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Abstract. Cooperators that refuse to participate in sanctioning defectors create

the second-order free-rider problem. Such cooperators will not be punished because

they contribute to the public good, but they also eschew the costs associated with

punishing defectors. Altruistic punishers — those that cooperate and punish — are

at a disadvantage, and it is puzzling how such behaviour has evolved. We show

that sharing the responsibility to sanction defectors rather than relying on certain

individuals to do so permanently can solve the problem of costly punishment. Inspired

by the fact that humans have strong but also emotional tendencies for fair play, we

consider probabilistic sanctioning as the simplest way of distributing the duty. In well-

mixed populations the public goods game is transformed into a coordination game

with full cooperation and defection as the two stable equilibria, while in structured

populations pattern formation supports additional counterintuitive solutions that are

reminiscent of Parrondo’s paradox.

PACS numbers: 87.23.Ge, 89.75.Fb, 89.65.-s
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1. Introduction

Widespread cooperation among unrelated individuals distinguishes humans markedly

from other species [1, 2]. Although common marmosets and chimpanzees show similar

preferences towards altruism and reward division [3, 4, 5], suggesting a long evolutionary

history to the human sense of fairness [6], no other living organism is as apt in taking

full advantage of collaborative efforts as humans. Indeed, we champion altruism and

fairness [7, 8], and we are willing to punish those who strive for excess benefits by

unfair means [9]. Besides individual efforts aimed at punishing wrongdoers [10], our

societies are home to a plethora of sanctioning institutions [11], which are set up to

fine everything from overfishing to tax evasion. Recent experiments in fact suggest that

humans prefer pool punishment over peer punishment for maintaining the commons

[12]. But since sanctioning entails paying a cost for the free-riders to incur a cost, the

evolution of punishment, and perhaps even more so the evolution of institutionalised

punishment [13], is puzzling.

Seminal experiments by Fehr and Gächter [14, 15] revealed that alone the loom of

sanctioning has an immediate positive effect on the average contribution of players in

the public goods game [16, 17]. But it was only when the game was repeated many

times over that the full positive impact of punishment revealed itself. In the absence of

punishment contributions quickly decreased to marginal levels, while with punishment

they rose to almost all players had to offer. And this outcome prevailed even if the players

knew they will never meet again in subsequent rounds of the game. The essence of the

puzzle, however, lays somewhat hidden in the fact that in the rounds with punishment,

the average income was usually below that without punishment. This is due to the fact

that punishment is costly [18]. Although the hope is that once cooperation is established

it can be sustained with significantly smaller efforts, the question that needs answering

is why should a self-interested individual contribute to costly punishment in the first

place? Like forests, oil fields and grazing lands, the sanctioning apparatus is a public

good too, and it is therefore just as prone to exploitation and free-riding. But since an

individual may cooperate but not punish, the problem has come to be known as the

second-order free-rider problem [19].

Reputation has long been considered a key factor in models of cooperation [20, 21],

and it was suggested that individuals’ concern for their reputation may be a solution to

the second-order free-rider problem too [22]. Group selection has also been shown to play

an important role in the evolution of cooperative behaviour and altruistic punishment

[23], and volunteering [24], coordinated efforts between the punishers [25, 26], and the

consideration of spatially structured populations [27], have all been shown to stabilize

punishment as well. These models assume, however, that once an individual acquires the

propensity to punish, it will do so permanently until a strategy change, for example when

imitating more successful strategies. Punishment is thus considered as a deterministic

act that is executed whenever needed. Yet human experiments reject such a hypothesis,

indicating instead that emotions are very much an integral part of sanctioning. Xiao
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and Houser conclude that constraints on emotion expression can increase the use of

costly punishment, and that punishment itself may be used to express negative emotions

[28]. Moreover, Egas and Riedl [18] find that their results are consistent with the

interpretation that punishment decisions come from an amalgam of emotional response

and cognitive cost-impact analysis.

Inspired by the important role that emotions play, we consider a public goods game

where cooperators are able to switch between contributing to the common pool and

contributing to the common pool as well as punishing defectors in a probabilistic manner.

