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Summary

� Phenological changes among plants due to climate change are well documented, but often

hard to interpret. In order to assess the adaptive value of observed changes, we study how

annual plants with and without growth constraints should optimize their flowering time when

productivity and season length changes. We consider growth constraints that depend on the

plant’s vegetative mass: self-shading, costs for nonphotosynthetic structural tissue and sibling

competition.
� We derive the optimal flowering time from a dynamic energy allocation model using opti-

mal control theory. We prove that an immediate switch (bang-bang control) from vegetative

to reproductive growth is optimal with constrained growth and constant mortality.
� Increasing mean productivity, while keeping season length constant and growth uncon-

strained, delayed the optimal flowering time. When growth was constrained and productivity

was relatively high, the optimal flowering time advanced instead. When the growth season

was extended equally at both ends, the optimal flowering time was advanced under

constrained growth and delayed under unconstrained growth.
� Our results suggests that growth constraints are key factors to consider when interpreting

phenological flowering responses. It can help to explain phenological patterns along produc-

tivity gradients, and links empirical observations made on calendar scales with life-history

theory.

Introduction

Changes in the phenology of plants are well-documented effects
of increased temperatures (see Menzel et al., 2006; Parmesan,
2007; Wolkovich et al., 2012; for reviews and meta-analyses).
Although there is a general pattern of advancing spring phenolo-
gies (Fitter & Fitter, 2002; Menzel et al., 2006; Parmesan, 2007;
Primack et al., 2009), there is also great variation in rates of phe-
nological changes, both among species and different phenological
traits (CaraDonna et al., 2014). It is often unclear how to inter-
pret this variation. Is the long-term persistence of species that
show little phenological change at risk (Willis et al., 2008)?
What constitutes a sufficient change to avoid negative fitness
consequences (Mungu�ıa-Rosas et al., 2011; Iler et al., 2013;
Santos-del-Blanco et al., 2013)?

Some guidance for the aforementioned questions is provided
by dynamic energy allocation models based on optimal control

theory (reviewed by Iwasa, 2000). Here energy refers to the
biomass production rate. These models enable analyses of how
trade-offs between reproduction, growth and survival shape the
evolution of life histories. For annual plants there is a tight link
between phenology and life history, and some early models of
optimal allocation considered the onset of reproduction in
annual plants (Cohen, 1971, 1976). Recently, Johansson et al.
(2013) applied a model of this kind to predict how the optimal
flowering time should respond to changes in seasonal growth
conditions. An interesting finding of that study is that the sea-
sonal distribution of productivity (e.g. temperature and precipita-
tion) can affect the size and even the direction of the optimal
response of the flowering time to certain types of environmental
change, such as increased productivity or increased season length.
As with many other studies (King & Roughgarden, 1982; Shitaka
& Hirose, 1993), Johansson et al. (2013) assumed that plant
growth rate is proportional to the vegetative mass during the
growth season. Although this may be reasonably representative
for the growth rate of some annual plants, growth is often†Dedicated to the memory of Niclas Jonz�en, May 1973 to May 2015.
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constrained, leading to a saturating growth curve. Paine et al.
(2012) suggest saturating nonlinear plant growth (i.e. constrained
growth) as the general growth type for all plants, due to self-shad-
ing, increased costs of structural tissue and decreasing local nutri-
ent levels. Biomass data from the annual forb Cerastium diffusam
are provided as an example of constrained growth. Exceptions,
where growth is not constrained, include algae growing in a
chemostat where light and nutrients are abundant.

A small seedling with only a few leaves could place these
leaves almost anywhere and still not be affected by self-shading
limitations to growth. However, as it grows an increasing ratio
of the total biomass needs to be allocated to nonphotosynthetic
structural tissue in order to avoid self-shading, increase seed dis-
persal and to display flowers to pollinators (Fig. 1). The increas-
ing demand of investment into structural, nonphotosynthetic
tissue contributes to saturating growth patterns. Another reason
for constrained growth is competition from other plants of the
same species; that is, sibling competition (Yoda et al., 1963;
White & Harper, 1970). Growth is also closely related to
metabolism, which in turn is often described by (nonlinear)
power laws. West et al. (1999) argued that metabolic rate scales
as a ¾ power of mass, but deviations from that empirically based
rule can also be expected (see Brown et al., 2004, and Price
et al., 2012, for reviews). A general ontogenetic growth model
proposed by West et al. (2001) based on the ¾ metabolic scaling
captures animals (Moses et al., 2008), but has been criticized for
not capturing crop growth (Shi et al., 2013). As an example, the
total leaf area, which roughly corresponds to leaf mass, for the
annual prostrate desert plant Chamaesyce setiloba follows an
estimated 0.9 power law (Koontz et al., 2009). In other words
the leaf mass is proportional to total aboveground biomass to
the power of 0.9. This plant is nearly two-dimensional as it

grows on the ground and does not need to allocate many
resources into structural tissue to avoid self-shading, because
competition for light is low.

We focus on the flowering time of annual plants and consider
environmental change in the form of increased productivity, in
turn representing the increased temperatures, increased CO2

concentrations or longer growth seasons representative of climate
change resulting from global warming (Menzel & Fabian, 1999;
CaraDonna et al., 2014; Reyes-Fox et al., 2014). We extend pre-
vious theory (Johansson et al., 2013) both by considering non-
linear growth functions and by considering changes in season
length. Although motivated by understanding phenological
responses to climate change, this study is relevant to any type of
environmental change that influences productivity, for example
fertilization or improved light conditions such as in tree fall
gaps.

