solution, we switch to solve the forestry model similarly.
Thereafter we switch back to the industrial model, and so on,

until the global model is solved.

Results of our experiment are reported in Table 2. Both
submodels (industry and forestry) were visited three times until
global optimality was detected. The number of iterations needed
to reoptimize (after preceeding visit) is reported. Here the
number zero for the last visit of the forestry model indicates
that only the optimality test has been carried out. It may be
interesting to note that the very first cycles (visits to local

problems) bring the global objective very close to its optimal
value. Although our sample is the smallest possible, our con-

jecture is that this i1s a general phenomenon; i.e., very few
switches from one local problem to another are needed in order

to get close to the global optimum.

In experimenting with the D-W decomposition technique a

slight variation of the previous forestry-industry model was
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Table 2. An experiment using the simplex method for linking models.

Objective Problem
Cycle Iterations function solved
Initial solution - -19.67 -
1 445 98.98 Industry
2 - 24 99.51 Forestry
3 15 99.68 Industry
4 19 99.96 Forestry
> 2 100.00 Industry
6 0 100.00 Forestry
total 805

used. For instance, a different global objective was used.
Two runs were made and in both cases the D-W Phase I was carried

out to start with.

For Run 1 the solution strategy was as follows: The two
subproblems were first solved for optimality while no price was
charged for the coupling constraints (i.e. wood). The composite
columns corresponding to these optimal solutions were then forced
to the basis of the master problem, which thereafter was optimized.
At each cycle both subproblems were optimized and each improving
solution found was brought to the (derived) master problem.

After a feasible solution was obtained (for the master) an upper
bound was computed for the global objective using the current

dual solution.
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Table 3. Experiments with the Dantzig-Wolfe decomposition
algorithm.
RUN 1
Iterations Proposals Primal
generated. objective Upper _
Cycle Master Sub1l Sub2 Subl Sub2 function bound Solution
0 - 237 329 1 1 infeasible
1 3 13 13 6 3 ~-324 infeasible
2 3 6 9 3 5 ~-160 infeasible
3 4 28 28 4 2 ~11200 infeasible
4 9 32 5 6 2 -37 - .infeasible
5 13 35 40 9 4 -1.7 X108 _2.2X109 feasible
6 4 0 18 0 1 -5.9x10’ -5.8 x10’ feasible
7 0 0 0 0 0 -5.9x10% -5.9x107 optimal
total 36 351 qy2 29 18
RUN 2
0 - 273 378 1 1 -9 infeasible
1 1 25 33 1 1 -785 infeasible
2 3 36 5 1 1 -14 infeasible
3 5 0 111 0 1 '1-5X109 —5-_.9><107 feasible
il 3 15 10 1 1 —1.le109 8.Qx109 feasible
5 7 15 17 1 1 —9.4x10%  6.7x10% feasible
6 7 23 20 1 1 —4.9x108 4.1x109 feasible
7 9 0 0o 0 0  -5.9%10’ =-5.9%10’ optimal
total 35 387 574
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The results of Run 1 are reported on the top of Table 3.
Six cycles were needed to reach a feasible solution. Thereafter,
only one cycle was needed to reach optimality which was proven
by the following cycle. For each cycle, iterations needed to
(re-)optimize the master and the subproblems, the number of
columns generated by each of the subs, the global objective
function value and the dual objective function value (when fea-
sible) is reported.

For Run 2, the textbook strategy was followed. The master
problem was first optimized. At each cycle, both subproblems
were optimized and only the optimal solution was carried to the
master problem (provided that it was imprbving). Again the dual
solution value was computed for obtaining an upper bound for the
global (primal) objective. 1In this case four cycles were needed
to obtain a feasible solution. Simultaneously a dual optimal
solution was found. However, four more cycles were needed in
order to detect primal optimality. Again, the results are re-
ported in Table 3.

Given that no prior information on the solution of the global
problem was used here (such as the initial solution in our
experiment with the simplex mehtod) the results obtained in Run
1 and 2 can be found very satisfactory. Because of the design
of the experiments and limited experience we. are not able, of
course, to draw any conclusions on the relative performance of
our simplex approach and the D-W decomposiiton as tools for

linking linear programming models into an integrated system.

11. Some Extentions and Other Applications

The case above was considered when two blocks (linear pro-
gramming submodels) are linked into an integrated model. In this
section we discuss extension of this case to an arbitrary number
of submodels and also describe some other possible applications
of the approach.

Multiblock case. The extension of Problem p to the case

with an arbitrary number N of submodels is straightforward:
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N
maximize ) C.x,
{x.,y.} i=1 1

i’fi

subject to

D.x; = v, X, >0 , (i=1,...,N) (11.1)

N

.z Ri¥; =1

i=1

The constraints (11.1) are of general type and can express,
for instance, both the case where the submodels have a coupling
activity y (with D;Y; = y), and the case where they share a common
resource (e.g., y1+y2+.&yN:= r). Formally problem (11.1) can also
be reduced to a straight extension of Problem P (of Section 1);

i.e., to the following problem:

N

maximize ) c %y
{x.y} i=1

i

subject to
(11.2)

A.x. = b, ;

i1 i
D.X. = y+r ;7 x. >0

i7i i i =

(A redefinition of the matrices and vectors may be necessary for

this transformation).

7 Different linkage methods described in Part II admit different
"easiness" of extensions for Problem {(11.2). We will not, however,
discuss this, but will describe some possible applications of the

extended problem.



