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Abstract. The global aerosol–climate model ECHAM-

HAMMOZ was used to investigate changes in the aerosol

burden and aerosol radiative effects in the coming decades.

Four different emissions scenarios were applied for 2030

(two of them applied also for 2020) and the results were

compared against the reference year 2005. Two of the sce-

narios are based on current legislation reductions: one shows

the maximum potential of reductions that can be achieved

by technical measures, and the other is targeted to short-

lived climate forcers (SLCFs). We have analyzed the re-

sults in terms of global means and additionally focused

on eight subregions. Based on our results, aerosol burdens

show an overall decreasing trend as they basically follow

the changes in primary and precursor emissions. However,

in some locations, such as India, the burdens could increase

significantly. The declining emissions have an impact on the

clear-sky direct aerosol effect (DRE), i.e. the cooling effect.

The DRE could decrease globally 0.06–0.4 W m−2 by 2030

with some regional increases, for example, over India (up

to 0.84 W m−2). The global changes in the DRE depend on

the scenario and are smallest in the targeted SLCF simula-

tion. The aerosol indirect radiative effect could decline 0.25–

0.82 W m−2 by 2030. This decrease takes place mostly over

the oceans, whereas the DRE changes are greatest over the

continents. Our results show that targeted emission reduc-

tion measures can be a much better choice for the climate

than overall high reductions globally. Our simulations also

suggest that more than half of the near-future forcing change

is due to the radiative effects associated with aerosol–cloud

interactions.

1 Introduction

The net radiative forcing caused by atmospheric aerosol par-

ticles originating from human activities is currently negative,

thereby offsetting a major, yet poorly quantified, fraction of

the global warming caused by anthropogenic greenhouse gas

emissions (Boucher et al., 2013; Smith and Mizrahi, 2013).

The lifetime of atmospheric aerosol particles is relatively

short, which has two major implications. Firstly, the cli-

matically important aerosol properties vary greatly in both

space and time in the atmosphere (e.g. Kaufman et al., 2002).

Secondly, and perhaps even more importantly, atmospheric

aerosol concentrations respond rapidly to any changes in

emissions of either primary aerosol particles or aerosol pre-

cursor gases.

Overall increases in aerosol emissions during the past

decades have contributed to the so-called global dimming,

i.e. the reduction of shortwave radiation reaching the surface,

followed by some brightening due to later emission reduc-

tions in many regions of the world (e.g. Wild, 2009; Cermak

et al., 2010; Haywood et al., 2011). In the near future, there

is a pressure for further aerosol and aerosol precursor emis-

sion reductions due to the adverse health effects by atmo-

spheric aerosol particles (e.g. Pope and Dockery, 2006; Rao

et al., 2012). This has raised concerns about losing a signif-

icant fraction of the current aerosol cooling effect (Brasseur

and Roeckner, 2005; Arneth et al., 2009; Raes and Seinfeld,

2009) and generated discussions on how to optimally real-

ize future emission reductions (Löndahl et al., 2010; Shin-

dell et al., 2012; Shoemaker et al., 2013; Smith and Mizrahi,

2013; Partanen et al., 2013).
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The discussed mitigation strategies focus on reduction of

black carbon (BC). While BC itself has an apparent warming

effect in the present-day climate (e.g. Jacobson, 2010; Jones

et al., 2011; Bond et al., 2013; Boucher et al., 2013), the usu-

ally co-emitted sulfur and organic compounds are effective

cooling agents, substantially complicating the design of op-

timal emission reductions (Kopp and Mauzerall, 2010; Ra-

mana et al., 2010; Wang et al., 2015). Furthermore, besides

having a direct radiative effect (DRE) on solar radiation, par-

ticles containing BC can act as cloud condensation and ice

nuclei (Prenni et al., 2009; Leaitch et al., 2010). The influ-

ence of BC emission changes on clouds and climate is po-

tentially important yet poorly quantified (Chen et al., 2010a;

Bahadur et al., 2012; Bond et al., 2013).