The random exploration of sanctioning mimics the stochastic effect of emotions on when

and how humans choose to punish [28, 18], and it also agrees with the outcome of

recent experiments on human strategy updating, which have revealed that spontaneous

strategy changes corresponding to exploration behaviour are in fact much more frequent

than assumed thus far in theoretical models [29]. Although random explorations of

strategies have been considered before in the realm of the public goods game with

voluntary participation [30, 31], our formulation of the game focuses explicitly on the

problem of costly punishment. Namely, even if the second-order free-rider problem is

assumed away so that every cooperator accepts the additional costs, the limits of costly

punishment are still obvious — if the costs exceed the fines punishment is likely to fail.

Here we show that this problem can be solved too, and that, rather counter-intuitively

and unexpectedly, second-order free-riders are the key to the solution.

The public goods game is played in groups of size n. Each cooperator (C)

contributes an amount c to the common pool, while defectors (D) contribute nothing.

The sum of all contributions in the group is multiplied by the enhancement factor

r > 1 and then split evenly among all group members. Subsequently, a fraction p of

cooperators within the group is selected randomly and designated as punishers (P ). If

the group contains at least one punisher, each defector in the group is punished with

a fine α. Punishers, on the other hand, equally share the associated costs, each paying

(n − nC)α/nP , where nC and nP are the number of cooperators and punishers in the

group, respectively. In agreement with these rules and if c = 1, the final payoff of a

cooperator who does not punish is ΠC = rnC/n−1, while punishing cooperators receive

ΠP = rnC/n− 1− (n− nC)α/nP . Moreover, if there are no punishers in the group the

payoff of a defector is ΠD = rnC/n, while if nP > 0 the payoff is ΠD = rnC/n− α. We

emphasize that the formulation of punishment in our model does not assume limitless

resources being at disposal to the punishers. The fines administered to defectors

are covered in full by the costs incurred to punishers. This ensures sustainability of

sanctioning [32], but it also imposes a heavy load on the punishers. In the worst case

scenario, when a single punisher is surrounded by n−1 defectors, the cost of punishment

it has to bear is (n − 1) times the fine α imposed on each individual defector. The

execution of punishment is therefore very costly, which was traditionally considered a

prohibitive factor for the success of sanctioning.

We study the described public goods game by means of the replicator equation in

well-mixed populations, as well as by means of Monte Carlo simulations in structured
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Figure 1. Probabilistic sanctioning in well-mixed populations transforms the public

goods game into a coordination game with full cooperation and full defection as the two

stable equilibria. Depicted is the gradient of selection in dependence on the fraction

of cooperators. Stable steady states f = 0 and f = 1 are depicted with solid circles,

while the unstable steady state is depicted with an open circle. Arrows indicate the

expected direction of evolution. Cooperation is favoured over defection if the arrow

points to the right. Panel (a) shows results for p = 0.5 and different values of α, while

panel (b) show results for α = 0.5 and different values of p. Other parameter values

are r = 3.9 and n = 5.

populations. For details of the analysis we refer to the Methods section, while here we

proceed with the presentation of the main results. As we will show, the consideration

of probabilistic sanctioning alone suffices to solve the problem of costly punishment. To

punish defectors becomes an effective means to promote public cooperation even if the

costs are much higher than the fines, as long as second-order free-riders play an active

role in the evolutionary process. More generally, our results suggest that sharing the

costs of any costly altruistic act may render it evolutionary stable despite peer pressure

from individually more profitable strategies.

2. Results

2.1. Well-mixed populations

The replicator equation [see Eq. (1) in Methods] defines the gradient of selection df/dt,

which determines the evolution of cooperative behaviour as illustrated in Fig. 1. Here

f is the fraction of all the cooperators in the population. If the fine α [see panel

(a)] or the probability to punish p [see panel (b)] is small, the gradient of selection

is always negative. Cooperators therefore die out regardless of the initial conditions.

For sufficiently large values of α and p a new unstable steady state emerges within the

f ∈ (0.1) interval, which divides the system and gives rise to two basins of attraction.
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Depending on the initial conditions, the system will evolve either towards full defection

or towards full cooperation. Both f = 0 and f = 1 are stable steady states, indicating

that the probabilistic sanctioning transforms the public goods game into a coordination

game. The problem of costly punishment is thus solved, if only the initial fraction of

cooperators in the population is sufficiently large, and if the probability to punish p and

the administered fine α are not too small. Moreover, the larger the value of α and p,

the larger the basin of attraction of the f = 1 steady state. However, the f = 0 steady

state always has a larger basin of attraction than the f = 1 steady state, because even

if the initial fraction of cooperators in the population is 0.5 the gradient of selection is

always negative for r < n.