Description

Here we will investigate how growth constraints affect optimal
flowering time responses to changed environmental conditions.
The optimal flowering time is here conceived as a fitness-maxi-
mizing strategy and it can thus be expected to evolve under natu-
ral selection in a given environment (Pianka, 1976; Roff, 1992;
Stearns, 1992). Evolution can be fast. For example, the flowering
time for the annual plant Brassica rapa evolved within a few gen-
erations to escape drought stress (Franks et al., 2007). Although
there are many potential reasons, including genetic constraints,
why organisms may not attain the optimal strategy by evolution,
we consider the optimal strategy a useful reference point against
which observed phenological responses can be compared and
evaluated, regardless of whether these responses have a genetic,

Fig. 1 Growth constraints increasing with
size and mass can take many forms, for
example: self-shading by leaves and
branches, increasing costs for branches
necessary for transportation and structural
stability, and sibling competition for common
resources. Growth of vegetative mass V(t)
and reproductive mass R(t) is controlled by
u(t). The net biomass growth F(V) depends
only on the vegetative mass. With bang-
bang reproduction, vegetative growth ceases
at the flowering time tF, and reproductive
mass is starting to grow as F(V(tF)), until the
end of the season E. The reproductive output
W(tF) is the reproductive mass at the end of
the season E, and this is used as a measure of
the plant fitness.
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behavioural or other basis. In order to elucidate the effect of
growth constraints on the optimal flowering time we compare
three types of growth: (1) exponential, (2) logistic and (3) West–
Brown–Enquist (WBE). The exponential (or linear) growth
model describes growth without constraints and has previously
been used in optimal control models (see, for example, King &
Roughgarden, 1982). The logistic model is a standard model of
constrained growth in mathematical biology, and has successfully
been applied to crops (Shi et al., 2013). The WBE model (2001)
is a more recent constrained growth model that has been vali-
dated with data on various organisms. Examples of growth con-
straints are self-shading by leaves and branches, costs for branches
and sibling competition (Fig. 1). These three models are
described further later.

We start from an ontogenetic growth function put forward by
Moses et al. (2008)

F ðV Þ ¼ AV a � BV b Eqn 1

(V, dry mass of the vegetative part of the plant; F(V), rate at
which new biomass is produced; AV a, first term corresponding
to assimilation of metabolic energy; BV b, second term corre-
sponding to maintenance costs such as respiration). Here F(V)/V
corresponds to dV/dt91/V; in other words the relative growth
rate (RGR). Productivity, as defined later, is equivalent to RGR
for exponential growth. Notation is according to Johansson et al.
(2013) to facilitate comparisons. There is no general answer to
how assimilation and respiration respond to increased productiv-
ity, which could be correlated to, for example, increased tempera-
ture and CO2 levels. We assume that A = P, where P is the
productivity of the environment where the plant is growing. This
is a flexible formulation that can be used to represent the three
different growth models described earlier: (1) by setting a = 1 and
B = 0 we obtain an exponential growth model (Shitaka & Hirose,
1993); (2) a logistic growth model (Deng et al., 2012) is obtained
by setting a = 1, B = P/Vmax and b = 2; and (3) the WBE growth
model by West et al. (2001) is obtained by setting a = 3/4,
B ¼ PV �1=4

max and b = 1.
Here Vmax is the asymptotic, or maximal mass, which we

assume not be influenced by the productivity parameter P. In the
ontogenetic growth model by West et al. (2001) the parameter P
is closely related to fundamental cellular properties, and accord-
ing to Gillooly et al. (2002) P(TK) / exp (�e/(kTK)) (e, average
energy for cellular metabolism; k, Boltzmann’s constant; TK,
absolute temperature in Kelvins). We assume that the productiv-
ity is constant during the growth season, but discuss how variable
productivity can be handled in an alternative model formulation
based on physiological time described later. The season starts at
t = S and ends at t = E, which means that the season length is
T = E� S.

We embed the growth function into a dynamic energy alloca-
tion model (reviewed by Iwasa, 2000). Produced biomass is parti-
tioned between the dry mass of the vegetative part of the plant
(V ) and the dry mass of the reproductive part (R) according to a
time-dependent control function u(t). We assume that the vege-
tative part grows according to:

dV

dt
¼ uðt ÞF ðV ÞwithV ðt0Þ ¼ V0 Eqn 2

and the reproductive part grows according to:

dR

dt
¼ ð1� uðt ÞÞF ðV Þ Eqn 3

We prove using optimal control theory that the functional
form which maximizes reproductive output for both constrained
and unconstrained growth will be of bang-bang type; that is, a
sudden switch from none to maximal reproductive investment
(Supporting Information Methods S1, Theorem 1; Cohen,
1971, 1976). The time point for the switch from vegetative
growth to reproduction is denoted flowering time, tF (cf
Johansson et al., 2013). We thus think of flowering as the initial
stage of the reproductive phase and that other important and
energy-demanding stages such as production and growth of seeds
occur later. In principle the model is silent on the exact timing
and nature of specific reproductive stages. Schaffer (1977) refers
to the switch as date of first flowering, also reflecting that flower-
ing is an early stage but leaving open how extended it is, and
more generally tF may be thought of as timing of maturation.
The timing of first flowering might be a poor predictor of the
timing of peak flowering, but peak flowering is more challenging
to measure in the field (CaraDonna et al., 2014). Mathematically,
this means that u(t) = 1 for t < tF and u(t) = 0 for t > tF. Because
we have this single switch it is easy to find analytic expressions for
the vegetative growth in all three growth models (Eqns S2a.1,
S2b.1, S2c.1 in Methods S2).