The relation between future aerosol emission changes, ra-

diative forcing and climate has been investigated both glob-

ally (Kloster et al., 2008; Menon et al., 2008; Unger et al.,

2009; Chen et al., 2010b; Bellouin et al., 2011; Makkonen

et al., 2012; Gillett and Salzen, 2013; Levy et al., 2013; Smith

and Bond, 2014; Wang et al., 2015) and over some continen-

tal regions (Mickley et al., 2012; Péré et al., 2012; Sillmann

et al., 2013). While demonstrating potentially large regional

effects, very few of these studies have simultaneously con-

sidered the following issues together: the direct and indirect

aerosol effects, the role of different world regions’ emissions

in these effects and contrasting emission changes reflecting

alternative emission control strategies. In this paper, we aim

to bring new insight into these issues by investigating near-

future changes in the aerosol direct and indirect radiative

forcing globally as well as over a number of selected world

regions as a result of emission changes according to four re-

cently developed emission scenarios. The specific questions

we are searching answers for are the following:

– how much is the aerosol radiative effect, or the radia-

tive forcing by aerosols, expected to change during the

next couple of decades compared with the present-day

value?

– how do these changes differ over different world re-

gions?

– what are the relative roles of direct and indirect effects?

– to what extent are these patterns influenced by targeted

emission reductions?

The paper is structured as follows: first, the model and

the emission modifications are described in Sect. 2; Sect. 3

presents a detailed analysis of the results and explains the

emission reductions influences to the climate, followed by

Sect. 4, in which the main conclusions are listed and further

steps are discussed.

2 Methods

2.1 Model description

The main tool in this work is the global aerosol–climate

model ECHAM-HAMMOZ (version ECHAM5.5-HAM2.0)

(Zhang et al., 2012). This model version has the HAM

aerosol module (Stier et al., 2005), which includes the

M7 aerosol microphysical module by Vignati et al. (2004).

ECHAM-HAMMOZ simulates all the major aerosol sources

(both natural and anthropogenic), microphysical processes

and sinks. It predicts the evolution of seven interacting inter-

nally and externally mixed aerosol modes in terms of their

size distribution and composition. The simulated aerosol

components are sulfate, BC, organic carbon (OC), sea salt

and mineral dust. The aerosol module is coupled with the

host model’s large-scale cloud scheme (no influence on

convective microphysics) and radiation module; thus, both

the direct and indirect aerosol effects are simulated online

(Lohmann and Hoose, 2009). The cloud droplet activation

is calculated using a parametrization by Abdul-Razzak and

Ghan (2000).

The aerosol characteristics simulated by ECHAM-

HAMMOZ have been evaluated in several previous studies.

For example, ECHAM-HAMMOZ was included in the Ae-

roCom model intercomparison exercise analyzing the life cy-

cles of dust, sea salt, sulfate, black carbon and particulate

organic matter in 16 global aerosol models (e.g Huneeus

et al., 2011; Mann et al., 2014; Tsigaridis et al., 2014).

Furthermore, Zhang et al. (2012) evaluated the ECHAM5-

HAM2 version, which is used in this study, against the Aero-

Com models and a large range of atmospheric measurements.

These studies have shown that ECHAM-HAMMOZ can re-

produce the main aerosol characteristics realistically. There

are, however, still some deficiencies in the model, as was

pointed out by the study from Zhang et al. (2012): “(i) pos-

itive biases in AOD over the ocean, (ii) negative biases in

AOD and aerosol mass concentration in high-latitude regions

and (iii) negative biases in particle number concentration, es-

pecially that of the Aitken mode, in the lower troposphere

in heavily polluted regions”. However, in this study, we do

not concentrate on model evaluation as such (this has been

already partly done in Henriksson et al., 2014), although we

do compare our simulated aerosol burdens, lifetime and ra-

diative effects to several previous model studies.

2.2 Emissions

In this work, new emission modules were implemented to

ECHAM-HAMMOZ and some of the old ones were updated.

In the following sections, the new and modified modules are

described in more detail. The global emissions maps for BC,

OC and sulfur dioxide (SO2) based on the new emissions are

shown in the Supplement (Figs. S1, S2 and S3). Note that

volcanic, dimethyl sulfide, dust and sea salt emissions are left
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Table 1. Yearly emissions fluxes for different sources, continental anthropogenic emission scenarios and aerosol species (GFED denotes the

wildfire emissions): black carbon (BC), organic carbon (OC) and sulfuric dioxide (SO2). The different geophysical areas are shown in Fig. 1.

Note: the GFED emissions do not include agricultural waste burning sector because it is included in the GAINS emissions.