We have also studied the replicator equation analytically in the limit of large α

and p values. The treatment is presented in the Methods section, and the outcome is

consistent with the results presented in Fig. 1, which are thus always valid for well-mixed

populations.

2.2. Structured populations

Unlike well-mixed populations, structured populations take into account the fact that

the interactions among players are typically not random but rather that they are limited

to a set of other players in the population, and as such are best described by a network.

We therefore study the evolution of cooperation on a square lattice, which is the simplest

of networks to fulfil this condition. We employ Monte Carlo simulations, as described

in the Methods section.

Colour maps presented in Fig. 2 depict the stationary fraction of cooperators

in dependence on the punishment fine α and the probability to punish p for three

intermediate values of the multiplication factor r. Going from panel (a) to panel (c),

we see that cooperative behaviour becomes more and more common, which is expected

given that the benefits of collaborative efforts increase through larger values of r. The

impact of α and p is more subtle. As the values of the two parameters increase along

the diagonal in the α − p plane, the fraction of cooperators first increases, reaches a

maximum, but then again decreases. Increasing either of the two parameters while

the other is kept constant returns the same observation. Both α and p thus have a

non-monotonous impact on the cooperation level. At smaller values of r [see panel (a)]

this distinctive feature is more pronounced, but it remains present at higher values of

r as well [see panel (b) and (c)]. Probabilistic sanctioning thus promotes cooperative

behaviour on structured populations, yet it requires carefully measured efforts both in

terms of severity and frequency of punishment. Compared to well-mixed populations,

this is a more complex evolutionary outcome that is due to the interplay of spatial

reciprocity and punishment.
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Figure 2. Probabilistic sanctioning in structured populations promotes the evolution

of public cooperation, yet the optimal outcome requires carefully adjusted severity

and frequency of punishment. Colour maps encode the fraction of cooperators in

dependence on the punishment fine α and the probability to punish p, as obtained for

multiplication factors r = 3.6 (a), r = 3.9 (b), and r = 4.2 (c).

2.3. Spatial patterns of cooperation

An understanding of the results presented in Fig. 2 can be obtained with the study of

spatial patterns that emerge under the influence of probabilistic sanctioning. In Fig. 3,

we first present characteristic snapshots of the square lattice for three different values

of p. When plotting the spatial distributions of strategies, it is helpful to use different

colours to distinguish cooperators based on their propensity to punish. Cooperators

that are randomly selected as punishers in at least three of the five groups in which they

are involved are depicted green, while other cooperators are depicted blue. Defectors

are depicted red. If punishment is not an option (p = 0), cooperators have to rely

solely on spatial reciprocity to survive in the presence of defectors. As panels (a) to

(d) illustrate, cooperators form small yet compact clusters that protect them from the

invasions of defectors. This is the hallmark of network reciprocity, discovered first

by Nowak and May [33]. It is important to note that in the absence of punishment

the interfaces that separate cooperators and defectors are not smooth. This creates

ample opportunities for defectors to invade successfully, but it also quickly leaves them

surrounded by players of the same kind. Since locally there is nobody left to exploit the

invasion is stopped, but it also creates new irregularities along the interface which will

invite further invasions in the future. The dynamical equilibrium of these elementary

processes yields a stable coexistence of cooperators and defectors. At the other extreme,

if all cooperators are always ready to punish (p = 1), the morphology of the spatial

patterns is slightly different. As panels (j) and (k) illustrate, due to the consistent

application of punishment the interfaces are somewhat smoother. Individual defectors

deep in the bulk of punishers struggle to invade because they are immediately sanctioned.

At the same time, the cost of sanctioning is shared by many punishers, which conveys

them a local evolutionary advantage. However, at the front where many defectors meet

with punishers the cost of sanctioning become prohibitive, and ultimately defectors
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Figure 3. Spatial pattern formation reveals evolutionary advantages of probabilistic

sanctioning. In the absence of punishers [panels (a) to (d)] cooperators alone struggle

to uphold compact cooperative clusters. If everybody punishes the costs of sanctioning

are prohibitive to success and defectors win [panels (i) to (l)]. If the responsibility to

sanction is shared 50:50 randomly, cooperative clusters remain compact and smooth,

and at the same time their fitness is superior to that of defectors [panels (e) to (h)].