We equate the fitness of a strategy with its average lifetime
reproductive output (Metz et al., 1992). The optimal flowering
time t �F maximizes the reproductive output W, which has the form:

W ðt FÞ ¼
Z E

t F

F ðV Þdt ¼ F ðV ðt FÞÞðE � t FÞ Eqn 4

because F(V(t)) is assumed to be constant after the flowering
time (Fig. 1), implying F(V(t)) = F(V(tF)) for all t ≥ tF. This equa-
tion reflects the fact that all biomass growth after the onset of
flowering is allocated to reproductive structures. There is a life-
history trade-off between growth and reproduction. If reproduc-
tion (i.e. flowering) starts too early then the plant will not have
gained enough mass (or energy), but if reproduction is delayed
too long then the remaining season will be too short (Kozłowski,
1992). In the Supporting Information we describe how the opti-
mal flowering time is determined by differentiating the reproduc-
tive output (Eqns S2a.2, S2b.2, S2c.2 in Methods S2).

Alternative model formulation based on physiological time

Our model is originally formulated in calendar time, but here we
formulate it in physiological time. Many empirical models set
out to predict the seasonal timing of biological events based on
temperature sums or other measures of physiological time
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(Bonhomme, 2000; Wilczek et al., 2009). All three types of
growth presented earlier can be written in the form:

F ðV Þ ¼ dV

dt
¼ PðTKÞU ðV Þ Eqn 5

where P(TK) is a productivity function depending on temperature
in Kelvin, and U(V ) is unitless. For exponential growth
U(V ) = V, for logistic growth U(V ) = V(1� V/Vmax) and for
WBE growth U(V ) = V 3/4(1� (V/Vmax)

1/4). The rate at which
physiological time passes relative to calendar time is defined as:

ds
dt

¼ c�1PðTKÞ Eqn 6

where c is a process-dependent proportionality constant (van
Straalen, 1983). Alternatively, the aforementioned equation can
be written in the form:

sðt Þ ¼ c�1

Z t

S
PðTKðt 0ÞÞdt 0 Eqn 7

which shows that physiological time (s-time) depends on the pro-
ductivity, that is, s-time is proportional to the cumulative pro-
ductivity. Here, S is the start of the growth season in calendar
time, that is, the first time of the year when P(TK(t)) > 0, which,
in turn, defines the point at which the physiological time equals
zero. If P is a linearly increasing function of temperature (above a
certain baseline), where P is essentially zero at temperature zero,
then s(t) is well-approximated by the number of degree-days or
the temperature sum at day t (van Straalen, 1983). The season
length in physiological time is s(E), corresponding to the total
productivity integral over the season. Applying the chain rule, the
growth rate in physiological s-time becomes:

FsðV Þ ¼ dV

ds
¼ dV

dt
=
ds
dt

¼ PðTKÞU ðV Þ
c�1PðTKÞ ¼ cU ðV Þ Eqn 8

The derivation given earlier is valid independent of the rela-
tionship assumed between temperature and productivity, and
independent of how temperature varies during the growth season.
The dependencies will, however, affect the season length in physi-
ological time, s(E), and consequently also the optimal flowering
strategy. The potential benefits of using physiological time will
be considered in the Discussion section.

Results

We first study the effect of growth constraints and productivity
on the optimal flowering time (Fig. 2) and second we study the
effect of changing season length jointly with the growth con-
straints and productivity (Fig. 3).

Scenario 1: optimal flowering time and productivity

Here we assume a fixed season length T starting at time S = 0,
and ending at time E = T. In order to understand how growth

constraints influence optimal flowering times we first compare
the three different growth models and their influence on relative
growth rates (Fig. 2a–c), and vegetative mass trajectories
(Fig. 2d–f). Exponential growth corresponds to constant RGR
(Fig. 2a,d). Under logistic growth RGR decrease linearly with
mass (Fig. 2b) and under WBE growth RGR is a decreasing non-
linear function of mass with its sharpest decrease at low masses
(Fig. 2c). In the latter two cases, the vegetative mass trajectory is
saturating (Fig. 2e,f).

Optimal flowering time is an increasing function of productiv-
ity under exponential growth (Fig. 2g), but has an intermediate
maximum under logistic or WBE growth (Fig. 2h,i), and can
thus either increase or decrease when productivity increases (Eqns
S2a.3, S2b.3, S2c.3 in Methods S2). We show that there is an
unique intermediate maximum by investigating the sign of the
derivative of dtF/dP (Eqns S2a.4, S2b.4, S2c.4 in Methods S2).
Optimal flowering time is delayed in plants with exponential
growth when productivity increases because, by postponing
reproduction, they can grow large towards the end of the season
(circles in Fig. 2d) and are thereby able to produce more
resources for reproduction. Plants with constrained growth, by
contrast, cannot gain much in final size by postponing reproduc-
tion in productive environments. By flowering earlier (circles in
Fig. 2e,f), they can use the increased productivity to invest in
reproduction under a longer period of time. Advanced reproduc-
tion at increasing productivity is thus found both for WBE and
for logistic growth (Fig. 2h,i).

The differences in relative growth rate when productivity is
varied for logistic and WBE growth (Fig. 2b,c) also suggest an
explanation for why the corresponding optimal flowering time
curves have a maximum (Fig. 2h,i). At low productivity the rela-
tive growth rate has only a weak negative slope (brown curves in
Fig. 2b,c), and the plants can thus be expected to postpone flow-
ering when productivity increases in a similar fashion to plants
with exponential growth and a constant relative growth rate. At
higher productivity the relative growth rates have steeper, nega-
tive slopes (green curves in Fig. 2b,c) and therefore it instead pays
off to reproduce early and utilize a longer period with reproduc-
tive investment.