Globe Eu India W-China E-China Africa E-USA W-USA S-America

BC emissions

Refe2005 [Tg a−1] 5.26 0.56 0.83 0.56 1.40 0.99 0.12 0.25 0.25

CLEC2020 [Tg a−1] 5.12 0.35 0.99 0.64 1.32 1.14 0.09 0.15 0.24

CLEC2030 [Tg a−1] 5.17 0.32 1.12 0.71 1.15 1.22 0.10 0.13 0.25

CLECC2020 [Tg a−1] 4.96 0.35 0.94 0.61 1.26 1.09 0.10 0.17 0.24

CLECC2030 [Tg a−1] 4.88 0.37 0.99 0.63 1.01 1.10 0.14 0.20 0.25

BCAdd2030 [Tg a−1] 2.74 0.14 0.59 0.38 0.54 0.76 0.05 0.08 0.13

MTFR2030 [Tg a−1] 2.55 0.11 0.54 0.36 0.53 0.76 0.04 0.05 0.09

Aviation 2005 [Gg a−1] 0.53 0.12 0.01 0.01 0.04 0.03 0.06 0.13 0.02

Aviation 2020 [Gg a−1] 0.96 0.21 0.02 0.01 0.07 0.05 0.11 0.23 0.04

Aviation 2030 [Gg a−1] 1.24 0.27 0.03 0.02 0.09 0.07 0.14 0.29 0.05

Ships 2005 [Gg a−1] 140.44 16.07 5.58 0.01 6.74 14.87 4.15 10.87 5.78

Ships 2020 [Gg a−1] 161.37 18.46 6.41 0.02 7.75 17.08 4.77 12.49 6.65

Ships 2030 [Gg a−1] 169.35 19.38 6.73 0.02 8.13 17.92 5.00 13.11 6.97

GFED 2005 [Gg a−1] 181.74 0.01 0.06 0.07 0.46 168.57 0.11 0.20 3.91

OC emissions

Refe2005 [Tg a−1] 13.59 0.72 2.71 1.81 3.60 3.22 0.25 0.44 0.61

CLEC2020 [Tg a−1] 13.56 0.56 2.89 1.90 3.04 3.85 0.23 0.34 0.63

CLEC2030 [Tg a−1] 12.97 0.53 2.87 1.87 2.28 4.08 0.30 0.26 0.64

CLECC2020 [Tg a−1] 13.01 0.57 2.72 1.79 2.85 3.66 0.22 0.37 0.63

CLECC2030 [Tg a−1] 12.06 0.60 2.53 1.65 2.02 3.69 0.41 0.30 0.65

BCAdd2030 [Tg a−1] 4.97 0.30 0.92 0.58 1.12 1.20 0.13 0.21 0.32

MTFR2030 [Tg a−1] 2.44 0.14 0.50 0.30 0.55 0.71 0.05 0.07 0.09

Ships 2005 [Gg a−1] 149.49 17.11 5.94 0.02 7.17 15.82 4.41 11.57 6.15

Ships 2020 [Gg a−1] 171.33 19.60 6.81 0.02 8.23 18.13 5.06 13.26 7.06

Ships 2030 [Gg a−1] 180.31 20.63 7.16 0.02 8.66 19.08 5.33 13.96 7.43

GFED 2005 [Gg a−1] 1352.67 0.18 0.51 0.67 3.80 1247.37 1.09 1.64 31.12

SO2 emissions

Refe2005 [Tg a−1] 92.79 11.93 6.97 4.85 33.01 7.81 4.70 12.06 2.63

CLEC2020 [Tg a−1] 77.86 6.01 12.03 7.20 33.60 5.89 1.68 4.15 2.66

CLEC2030 [Tg a−1] 79.88 6.24 17.48 9.89 29.36 5.86 1.38 3.70 3.00

CLECC2020 [Tg a−1] 69.91 5.27 10.51 6.39 30.00 5.41 1.50 3.58 2.56

CLECC2030 [Tg a−1] 55.64 4.62 10.90 6.08 19.50 4.49 0.94 2.61 2.51

BCAdd2030 [Tg a−1] 77.84 6.18 17.00 9.63 28.49 5.69 1.37 3.65 2.94

MTFR2030 [Tg a−1] 19.66 1.90 1.95 1.24 7.87 1.81 0.46 1.30 1.34

Ships 2005 [Tg a−1] 13.00 1.49 0.52 0.00 0.62 1.38 0.38 1.01 0.54

Ships 2020 [Tg a−1] 6.63 0.76 0.26 0.00 0.32 0.70 0.20 0.51 0.27

Ships 2030 [Tg a−1] 6.30 0.72 0.25 0.00 0.30 0.67 0.19 0.49 0.26

GFED 2005 [Gg a−1] 162.99 0.02 0.07 0.08 0.51 149.40 0.12 0.22 3.94

unmodified and follow the methods presented in Stier et al.