The direction of invasion therefore reverses and cooperators win. Cooperators who

are willing to punish defectors in at least three out of the five groups are depicted

green, while other cooperators are depicted blue. Defectors are depicted by red. Pie

diagrams on the right show the corresponding ratio of elementary invasions between

different strategy pairs, confirming that probabilistic sanctioning tips the balance in

favour of cooperation. We have used a different shade of red to distinguish between

D → C and D → P invasions. In all three cases the evolution starts from a random

initial state using r = 4 and α = 2. The system size is 100× 100.

easily prevail [see panel (l)]. If the application of sanctioning is probabilistic (p = 0.5),

the direction of invasion is reversed. As illustrated in panels (e) to (h), defectors are

eventually completely eliminated from the population. This is because probabilistic

sanctioning preserves the smoothness of cooperative interfaces, while at the same time

the mixture of pure cooperators and punishers can prevail in the direct competition

against defectors. Paradoxically, the option to resort to second-order free-riding provides

the necessary relief from the punishment costs, which in turn maintains a healthy fitness

of the cooperative domains. The key to success is that the costs of sanctioning are shared.

We have also monitored the elementary invasion processes between the competing

domains of strategies. The results of which are summarized as pie diagrams that depict

the ratios of different invasion steps at corresponding values of p at the right of Fig 3.

The pie diagrams confirm that the frequency of defector invasions for p = 0 and p = 1
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Figure 4. Sharing a costly altruistic act like punishment may render it evolutionary

viable regardless of the particularities that determine the method of sharing.

Probabilistic sharing [panels (a) to (d)] as well as periodic sharing [panels (i) to

(l)] of sanctioning reverse the direction of invasion and lead to complete dominance

of cooperators. If strategies are permanent and can change only via imitation, the

spontaneous segregation of pure cooperators and punishers will reveal the superiority

of defectors against both weaker strategies [panels (e) to (h)]. In all three cases the

evolution starts from an identical prepared initial state using p = 0.5, r = 3.6 and

α = 1. The system size is 100× 100.

is higher than the frequency of cooperator invasions, which ultimately results in states

where defection is widespread [see panels (d) and (l)]. For p = 0.5, on the other hand,

the combined frequency of C → D and P → D invasions is higher than the combined

reverse, and as a result collectively the cooperators rise to complete dominance. A

careful comparison reveals further that the majority of invasion steps that reduce the

number of defectors is due to cooperators that do not punish. In other words, second-

order free-riders become stronger against defectors due to the probabilistic presence of

punishers. The pie diagrams also highlight that C can beat D only in the presence of

P , thus indicating that a multi-point interaction is necessary to observe the reported

counterintuitive phenomenon.

Our observations on structured populations can be summarized as “two weaker

strategies are able to form a stronger one”. This is reminiscent of Parrondo’s paradox

[34, 35], where two losing games, if combined, can become a winning game. To determine

exactly what mixture is necessary between second-order free-riders and punishers, we
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compare the evolutionary outcomes of three different variations of the studied public

goods game. For clarity, we have use a prepared initial state as depicted in the leftmost

panels of Fig. 4, although the occupance of cooperators and defectors is still equally

split. The initial use of homogeneous strategy domains simply helps to reveal the

leading mechanism that is responsible for the emergence of spatial patterns. Panels

(a) to (d) depict the outcome of the traditional model where cooperators can turn to

punishers (and vice versa) probabilistically with probability p = 0.5. In agreement with

the results presented in Fig. 3, albeit at different parameter values, we can observe

complete dominance of cooperative behaviour [see panel (d)]. Panels (e) to (h), on

the other hand, depict a very different outcome that emerges if pure cooperators

and punishers are not allowed to randomly switch roles. Strategy exchange is of

course possible between all three competing strategies, but this is the only way a pure

cooperator can turn into a punisher or vice versa. The evolution of the cooperative

stripe illustrates convincingly that a simple mixture of C and P players is unable to beat

defectors. Indeed, pure cooperators (blue) can invade defectors only in the close vicinity

of punishers. Accordingly, pure cooperators are able to launch a short-lived invasion

into the territory of defectors, as shown in panel (f). But as soon as pure cooperators

become isolated from the punishers due to the successful invasion, they themselves

become vulnerable again. The game is then effectively reset to the p = 0 case, which

yields complete dominance of defectors at such a low value of the enhancement factor.