Scenario 2: optimal flowering time and season length

Changes in the length of the growth season may be due to varia-
tion in its start (S ) or its end (E ). We will first (case (1)) study
how season length influences optimal flowering in relation to the
start of the growth season, that is, on a relative time scale. We will
then assume S = 0 and E = T. We will then study the effects on
optimal flowering time given a scenario (case (2)) in which the
season is extended equally at both ends. Specifically, we then
assume that midseason is always at time t = 0, the beginning of
the season occurs at time S =�T/2 and the end of the season
occurs at time E = T/2, where T is the season length. For exam-
ple, if season length increases by 2 d, the start of the season is
advanced by 1 d and the end of the season is delayed by 1 d.
Fig. 3 shows how variation in productivity and season length
affects optimal flowering time for our three growth functions in
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these two cases. In case (1), the optimal flowering time is always
delayed (Fig. 3a–c) when the season length is increased. In other
words, increased season length always causes the optimal

flowering time to occur later in relation to the start of the season.
When the season length is increased in case (2), and productivity
is held constant, the optimal flowering time is still delayed for
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exponential growth (Fig. 3d), but advanced for logistic and WBE
growth, to the right of the thin black line where productivity is
high and season length is long (Fig. 3e,f). Increasing the season
length can delay the optimal flowering time, to the left of the thin
black line at low productivity and short seasons (Fig. 3e,f). If
instead season length is held constant and the productivity is
increased, the optimal flowering time is delayed under exponen-
tial growth (Fig 3a) but may be either advanced (above the black
line in Fig. 3b,c,e,f) or delayed (below the black line in Fig. 3b,c,
e,f) under constrained growth. This occurs because optimal flow-
ering time is a hump-shaped function of productivity as shown
above (the black line in Fig. 3b,c corresponds to the maximum in
Fig. 2h,i). Note that the productivity level that maximizes opti-
mal flowering time decreases with increasing season length (the
black line has a negative slope in Fig. 3b,c). In sum, the optimal
phenological response to increased season length depends on
whether growth is constrained or not. When growth is con-
strained, season length can influence the direction of the pheno-
logical response to increased productivity, and productivity can
influence the direction of the phenological response to a longer
season.

Discussion

Our results suggest that life-history strategies may explain varia-
tion in phenological responses to a changing climate. In essence
we suggest that when optimizing reproductive output, plants
with less constrained vegetative growth will respond to increasing
productivity (e.g. increasing temperature, rainfall, nitrogen or
CO2) by delaying their flowering time whereas plants with more
constrained vegetative growth may respond to increased produc-
tivity either by delaying or advancing their flowering time,
depending on the productivity and season length. Similarly,
when season length is extended equally at the start and the end of
the growing season, optimal flowering time is either delayed, for
unconstrained growth, or advanced, for constrained growth.
Growth is constrained in the logistic or WBE growth models
when productivity is high and/or season length is long, giving a
large vegetative mass.

Because growth rate depends on plant architecture, self-shad-
ing and metabolic costs, this work establishes new links between
phenological adaptation and fundamental plant traits. As an
example, species of annual forbs advanced their flowering times
whereas grass species delayed their flowering times in relation to
the start of the growth season when subjected to increased CO2

(Cleland et al., 2006). These opposing shifts may reflect different
physiological responses to environmental cues which are optimal
according to our model if increased CO2 increases productivity
and if the optimal flowering time in grasses is in the less con-
strained part of the growth curve whereas that of forbs is in the
more constrained part of the growth curve (Fig. 2). It has previ-
ously been shown that increased CO2 extends season length
(Reyes-Fox et al., 2014), possibly because increased CO2 level
means less water is lost through transpiration, which could pro-
mote senescence. In the experiments by Cleland et al. the start of
the season was equal for all plants, because it was controlled by

the first fall rains, and thus corresponds to our case (1) in Fig. 3.
According to our model, the optimal response to a longer season
is to flower later in relation to the start of the season, regardless of
whether growth is constrained or not (Fig. 3a–c). This would
then indicate that the grasses but not the forbs are responding in
the optimal direction in Cleland’s experiment. In this context it
should be noted that increasing temperatures and increasing CO2

might increase the season length, but other factors also associated
with global warming will likely shorten the growth season, such
as more frequent drought, which can increase mortality, and
cause increased variance in expected life span.

Our study focuses on changes in flowering times among
annual plants. The model, and the conclusions from our study,
may also be representative for timing of reproduction in other
annual organisms, including many insect species in temperate
and other areas characterized by seasonality. To what extent our
result also carries over to species with a perennial lifestyle is more
of an open question. For instance, the perennial plant Veratrum
tenuipetalum can reproduce clonally or sexually depending on
summer temperatures (Iler & Inouye, 2013), which makes it
challenging to compare it with a framework such as ours that
only considers flowering phenology. In general, although repro-
ductive timing often is tightly connected to energy allocation pat-
terns in annual organisms, it may be more or less decoupled from
growth phenology in perennial plants because of the use of stored
resources to produce flowers (Johnson, 1993; Debussche et al.,
2004). Dynamic energy models of perennial plants with vegeta-
tive, reproductive and storage compartments (Iwasa & Cohen,
1989; Mironchenko & Kozłowski, 2014) might be a good start-
ing point for further investigations. Under certain circumstances
the optimal switch from vegetative growth to reproduction in the
model considered here, would correspond to the optimal switch
from vegetative growth to storage in dynamic energy models
(Johansson et al., 2013). It should also be noted that the only
constraints on reproduction that we have considered here are sea-
son length and productivity. There are many other possible
obstacles to reproduction, for example, temporal mismatch for
pollination, seed dispersal and/or germination (Rafferty & Ives,
2011; Bolmgren & Eriksson, 2015; Ehrl�en et al., 2015). Consid-
ering poor synchronization with pollinators owing to climate
change, constrained reproduction would be an interesting
extension to this study.