(2005) and Zhang et al. (2012).

We analyzed the emissions and simulation results both

globally and over eight different geographical regions.

These regions, i.e. western United States (W-USA), eastern

United States (E-USA), South America (S-America), Eu-

rope, Africa, India, western China (W-China) and eastern

China (E-China), are shown in Fig. 1. The emission fluxes

for different sources, scenarios and years are represented in

Table 1.
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Figure 1. The separately analyzed areas: western United States (W-

USA), eastern United States (E-USA), South America (S-America),

Europe, Africa, India, western China (W-China) and eastern China

(E-China).

2.2.1 Continental anthropogenic emissions

For continental anthropogenic emissions, we applied grid-

ded data sets based on the GAINS (Greenhouse gas – Air

pollution Interactions and Synergies) model (Amann et al.,

2011), operated by the International Institute for Applied

Systems Analysis (IIASA, http://gains.iiasa.ac.at). Globally,

the GAINS model considers 162 geographical regions and

includes all the major economic sectors. The principal statis-

tical data used in the model for the base year (2005) in our

simulations (simulation Refe2005) originate from the Inter-

national Energy Agency (IEA) and The Statistical Office of

the European Communities (EUROSTAT), whereas for agri-

culture the data are from United Nations Food and Agricul-

ture Organization. We have used 2005 as a reference year as

emissions in this year have been well evaluated and the emis-

sions do not change significantly between 2005 and 2015 for

BC and OC (Granier et al., 2011). Over the same time period,

SO2 emissions have been estimated to slightly decrease glob-

ally (10–15 %), although regionally, e.g. in India and China,

the emissions may have increased (Klimont et al., 2013). For

comparison of GAINS emissions against for example repre-

sentative concentration pathways (RCP), see Granier et al.

(2011).

In addition to the reference simulation, we considered four

scenarios drawing on the energy projections presented in the

World Energy Outlook 2009 (IEA, 2009) and including dif-

ferent assumptions of legislative and technological devel-

opments in the next few decades. The CLEC scenario in-

cludes all currently agreed air pollution policies and legis-

lation and estimates impacts on emissions in 2020 and 2030

(simulations CLEC2020 and CLEC2030 respectively). The

CLECC scenario includes these same policies but is further

designed to keep the total forcing due to long-lived green-

house gases at 450 ppm CO2-equivalent level by the end of

the century via CO2 mitigation measures mostly targeting the

energy and industrial sectors (simulations CLECC2020 and

CLECC2030) – this scenario relies on the 2 ◦C (450 ppm)

energy scenario developed by IEA (IEA, 2009). The main

reductions in aerosol species between CLEC and CLECC

occur in the residential, transport, energy and industry sec-

tors and are the result of shifts away from the use fossil

fuels as well as improvements in energy efficiency (IEA,

2009). In addition, two more scenarios for 2030 were used.

The BCAdd scenario targets the short-lived climate forcers

(SLCFs) by including a portfolio of most important measures

that could yield the largest reductions in their global radiative

forcing in 2030 (simulation BCadd2030). The details of such

scenario have been described in UNEP (2011) and Shindell

et al. (2012). In short, the principles behind the development

of the BCAdd scenario are a selection of measures which

result in net reduction of radiative forcing calculated using

pollutant-specific Global Warming Potential values (UNEP,

2011). The measures reduce the emissions of not only BC

but also OC, carbon monoxide (CO), non-methane volatile

organic compounds and nitrogen oxides (NOx), and the re-

duced amounts vary across the measures. Key air pollutant

measures include advanced emission standards on diesel en-

gines (including diesel particulate filters), clean cookstoves,

pellet stoves and boilers, more efficient brick kilns and ban

of agricultural burning. Thus, in terms of species used here,

the reductions target BC and OC emissions. Measures with

a relatively small net impact or increase in radiative forcing

have been excluded from this portfolio. Lastly, the maximum

technically feasible reduction (MTFR) scenario implements

the maximum reduction potential of anthropogenic aerosol

and SO2 emissions with currently available technologies by

the year 2030 (simulation MTFR2030). The MTFR scenario

introduces the best available technology to a maximum ex-

tent while ignoring any potential economic and political bar-

riers. In this scenario, no consideration is given to the di-

rection of the change in aerosol radiative forcing, so mea-

sures that reduce strongly the emissions of SO2, e.g. fuel

gas desulfurization, are also included. The emission model

used includes the end of pipe measures that remove pollu-

tants from the exhaust. This means that it assumes that the

use of most advanced particulate filters will reduce emissions

of primary particular matter, selective catalytic reduction in-

stallations will bring NOx emissions down from industrial

boilers, etc. For more detailed description of the current leg-

islation and the MTFR scenarios, see e.g. Cofala et al. (2007)