An additional negative consequence of spatiality is that pure cooperators and punishers

will become separated via neutral drift even if they were mixed at the beginning [see

panels (f) and (g)], and this too favours defectors because head to head they are superior

to both isolated strategies. Overall, it is easy to see that neither type of mixture of

permanent strategies can help to overcome the problem of costly punishment.

Although the failure of a particular mixture of permanent strategies might suggest

that only the probabilistic combination of two “weaker” strategies can produce a

“winning” strategy — in analogy with the Parrondo’s paradox [34, 35] — panels (i)

to (l) are quick to convince us of the contrary. Here pure cooperators and punishers

are exchanged not randomly but periodically after every round, and as can be observed

in panel (l), this option too leads to complete dominance of cooperative behaviour.

The Parrondo’s paradox can also be observed if the two loosing games are exchanged

periodically, thus strengthening the outlined analogy. We note that the success of

periodically shared costs might explain why working in shifts to share and distribute

heavy workload is common in human societies.

In the remainder of this section, we turn to the explanation of the other

counterintuitive phenomenon, which is the non-monotonous dependence of the

cooperation level on α. Since the effect exists even at p = 1, as illustrated in Fig. 2,

we focus on the simplest case when only D and P players are initially present in the

population. We know that if α is small, defectors are fined mildly and that thus this has a

rather negligible negative impact on their payoffs. The same holds true for punishers that

have to bear small corresponding costs. Punishment in this case is thus a second-order
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Figure 5. Schematic presentation of the interface that separates punishers and

defectors. The two leading elementary processes that contribute the most to the

velocity of the interface are marked by arrows. This setup is used for the stability

analysis of competing domains at p = 1, where only defectors and punishers are present.

The analysis reveals the “smaller is better” effect in costly punishment, and it explains

the non-monotonous dependence of the cooperation level on the fine α.

effect, in particular coming second to network reciprocity. As α increases, however, the

emerging spatial patterns receive further support from the fines imposed on defectors,

and gradually they spread across the whole population. The question to be answered

then is why the application of high α values starts to have a negative impact on the

evolution of cooperation? On the one hand, higher α imply higher costs to punishers, but

at the same time, defectors are fined more severely as well. The key to understanding is

again rooted in the spatial patterns. More precisely, we have to clarify how the domain

interfaces that separate the two competing strategies move. Since the interfaces that

separate clusters of the two competing strategies become smooth due to the reduced

payoff values on both sides, we focus on a typical interface as illustrated in Fig. 5, and

we analyse its stability in dependence on the punishment fine α.

The elementary changes that modify the interface in Fig. 5 are the invasions across

the line that separates unequal strategies. The leading invasions thereby are those which

are marked with arrows. Evidently, other elementary processes are also possible, but to

consider them all would make the following analysis untraceable. More importantly, the

likelihood of the other elementary processes (those not marked with an arrow) is much

smaller, and hence their contribution to the boundary velocity is negligible. Based on

this, the average payoff difference between the two strategies can be estimated as

ΠP − ΠD =
3

2
r − 5− 5

24
α , (1)

from where the critical value of the punishment fine equals

αc =
24

5

(
3

2
r − 5

)
. (2)

At αc the direction of invasion between strategies P and D reverses, and it can be

deduced that it is indeed better to punish mildly. In particular, if α > αc then ΠP < ΠD,

which implies an eventual dominance of defectors. Conversely, if α < αc then ΠP > ΠD

and punishers win. These effects give rise to the non-monotonous dependence of the

cooperation level on α, and they corroborate previous theoretical and experimental work

on costly punishment where a similar “smaller is better” effect has been reported before
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[36, 37]. We conclude by emphasizing that this outcome remains valid also on other

interaction networks, and that it is indeed the sole consequence of the population being

structured rather than well-mixed — a key point that should not be overlooked in future

human experiments.