We base all our calculations on a bang-bang control, where
first all biomass production is put into vegetative growth, and
from the flowering time (i.e. maturation time) until the end of
the season, all biomass production is put into reproductive
growth. Our use of a bang-bang control is supported by Cohen
(1976) who showed that with constrained growth, the optimal
allocation is to first put all resources to vegetative growth, and at
some time switch to put all resources into reproduction until the
end of the season. When survival was described instead by a
decreasing function, Cohen (1976) also found a bang-bang con-
trol; we give an alternative proof of bang-bang control with expo-
nentially decreasing survival corresponding to constant mortality
in Methods S1. Notwithstanding this, we regard bang-bang con-
trol as an approximation: although shifts from vegetative to
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reproductive growth have been shown to occur relatively fast
in some annual plants, for example Lupinus nanus (Pitelka,
1977), gradual transitions to reproductive growth appear more
common (Rathcke & Lacey, 1985; and reference therein). A
complex genetic network governs the crucial step from vegeta-
tive to reproductive growth (Huijser & Schmid, 2011), and
this complexity makes a sudden switch unlikely. In one empir-
ical test the timing of the sudden switch predicted by a model
similar to ours coincided closely with the gradual transition to
reproductive growth (King & Roughgarden, 1983). In our set-
ting, we have proved that the fitness-maximizing strategy is a
bang-bang control. This is not necessarily the case for other
model variants. We show that adding constant mortality – that
is, exponentially decreasing survival – does not change our
qualitative results (Fig. S1).

In order to compare the predictions of this model with
empirical data it is important to distinguish between changes
of the flowering time on a calendar scale and changes in rela-
tion to the start of the growth season. In our investigation of
effects of changed productivity (Fig. 2) the optimal flowering
time is measured in relation to the start of the growth season
(S = 0 and E = T), such that time refers to the age of the plant.
On a calendar time scale, changes of this relative flowering
time may be offset by a change in the start of the growth sea-
son. For example, if the growth season advances, a delayed
flowering time on the relative time scale may be manifested as
a nonchanging flowering time on the calendar time scale. In
scenarios with strongly advanced start of the season, we thus
predict that growth constraints may not necessarily flip the
direction of the optimal phenological response on a calendar
scale but rather influence whether the optimal response is to
advance more or less.

Interannual variation and climate change may affect productiv-
ity, as well as the start and the end of the season, and the latter
are often hard to define (Steltzer & Post, 2009). In our investiga-
tion of changed season length (Fig. 3), we considered two cases
where: (1) only the end the season is changed (S = 0 and E = T),
and (2) a constant midseason (and S =�T/2 and E = T/2). In
case (1) we found that a longer season always delays the optimal
flowering time for all types of growth, which is expected. In case
(2), where an increased season length is caused by an equally large
change in both ends of the season, we find an internal maximum
of the optimal flowering time under constrained growth. Thus
constrained growth can flip the direction of optimal phenological
response for both increasing productivity and season length. Any-
how, in a scenario with unequal rates of change of the start and
end of season, we would again need to translate the model predic-
tions to the calendar scale.

When interpreting our results, it is also important to note that
we only consider the optimal timing of reproduction, but not the
exact mechanisms that control this timing and that our focus is
on the ultimate explanations, not the proximate ones. Environ-
mental cues such as ambient temperature, winter chilling and day
length can, however, have a large impact on species phenologies.
For example, Wilczek et al. (2009) found that environmental
variation can produce different life histories in Arabidopsis

thaliana such as germinating in early winter and flowering in
early spring in the Mediterranean, germinating in late autumn
and flowering in late spring in northern Scandinavia, and rapid-
cycling ecotypes germinating in autumn, spring and summer
without vernalization in England. No significant differences were
found between the genotypes. When Wilczek et al. were looking
closer at the different life histories they found that A. thaliana
was always flowering after accumulating the same amount of
photothermal units; in other words, they behave in the same way
in physiological time. Thus, the observed differences in germina-
tion and flowering time for this species across environments are
likely to be caused by the mechanisms that control the species’
life history rather than local adaptation.

In order to avoid getting bogged down by details in seasonal
productivity variation, transforming from calendar to physiologi-
cal time can be useful for explaining how cues for germination
and flowering work (Wilczek et al., 2009), and why certain cues
are used and certain life histories are selected for in a given envi-
ronment. Our model is expressed in calendar time but could also
be expressed in physiological time (Eqns 5–8). As shown here,
the consequences of changed temperature or productivity for
optimal flowering times may be hard to predict when considered
in calendar time. This is not the case when viewed in physiologi-
cal time. The optimal physiological time for flowering depends
only on the cumulative productivity during the growth season,
where the cumulative productivity is similar to a temperature
sum if productivity is proportional to temperature above a certain
baseline. If the cumulative productivity is increasing, flowering is
delayed as measured in physiological time. Otherwise, flowering is
advanced. This effect can be seen both in Fig. 2(d–f), where the
optimal flowering time always occurs at a larger vegetative mass
(i.e. higher cumulative productivity) when productivity increases,
and in Fig. 3(a–c), where a longer season (i.e. increasing cumula-
tive productivity) always gives a later flowering time. Thus we do
not expect growth constraints to flip the optimal direction of
change for the physiological time for flowering. To transform
insights from physiological time to calendar time, it is necessary
to consider how productivity changes during the season and how
this affects the beginning and the end of the growing season.
Both perspectives are useful, and whether one should work with
calendar time or physiological time is ultimately determined by
the research question.

Most field studies on long-term phenological change among
annual plants show advancing first-flowering dates, usually
explained by an advancing spring (Fitter & Fitter, 2002; Menzel
et al., 2006; Parmesan, 2007; Primack et al., 2009). Our results
suggest that under constrained growth advanced flowering may
be an adaptive response to increased productivity, even if the start
of the season would remain unchanged. Global warming can
additionally increase the season length and we find when season
length is extended equally at the start and the end of the growing
season, optimal flowering is either delayed, for unconstrained
growth, or advanced, for constrained growth. These two findings
suggest that factors constraining growth, such as self-shading and
sibling competition, are worth considering in phenological
studies.
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Methods S1: Mortality and bang-bang theorem

We first show the influence of mortality on our model predictions as a robustness
check, and second we show that the optimal control is of bang-bang type, with
one unique switch, for annuals with constrained growth, fixed season length,
and constant mortality.