and Klimont et al. (2009). More information about an over-

all emission scenario comparison can be found from Amann

et al. (2013).

In this study, the detailed GAINS sectoral emissions were

aggregated into six key categories: (1) agriculture (waste

burning on fields), (2) residential and commercial combus-

tion, (3) power plants, energy conversion, extraction, (4) in-

dustry (combustion and processing), (5) surface transporta-

tion and (6) waste. In addition, an extra sector for other SO2

emissions not covered separately in GAINS was included

(mainly industrial sources not included in the fourth cate-

gory). Each of the sectors were allocated into a 0.5◦× 0.5◦

Atmos. Chem. Phys., 15, 5501–5519, 2015 www.atmos-chem-phys.net/15/5501/2015/
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grid. The emissions from agriculture, residential and com-

mercial combustion, surface transportation and waste sectors

were emitted at the surface level. The energy sector emis-

sions were released into the following model levels: 51.25 %

to second lowest level, 45.3 % to third lowest level and

3.45 % to fourth lowest level. The industrial sector and the

extra sector for SO2 emissions had the same vertical emis-

sion height distribution: 95 % to surface and 5 % to second

lowest level. The emission heights were based on Bieser et al.

(2011).

By default, GAINS provides only the total annual emis-

sions for all sectors. Considering the importance of tempo-

ral resolution for few key sectors, we developed monthly

estimates for power plants and residential combustion.

Specifically for the latter, we applied the method devel-

oped by Streets et al. (2003), who calculated the operating

hours for stoves based on monthly mean temperature, i.e.

< 0 ◦C⇒ 16 h d−1, 0–5 ◦C⇒ 12 h d−1, 5–10 ◦C⇒ 6 h d−1

and > 10 ◦C⇒ 3 h d−1. In our approach, the monthly mean

temperatures were obtained from the Climatic Research Unit

TS 3.1 data set (Harris et al., 2014) and the calculations were

done in each grid box separately. Since our aim was to study

the scenarios in current day climate conditions, the tempera-

tures from 2005 were used also for the scenarios.

2.2.2 Aviation emissions

We implemented into ECHAM-HAMMOZ the monthly avi-

ation emission produced in QUANTIFY (Quantifying the

Climate Impact of Global and European Transport Systems)

project (Lee et al., 2005; Owen et al., 2010). Concerning the

aerosol species and precursors of interest in our work, only

BC mass and number concentration are available (no data

for OC or SO2). The data are provided on a 1◦ resolution

grid and on 23 levels using 610 m vertical steps. Since the

QUANTIFY database provides emissions only for year 2000,

we scaled the emission by 1.3355 in 2005, by 2.4 in 2020 and

by 3.1 in 2030. These scaling factors were estimated based

in Fig. 6 in Lee et al. (2010).

2.2.3 Wildfire emissions

The Global Fire Emissions Database (GFED) data set for the

wildfire emissions was updated to version 3 (Giglio et al.,

2010; van der Werf et al., 2010). The data have a 0.5◦ spatial

resolution and are on a monthly time resolution. To make the

emissions height dependent, the same approach as used by

Dentener et al. (2006) with AeroCom emissions was applied.

In this approach, based on location and type, the emissions

are divided into six altitude regimes: 0–100, 100–500 m, 0.5–

1, 1–2, 2–3 and 3–6 km. GFED 3 data set includes six dif-

ferent sectors: (1) deforestation and degradation fire emis-

sions, (2) savanna fire emissions, (3) woodland fire emis-

sions, (4) forest fire emissions, (5) agricultural waste burn-

ing and (6) tropical peatland burning (confined to Indonesia

and Malaysian Borneo) (van der Werf et al., 2010). The fifth

sector can be also found in the GAINS model output (see

Sect. 2.2.1) and in this work the GAINS agriculture sector

was used. Moreover, for all simulated years, the 2005 GFED

emissions were used. The yearly emissions are represented

in Table 1.