3. Discussion

To summarize, we have shown that sharing a costly altruistic act like prosocial

punishment can be a game changer. Sharing, either probabilistic or periodic, can

render the costly act evolutionary viable, even though in the absence of sharing the

act is obviously unable to grab a hold in the population. We have focused on costly

punishment as particular and frequently studied example of such an act [9], and we have

demonstrated that the consideration of probabilistic sanctioning solves the problem of

costly punishment. The question is no longer whether punishers can survive alongside

cooperators that refuse to punish, but rather is a mixture of pure cooperators and

punishers able to outperform defectors? An intuitive answer to this question would

be no, since neither cooperators nor punishers alone have an obvious evolutionary

advantage over defectors. Yet our study reveals the opposite. Two loosing strategies

are able to form a winning strategy if only they share the costs of the altruistic act

— in our case the costs of sanctioning. This counterintuitive evolutionary outcome is

reminiscent of the Parrondo’s paradox [34, 35], where two losing games, if combined

either probabilistically or periodically, can become a winning game.

While in well-mixed populations probabilistic sanctioning simply transforms the

public goods game into a coordination game, in structured populations the evolutionary

outcomes are significantly more interesting and versatile. The key to understanding

the various solutions lies in spatial pattern formation, and in particular in multi-point

interactions that enable the counterintuitive solutions. As we have pointed out, even

if pure cooperators alone or punishers alone are weaker than defectors, their stochastic

or periodic combination can revert the direction of invasion in favour of cooperative

behaviour. This is made possible by the fact that the presence of punishers strengthens

cooperators that do not punish. The opposite is true as well, but it works only if

punishers are occasionally freed from their duty to sanction defectors. During this time,

however, it is crucial that other cooperators within the group take on the responsibility

and bear the additional costs. Multi-point interactions are a key ingredient for this

work, and the public goods game in particular, since being played in groups, is a

paradigmatic example of a game that enables just that. As soon as the option to

abstain from punishing is no longer given, the mechanism fails and the evolutionary

process terminates either in full defection or in a state of modest cooperation that is

sustained solely due to network reciprocity.

Probabilistic exploration of strategies, especially when turning to imitation

dynamics, social learning or cultural evolution, appears to play an important role [29].

Recent experiments indicate that human punishment may be motivated by inequity
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aversion rather than by the desire for reciprocity [38], and evidence is mounting that

emotions play a decisive role as well [28, 18]. Sanctions may also be motivated by selfish

or greedy intentions and spite, and if they are, sanctioning can have dire consequences

for altruistic cooperation and the evolutionary advantages are questionable [39, 40, 41].

These considerations support the notion of probabilistic sanctioning, and indeed it

seems unreasonable to expect of individuals to execute punishment either rationally or

permanently. The presented results indicate that this alone may be reason enough for

punishment to become widespread in human societies. Moreover, given the nature of the

stick versus carrot dilemma [42], we expect the same conclusions to hold if punishment

would be replaced by reward.

4. Appendix: Methods

4.1. Replicator equation

The evolutionary dynamics of the studied public goods game in well-mixed populations

is determined by the replication equation of the fraction of all the cooperators f in the

population (regardless of whether they punish or not) [43]

df

dt
= f(1− f)[ΠX − ΠD], (3)

where ΠX = pΠP + (1 − p)ΠC is the average payoff of all the cooperators while ΠP ,

ΠC and ΠD are the average payoffs of punishing cooperators, second-order free-riders

(cooperators that do not punish) and defectors, respectively.

To study the evolutionary dynamics of f in an infinite well-mixed population, we

assume that in each round of the game an interaction group is assembled by randomly

selecting n individuals from the population. The average payoffs ΠP , ΠC and ΠD are

then

ΠP =
n∑

i=0

(
n− 1

i

)
f i(1− f)n−1−i × (4)

i∑
j=0

(
i

j

)
pj(1− p)i−j

[
r(i+ 1)

n
− 1− α(n− 1− i)

j + 1

]
,

ΠC =
n∑

i=0

(
n− 1

i

)
f i(1− f)n−1−i × (5)

i∑
j=0

(
i

j

)
pj(1− p)i−j

[
r(i+ 1)

n
− 1

]

and

ΠD =
n∑

i=0

(
n− 1

i

)
f i(1− f)n−1−i

i∑
j=1

(
i

j

)
pj(1− p)i−j

(
ri

n
− α

)
(6)

+
n∑

i=0

(
n− 1

i

)
f i(1− f)n−1−i(1− p)i

ri

n
,
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respectively. The sought payoff difference is