How mortality affects our results

As a robustness check we extend the model with constant background mortality
rate m. We assume that the vegetative part grows according to

dV

dt
= u(t)F (V ) with V (0) = V0, (S1.1)

and that the reproductive part grows according to

dR

dt
= (1− u(t)F (V ))s(t), (S1.2)

where
s(t) = e−mt (S1.3)

is the survival function and m is the mortality rate. The reproductive mass
depends on the survival, but the vegetative mass does not since we would oth-
erwise account for the survival twice. According to Cohen (1976) the optimal
control is a bang-bang control of reproduction. Below we provide an alterna-
tive proof of this fact, based on optimal control theory, showing also that there

1



will be one unique switch called the optimal flowering time t∗F (Theorem 1).
Therefore, the reproductive output is

W (t∗F ) =

∫ T

t∗F

F (V )s(t)dt =
F (V (t∗F ))

m

(
e−mt∗F − e−mT

)
,

where T the end of the season.
In Fig. S1 we show the optimal flowering time as a function of productivity

for a few different mortality rates. We find in Fig. S1a that there is no internal
maximum for the optimal flowering time, and in Fig. S1b,c that there is always
an internal maximum for intermediate productivity, regardless of the mortal-
ity. This indicates that (low) mortality rates does not qualitatively change our
results. Moreover, increasing the mortality always advances the optimal flow-
ering time (higher mortality implies that it is better to reproduce earlier since
then the risk of dying before reproduction decreases) and the effect of mortality
decreases as productivity increases.
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Figure S 1: Mortality decreases the survival, and affects the optimal flowering
times as a function of productivity. Mortality is m = 0, 1, 2, 3, corresponding to
no, low, intermediate and high mortality rate. The season length is E = 1 and
the default mass values are Vmax = 1 and V0 = 0.02.

In the case of exponential growth, when mortality is included in the form of a
survival function (Figure S1.a), we show how to find the optimal flowering time
t∗F analytically. In particular, in this case F (V ) = PV and hence, using the
bang-bang control in Theorem 1, the solution of (S1.1) becomes

V (t) = V0e
Pt

for 0 ≤ t ≤ tF , where tF is the flowering time. To find t∗F we maximize the
reproductive output

W (tF ) =
PV0

m
ePtF

(
e−mtF − e−mT

)

2



with respect to tF . Differentiating w.r.t. tF and setting the derivative to zero
yield

dW (tF )

dtF
=

PV0

m
ePtF

(
(P −m)e−mtF − Pe−mT

)
= 0.

This implies that the optimal flowering time for exponential growth with mor-
tality m is

t∗F = T − 1

m
log

(
P

P −m

)
.

This is a maximum when the second derivative w.r.t. tF of the reproductive
output is negative, that is

d2W (tF )

dt2F
=

PV0

m

(
e−mtF (P −m)2 − P 2e−mT

)
e−PtF < 0,

which holds true for tF = t∗F .
This proves that, in the case of exponential growth, increasing the mortal-

ity always advances the optimal flowering time t∗F , and the effect of mortality
decreases as productivity increases.

Proof of optimal flowering bang-bang control with con-
strained growth and constant mortality

The dynamic model for vegetative mass V = V (t) is given by

dV

dt
(t) = u(t)F (V (t)), 0 < t < T, V (0) = V0 > 0 (S1.4)

where T is the end of the season, F (V ) is the growth function and u(t) ∈ A is
the control, in which

A = {u(t) : [0, T ]→ [0, 1] and u(t) is measurable}

denotes the set of admissible controls. We will prove results on properties on
controls u(t) maximizing the reproductive output

W =

∫ T

0

(1− u(t))s(t)F (V (t))dt. (S1.5)

In particular, we prove the following theorem.
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Theorem 1. Suppose that the growth function F (V ) is positive, that dF
dV (V )

is a non-increasing function of V , and that the survival function is given by
s(t) = e−mt, where m ≥ 0 is a constant mortality. Let f(m,T ) = m

1−e−mT

with f(0, T ) = 1
T . Assume that u∗(t) is an optimal control maximizing the

reproductive output in (S1.5). If dF
dV (V0) > f(m,T ), then there exists an optimal

flowering time t∗F ∈ (0, T ) and u∗(t) is given by the bang-bang control

u∗(t) =

{
1 if 0 ≤ t ≤ t∗F
0 if t∗F < t ≤ T.

If dF
dV (V0) ≤ f(m,T ), then the optimal control is u∗(t) = 0 for all t ∈ [0, T ], that

is, the optimal strategy is to flower immediately.

Proof. We intend to apply the Pontryagin maximum principle. Since the sur-
vival function s(t) depends on time we first extend the dynamic model for
vegetative mass (S1.4) by regarding time t as an additional variable t̂(t) = t

satisfying the differential equation dt̂
dt (t) = 1 for 0 ≤ t ≤ T . Next, we define, for

any x1, x2, p1, p2 ∈ R, a ∈ [0, 1], the Hamiltonian

H(x1, x2, p1, p2, a) =

(
aF (x1)

1

)
·
(
p1
p2

)
+ (1− a)s(x2)F (x1)

= F (x1)s(x2) + p2 + aF (x1)(p1 − s(x2)).