2.2.4 Shipping emissions

The international ship emissions used here were based on the

improved ICOADS (International Comprehensive Ocean-

Atmosphere Data Set) data by Wang et al. (2008). The

ICOADS data set presents only a proxy grid on a 0.1◦ hor-

izontal resolution, i.e. the data set gives the fraction of total

global ship emissions that is emitted at each grid cell. The

final gridded emissions were obtained by using the global

proxy with the values from RCP 8.5 (Riahi et al., 2007) (for

2005, 2020 and 2030 separately). The sensitivity of the re-

sults to the chosen RCP was tested by repeating the refer-

ence simulation (Refe2005) using RCP 2.6 emissions. How-

ever, the difference between the two RCPs was found to be

so small that no further analysis will be shown from RCP 2.6

simulations. Since the proxy does not include estimates on

how the shipping routes will change in the future, the same

emission pattern was used in all the simulations.

In the Arctic, we used an additional high-resolution emis-

sion inventory by Corbett et al. (2010). In this inventory, the

data are given on a seasonal scale in a 5 km× 5 km horizon-

tal grid for 2004, including 2020 and 2030 as scenario years.

We used the emission values for 2004 in our reference sim-

ulation for year 2005 without any modifications. It can be

assumed that the error from this approach lies within the un-

certainty limits of the emissions. For the scenario years 2020

and 2030, the business-as-usual approach was chosen. The

scenarios also include changes in the shipping route patterns

(details in Corbett et al., 2010). If there were overlapping

grid boxes between ICOADS and Arctic emission data sets,

the latter was chosen. The yearly shipping emissions are rep-

resented in Table 1.

2.3 Simulations

Each simulation was run for 5 years (2003–2007) preceded

by a 6-month spin-up. In order to minimize the variation in

the model meteorology, all the simulations were nudged, i.e.

divergence, vorticity, surface pressure and temperature were

nudged towards the ERA-Interim reanalysis data (Dee et al.,

2011). The sea surface temperatures were taken from the At-

mospheric Model Intercomparison Project (AMIP II) (Taylor

et al., 2000). The 5-year monthly data were furthermore av-

eraged to 1-year monthly data (multi-year monthly mean),

which minimizes the influence of the internal variability of

the model. All simulations were conducted at a T63 horizon-

tal resolution (∼ 200 km) with 31 vertical terrain following

levels (top reaching 10 hPa).

www.atmos-chem-phys.net/15/5501/2015/ Atmos. Chem. Phys., 15, 5501–5519, 2015
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Table 2. The global and regional mean burdens of black carbon (BC), organic aerosols (OA) and sulfate aerosols (SA) for the reference

simulation and the difference of the mean burden between the scenarios and the reference simulation.