ΠX − ΠD =
(
−1 +

r

n

)
+ α[1− (1− pf)n−1]

(
1− 1− f

f

)
, (7)

and the replicator equation can be rewritten as

df

dt
= (1− f)

{(
−1 +

r

n

)
f + α[1− (1− pf)n−1](2f − 1)

}
. (8)

The stability analysis of Eq. 8 reveals that the evolutionary dynamics has two

boundary equilibria f = 0 and f = 1, and interior equilibria that are determined by

the roots of the function g(f) = ΠX − ΠD. It follows that for 0 < f ≤ 0.5 the second

term of g(f) is negative. Hence, when r < n, the function g(f) < 0 for all f ∈ (0, 0.5).

On the other hand, for 0.5 < f < 1, the function g(f) is strictly increasing since

its first order derivative is always positive. We thus find that there are no interior

equilibria in f ∈ (0, 0.5], and that there is at most one equilibrium in f ∈ (0.5, 1).

Furthermore, the stability of the interior equilibria in f ∈ (0.5, 1) is determined by

g(1) = −1+ r/n+α[1− (1− p)n−1], from which we have the following two conclusions:

(i) When −1 + r/n+ α[1− (1− p)n−1] ≤ 0 (i.e., p ≤ 1− (1− 1− r
n

α
)

1
n−1 ), the replicator

equation has no interior equilibria in f ∈ (0, 1). Only f = 0 is a stable equilibrium,

while f = 1 is an unstable equilibrium.

(ii) When −1 + r/n + α[1− (1− p)n−1] > 0 (i.e., p > 1− (1− 1− r
n

α
)

1
n−1 ), there is only

one interior equilibrium f ∗ in (0.5, 1), but it is unstable since g′(f ∗) > 0. The two

boundary equilibria f = 0 and f = 1, on the other hand, are both stable.

4.2. Monte Carlo simulations

The public goods game is staged on a square lattice with periodic boundary conditions

where L2 players are arranged into overlapping groups of size n = 5 such that everyone

is connected to its four nearest neighbours. Accordingly, each individual belongs to five

different groups. We note that the square lattice is the simplest of networks that allows

us to go beyond the well-mixed population assumption, and as such it allows us to take

into account the fact that the interactions among humans are inherently structured

rather than random. By using the square lattice, we also continue a long-standing

history that begun with the work of Nowak and May [33], who were the first to show

that the most striking differences in the outcome of an evolutionary game emerge when

the assumption of a well-mixed population is abandoned for the usage of a structured

population. Many have since followed the same practice [44, 45, 36] (for a review see

[46]), and there exist ample evidence in support of the claim that, especially for games

that are governed by group interactions [47, 48], using the square lattice suffices to reveal

all the relevant evolutionary outcomes, and also that these are qualitatively independent

of the interaction structure.

Initially each player on site x is designated either as a cooperator (sx = C) or

defector (sx = D) with equal probability. Monte Carlo simulations of the game are

carried out comprising the following elementary steps. A randomly selected player
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x plays the public goods game with its four partners as a member of all the five

groups, whereby its overall payoff Πsx is thus the sum of all the payoffs acquired in

each individual group, as described in the Introduction. Next, player x chooses one of

its nearest neighbours at random, and the chosen co-player y also acquires its payoff Πsy

in the same way. Finally, player x imitates the strategy of player y with a probability

given by the Fermi function Γ = 1/{1+ exp[(Πsx −Πsy)/K]}, where K = 0.5 quantifies

the uncertainty by strategy adoptions [49], implying that better performing players

are readily adopted, although it is not impossible to adopt the strategy of a player

performing worse. Such errors in decision making can be attributed to mistakes and

external influences that adversely affect the evaluation of the opponent.

In agreement with the random sequential updating, each Monte Carlo step gives a

chance for every player to imitate the strategy from one of its neighbours once on average.

As the key quantity, we determine the fraction of all the cooperators f (regardless of

whether they punish or not) in the stationary state, which is considered to be reached

when f becomes time-independent. Depending on the actual conditions (proximity to

phase transition points and the typical size of emerging spatial patterns), the linear

system size was varied from L = 100 to 400 and the relaxation time was varied from

104 to 105 MCS to ensure proper statistical accuracy.
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