Assume that u∗(t) is the optimal control for (S1.4), (S1.5) and let V ∗(t) be the
corresponding trajectory for vegetative mass. Then the Pontryagin maximum
principle, see e.g. Theorem 4.3 in Evans (1983), implies the existence of costates
p∗1(t), p∗2(t) : [0, T ]→ R , satisfying the adjoint equations with x1 = V and x2 = t

dp∗1
dt

(t) = −dH

dV
= −dF

dV
(V ∗(t))s(t)− u∗(t)

dF

dV
(V ∗(t))(p∗1(t)− s(t)), (S1.6)

dp∗2
dt

(t) = −dH

dt
= m(1− u∗(t))s(t)F (V ∗(t))

with terminal conditions

p∗1(T ) = 0, p∗2(T ) = 0.

The second adjoint equation, related to dt̂
dt (t) = 1, will not be used below. Using

the maximum principle we get

H(V ∗(t), t, p∗1(t), p∗2(t), u∗(t))

= max
a∈[0,1]

{F (V ∗(t))s(t) + p∗2(t) + aF (V ∗(t))(p∗1(t)− s(t))} .

Since p∗1(T ) = 0 and s(T ) > 0 we deduce, using continuity of solutions of (S1.6),
that p∗1(t) < s(t) for t ≤ T close enough to T . Define t0 as the smallest number
in [0, T ] such that p∗1(t) < s(t) holds for all t0 < t ≤ T . Using F (V ) > 0 and

4



that u∗(t) maximizes H we see that as long as t0 < t ≤ T we have u∗(t) = 0.
Therefore, the costate equation (S1.6) simplifies to

dp∗1
dt

(t) = −dF

dV
(V ∗(t))s(t), for t0 < t ≤ T. (S1.7)

We assume in the rest of the proof that m > 0, however, the case m = 0 follows
by similar calculations. Integrating (S1.7) from t0 to T yields

p∗1(t0) =

∫ T

t0

dF

dV
(V ∗(t))s(t)dt =

dF

dV
(V ∗(t0))

∫ T

t0

e−mtdt (S1.8)

=
1

m

dF

dV
(V ∗(t0))

[
e−mt0 − e−mT

]
.

If t0 = 0, then we must have p∗1(0) ≤ s(0) = 1 and so, by (S1.8),

dF

dV
(V0) ≤ m

1− e−mT
. (S1.9)

If t0 > 0, then p∗1(t0) = s(t0) = e−mt0 and (S1.8) implies

dF

dV
(V ∗(t0)) =

m

1− em(t0−T )
. (S1.10)

By assumption dF
dV is a non-increasing function of V and F (V ) is positive. There-

fore, from (S1.4) it follows that V0 ≤ V ∗(t0) and thus dF
dV (V0) ≥ dF

dV (V ∗(t0)).
Moreover, since t0 > 0 we have m

1−em(t0−T ) > m
1−e−mT and hence

dF

dV
(V0) >

m

1− e−mT
. (S1.11)

We can conclude that (S1.9) holds if and only if t0 = 0, and (S1.11) holds if and
only if t0 > 0. Setting t∗F = t0, this proves the result on when it is optimal to
flower immediately.

It remains to show that the optimal control is of bang-bang type and that
there exists only one switch. In particular, we will show that the optimal control
is given by

u∗(t) =

{
1 if 0 ≤ t ≤ t0
0 if t0 < t ≤ T.

(S1.12)

To do so we first observe that if t0 = 0 then u∗(t) = 0 for all t ∈ (0, T ] and,
therefore, we are done.

Assume that t0 > 0. If we can show that p∗1(t) > s(t) for all t ∈ [0, t0), then
u∗(t) = 1 for all t ∈ [0, t0) and, therefore, we are done. From (S1.10) and since
0 < em(t0−T ) < 1, we find the inequality

dF

dV
(V ∗(t0)) > m. (S1.13)
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We also know that dF
dV is a non-increasing function of V , and since F (V ) is

positive it follows from (S1.4) that V is a non-decreasing function of t. Therefore,
(S1.13) yields

dF

dV
(V ∗(t)) > m (S1.14)

for all t ∈ [0, t0). Since u∗(t) = 0 if p∗1(t) < s(t) = e−mt, and u∗(t) = 1 if
p∗1(t) > s(t) = e−mt, we see that u∗(t)(p∗1(t)emt − 1) ≥ 0 for all t ∈ [0, T ].
Hence, (S1.14) yields

dF

dV
(V ∗(t))

[
1 + u∗(t)(p∗1(t)emt − 1)

]
> m

for all t ∈ [0, t0). We obtain, according to (S1.6)

−dp∗1
dt

(t) =
dF

dV
(V ∗(t))

[
e−mt + u∗(t)(p∗1(t)− e−mt)

]
> me−mt = −ds

dt
(t)

which is equivalent to
dp∗1
dt

(t) <
ds

dt
(t)

for all t ∈ [0, t0). Recalling that p∗1(t0) = s(t0), the above inequality shows that
(S1.12) is true. This proves the theorem for t∗F = t0.

Methods S2: Analysing the optimal flowering time

Here we go through the details in finding the optimal flowering time t∗F that
maximizes reproductive output W , as well as a few criteria that needs to be
fulfilled. There are three steps in the derivations:

1. Find a solution V (t) for the growth of the vegetative mass from the dy-
namics dV/dt = u(t)F (V ) with V (0) = V0. The solution is easily found
for our growth types F (V ).

2. Find the reproductive output. Using Theorem 1 we have the bang-bang
reproduction

u(t) =

{
1 if 0 ≤ t ≤ tF
0 if tF < t ≤ T.

This means that the vegetative mass does not grow after the flower-
ing time tF , and the reproductive mass does not grow before time tF .

The reproductive output in this case is: W (tF ) = F (V (tF ))
∫ T

tF
dt =

F (V (tF ))(T − tF ), where T is the end of season.