~50~

Two-stage stochastic programming

In the two-stage approach for making decisions under uncer-
tainty, one first makes a basic (master) decision x and then a
correction z(w) which depends on the realization of the random

"state of the nature" w; that is
maximize [cx + Ed{(w) z(w)
X,z {(w)

subject to
(11.3)

Ax + D(w)z(w) = b(w)
X,2(w) > 0 .
If we have discrete probability distribution of w with N outcomes,

problem .(11.3) can be reduced to an equivalent deterministic prob-
lem [7]:

N

maximize cx + ) p.d.z.
joq 11

(11.4)

X.,y >0 ,

where Py is the probability for outcome i. Clearly, this problem

is of the form of problem (11.2) with N+1 blocks. (This is natural,
due to the fact that variable y is a decision, which is common for
different realizations i of "the state of the nature"). There-

fore, different linkage methods can be used for the solution of

two-stage stochastic linear programming problems.

Dynamic linear programming. These problems represent another

important class of optimization problems for which application

of the linkage approach might be useful. The DLP problem in a
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rather general case can be written as [17]:

71
maximize _Z_O(atyt + bouy) + agy,
{ut,yt} t=
subject to
(11.5)
AlYy + Beu =¥y
tht + Dtut = ft N o .

There are different ways of applying a linkage approach to
this problem. Let us consider, for example, static problems
P (for all t):

t
maﬁlmlze btut
t
subject to
Bele = Yyur 7 Be¥y (11.6)
(Pt) uy > 0
Diuy, = £ = Guyy '

where Ye and Yiqq are fixed and denote by ft(yt+1’yt) the optimal
value of (the objective function) in Problem (11.6). Then, the

original Problem (11.5) is reduced to maximization of

T-1

L

t=0

over all feasible {yt}. This approach was used in [3] for devel-
oping a decomposition algorithm for the solution of DLP problem
(11.5).

In practice, a dynamic problem is sometimes analyzed using
a single static model; i.e., onemodel is used for all static models

Pt while the state vectors Yy and Yipq are being held consistent
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with each other over time. Linking the static models Pt to each
other via state vectors Yy results in this case in dealing with

one local problem only (with varying initial and or terminal state).

Note, that frequently, due to uncertainty of the future data,
it is desirable to formulate a dynami¢ multistage problem as a
two-stage problem, in which the first period submodel represents a
(detailed) program for the first time period and the second sub-
model describes a macroplan for the rest of the planning horizon.

This approach was used in [1], for instance.



SUMMARY AND CONCLUSIONS

The general goal of this article is to investigate the ques-
tion of how to carry out analysis when a set of mathematical models
being used are interdependent. We seek systematic ways of linking
such models to each other. The linking approaches should preserve
the structure of the original models so that their interpretation
during the analysis does not get increasingly complicated. Although
the emphasis is on linking two interdependent linear programming
models, extensions to multimodel, nonlinear, and stochastic cases
can, in principle, be straightforward (as indicated in Section 11,

for instance).

The article has been divided into two parts. 1In the first
part we give a precise statement of our interdependent systems.
As well we offer three typical examples of such systems: energy
supply--economy, manpower--economy, and forestry--wood processing
industry interaction systems. In the second part we consider
alternative approaches: classical decomposition principles,
approaches derived from nondifferentiable optimization techniques,
application of parametric programming techniques as well as the
simplex method combined with a partitioning technique. By no
means does the paper provide a final solution to our linkage
problem. However, some of the approaches give rise to optimism,
while others remain inconclusive.

-53-
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It seems that after its earlier disappointments, the Dantzig-
Wolfe decomposition principle (and related approaches) would
deserve reconsideration. Perhaps somewhat surprisingly, also the
simplex method seems to yield a useful tool for linking models
provided that a particular solution strategy (such as the one
derived in Section 9) is applied. For both of these approaches
some computational experiments are reported in Section 10 where
a moderate sized forestry--industry interaction system is used
as a test case. No conclusion has been made upon the relative
performance of these two approaches. An obvious disadvantage
with the decomposition principle is that a globally feasible
solution is not readily available over the grand cycles (i.e.,
during the analysis of the interaction system). The number of
grand cycles, however, does not seem to become extensive, and
the data transmitted between the subsystems remains moderate.
Also in the simplex approach, the number of times one has to deal
with each of the subsystems (until global optimality has been
reached) seems to remain low. In this case, a larger quantity
of data is transmitted between the subsystems compared with the
D-W approach. A relative advantage with the simplex approach is
that the global solution is explicitly available during the
analysis. One of the key issues in judging the applicability
of these two approaches is the complexity of implementation of
the approach. This, of course, depends on the available software,
hardware, and the structure of the interdependent model system
itself.

The advantage with a (nonfinite) iterative approach, such
as the first approach presented in Section 7, is a minimal data
transmission requirement between the subsystems. A major dis-
advantage, at least to our knowledge, is a very large number of
cycles (iterations) of visiting each of the subsystems until a
near optimal global solution is obtained. Also during such cycles,

a globally feasible solution is not available in general.

The principle of a feasible direction method based on non-
differentiable optimization techniques is presented in Section 7.

However, further research remains to be done; in particular, in
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computing such feasible directions at least approximately. A
solution for this problem may be found through parametric pro-
gramming techniques. We discuss this attractive approach in
general in Section 8. However, only heuristic rules for deter-
mining directions (for change in the coupling vector defining
interdependence) is provided. Such rules do not in general
guarantee global convergence for the integrated system, and

practical difficulties have been demonstrated using a tiny example.
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