3. Finally, in order to find the optimal flowering time t∗F we solve dW/dtF =
0. We also need to ascertain that d2W/dt∗F

2 < 0 so that the optimal
flowering time is a maximum, exclude the possibility of more than one
local maximum, and the possibility of a maximum on the boundary.
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We are interested in three types of growth:

(a) Exponential growth: F (V ) = PV ,

(b) Logistic growth: F (V ) = PV (1− V/Vmax), and

(c) West-Brown-Enquist growth: F (V ) = PV 3/4(1− (V/Vmax)1/4).

(a) Exponential growth

The plant grows according to

dV

dt
= u(t)F (V ) = u(t)PV,

where the allocation to vegetative growth is u(t). Assuming the bang-bang
control the differential equation has the solution

V (t) = V0e
Pt, (S2a.1)

for 0 ≤ t ≤ tF where V0 is the initial mass at time t = 0. The reproductive
output, with the bang-bang control having flowering time tF , is easy to find
since F (V (tF )) is constant after flowering,

W (tF ) = F (V (tF ))

∫ T

tF

dt = PV0e
PtF (T − tF ). (S2a.2)

To find the optimal flowering time we differentiate this w.r.t. tF and set the
derivative to zero,

dW

dtF
= −PV0e

PtF (P (tF − T ) + 1) = 0.

The solution is the optimal flowering time

t∗F = T − 1

P
.

This is a maximum when the second derivative w.r.t. tF of the reproductive
output,

d2W

dtF
2 = −V0P

2ePtF (P (tF − T ) + 2), (S2a.3)

is negative, which is the case when tF = t∗F = T − 1
P . There is no productivity

that maximizes tF since the derivative of t∗F w.r.t P is always positive, meaning
that the optimal flowering time always increases with increasing productivity,

dt∗F
dP

=
d

dP

(
T − 1

P

)
=

1

P 2
> 0. (S2a.4)
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(b) Logistic growth

The plant grows according to

dV

dt
= u(t)PV

(
1− V

Vmax

)
.

Assuming the bang-bang control the differential equation has the solution

V (t) =
VmaxV0e

Pt

Vmax + V0(ePt − 1)
, (S2b.1)

for 0 ≤ t ≤ tF , where Vmax is the maximum vegetative mass. The reproductive
output at the flowering time tF is

W (tF ) = F (V (tF ))

∫ T

tF

dt = PV (tF )

(
1− V (tF )

Vmax

)
(T − tF ), (S2b.2)

and we find the optimal flowering time t∗F when dW/dtF = 0. The derivative
has the same sign as

f(tF ) = Vmax − V0 − VmaxPT + PTV0 + P (Vmax − V0)tF + V0(1 + PT )ePtF

− PV0tF e
PtF = 0,

assuming that Vmax > V0. This equation has a unique solution for tF , which
we will only find numerically. The solution is unique because

df(tF )

dtF
= P (Vmax − V0) + (T − tF )P 2V0e

PtF > 0, (S2b.3)

since Vmax > V0 and T > tF . Therefore f(tF ) is a monotonically increasing
function and there can be only one or zero solutions to f(tF ) = 0. Assuming
that V0 is small, there exists a unique solution, which is the optimal flowering
time t∗F , since W (tF ) grows initially at tF = 0, and decreases at tF = T .

Now we show that increasing the productivity can either delay or advance
the optimal flowering time. By implicit derivation of f(tF ) we find that the sign
of dt∗F /dP is the same as the sign of

S = (T − tF )(Vmax − V0)− (T + PtF (T − tF ))V0e
PtF . (S2b.4)

The first term is positive since T > tF and Vmax > V0. For low values of P we
get dt∗F /dP > 0 (delayed optimal flowering) since the second negative term is
small, but for large values of P we get dtF /dP < 0 (advanced optimal flowering)
since the second negative term is dominating.
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(c) West-Brown-Enquist growth

The plant grows according to (West et al., 2001)

dV

dt
= u(t)PV 3/4

(
1− (V/Vmax)

1/4
)
.

Assuming the bang-bang control the differential equation has the solution

V (t) = Vmax

(
1−

[
1−

(
V0

Vmax

)1/4
]

exp

(
−Pt

4Vmax
1/4

))4

,

for 0 ≤ t ≤ tF . The reproductive output is

W (tF ) = PV (tF )3/4

(
1−

(
V (tF )

Vmax

)1/4
)

(T − tF ), (S2c.2)

and we find the optimal flowering time when dW/dtF = 0. The derivative has
the same sign as

f(tF ) = a + 4ab(T − tF )− (1 + bT )ebtF + btF e
btF = 0,

where

a =

[
1−

(
V0

Vmax

)1/4
]

and b =
P

4Vmax
1/4

.

This equation has a unique solution for the optimal flowering time t∗F , which we
will only find numerically. The solution is unique because

df(tF )

dtF
= −4ab− (T − tF )b2ebtF < 0, (S2c.3)

since Vmax > V0 and T > tF . Therefore f(tF ) is a monotonically decreasing
function and there can be only one or zero solutions to f(tF ) = 0. Assuming
that V0 is small, there exists a unique solution, which is the optimal flowering
time t∗F , since W (tF ) grows initially at tF = 0, and decreases at tF = T .

Now we show that increasing the productivity can either delay or advance
the optimal flowering time. By implicit derivation of f(tF ) we find that the sign
of dt∗F /dP is the same as the sign of

S = 4a
db

dP
(T − tF )− (T + btF (T − tF ))

db

dP
ebtF .

The first term is positive since T > tF , db/dP > 0 and a > 0. For low values
of b we get dtF /dP > 0 (delayed optimal flowering) since the second negative
term is small, but for large values of b we get dtF /dP < 0 (advanced optimal
flowering) since the second negative term is dominating.
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