Globe Eu India W-China E-China Africa E-USA W-USA S-America

BC burden

Refe2005 [mg m−2] 0.25 0.26 1.20 0.72 1.03 0.72 0.20 0.17 0.34

CLEC2020 1[%] 2.2 −27.5 17.0 14.6 −4.4 5.1 −22.8 −15.3 0.7

CLEC2030 1[%] 5.0 −30.3 31.9 28.4 −15.0 8.9 −23.1 −10.2 2.0

CLECC2020 1[%] −0.2 −27.5 10.9 8.7 −9.0 2.9 −17.7 −13.5 0.2

CLECC2030 1[%] 0.9 −24.1 17.9 15.0 −24.6 4.7 −3.1 8.4 1.2

BCAdd2030 1[%] −25.8 −63.5 −30.7 −33.2 −58.6 −13.5 −47.2 −40.5 −9.5

MTFR2030 1[%] −27.1 −66.3 −35.8 −37.9 −58.2 −13.7 −54.5 −48.3 −12.6

OA burden

Refe2005 [mg m−2] 2.01 1.02 6.25 3.87 4.54 6.34 1.67 1.51 4.59

CLEC2020 1[%] 1.0 −6.3 5.3 4.8 −10.4 3.1 −3.1 −1.9 0.1

CLEC2030 1[%] 0.9 −7.4 6.1 5.5 −24.9 4.4 −3.8 4.3 0.5

CLECC2020 1[%] −0.0 −6.1 0.4 0.2 −14.6 2.1 −2.0 −2.1 0.3

CLECC2030 1[%] −1.1 −4.7 −3.7 −3.7 −30.7 2.3 −0.0 12.6 0.5

BCAdd2030 1[%] −16.5 −25.1 −49.7 −47.1 −53.5 −11.9 −12.4 −13.2 −3.7

MTFR2030 1[%] −21.0 −34.1 −63.1 −60.9 −64.8 −15.2 −18.8 −20.2 −5.3

SA burden

Refe2005 [mg m−2] 1.85 2.37 4.35 2.73 5.31 2.88 2.98 2.60 1.54

CLEC2020 1[%] −8.7 −27.6 25.1 14.6 −1.1 −13.2 −38.8 −31.5 −4.9

CLEC2030 1[%] −5.1 −26.0 62.2 42.1 −6.9 −9.5 −40.1 −32.9 −2.8

CLECC2020 1[%] −12.3 −30.8 13.0 4.4 −10.2 −16.4 −42.1 −34.0 −5.9

CLECC2030 1[%] −17.6 −35.1 11.8 0.8 −33.2 −20.8 −48.3 −40.8 −7.2

BCAdd2030 1[%] −6.5 −27.2 57.5 37.4 −10.3 −10.9 −40.7 −33.5 −3.6

MTFR2030 1[%] −36.7 −50.4 −59.5 −60.0 −66.3 −39.2 −58.5 −51.5 −15.9

We also made shorter simulations where the aerosol char-

acteristics were compared to simulations with original emis-

sions (not shown here). Based on these simulations, the new

version reproduces closely the aerosol fields of the original

model version.

3 Results and discussion

In the following we concentrate mainly on the 2030 simu-

lation results and discuss briefly 2020 when it reveals addi-

tional information about the timescale of the emission reduc-

tions. All the absolute and relative changes presented are cal-

culated as the difference between the scenario and reference

simulation (Refe2005) values. In addition to global results,

we analyze the simulations separately for the eight regions

shown in Fig. 1. The column burdens and aerosol radiative

effects for these regions are summarized in Tables 2 and 3.

3.1 Aerosol burdens

3.1.1 BC burden

The annual mean BC column burden is shown in Fig. 2.

In all the simulations, the BC burden peaks in the Ama-

zon region and central Africa (biomass burning areas), In-

dia (residential biomass burning area) and eastern China (in-

dustrial area). In these peak areas, changes in the BC bur-

den are relatively modest in most of the scenarios apart from

CLEC2030 which shows a 32 % increase over India, as well

as BCAdd2030 and MTFR2030 which both show nearly

60 % decreases over eastern China (Table 2). Over India, the

increase comes mainly from the traffic sector, which approx-

imately doubles in CLEC2030. Even though the CLEC sce-

nario includes current legislation measures, i.e. after some

time new vehicles complying with existing standards will be

in use, emissions start eventually to grow proportionally to

the activity growth. However, it is noteworthy that the do-

mestic sector will still have the biggest emissions over India.

The decrease over eastern China in the two mitigation sce-

narios (BCAdd and MTFR) is primarily due to declining use

of solid fuels (mostly coal) for cooking and heating in the

residential combustion sector. The high BC burden areas in
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Table 3. The global and regional mean clear-sky direct radiative effect (DRE) and cloud radiative effect (CRE) at the top of the atmosphere

for the reference simulation and the changes in these (i.e. changes in aerosol radiative forcing) from the reference simulation to the future in

different emission scenarios.

Globe Eu India W-China E-China Africa E-USA W-USA S-America

DRE

Refe2005 [W m−2] −3.94 −4.35 −4.16 −2.01 −5.16 −4.08 −3.97 −2.36 −3.59

CLEC2020 1[W m−2] 0.13 0.56 −0.33 −0.04 0.07 0.16 0.90 0.51 0.05

CLEC2030 1[W m−2] 0.11 0.54 −0.84 −0.20 0.29 0.15 0.95 0.54 0.03

CLECC2020 1[W m−2] 0.16 0.61 −0.13 0.03 0.36 0.17 0.98 0.55 0.05

CLECC2030 1[W m−2] 0.24 0.70 0.04 0.15 1.18 0.25 1.15 0.68 0.06

BCAdd2030 1[W m−2] 0.06 0.51 −1.32 −0.60 0.12 −0.03 0.94 0.51 0.01

MTFR2030 1[W m−2] 0.40 0.95 1.15 0.51 2.38 0.31 1.31 0.76 0.13

CRE

Refe2005 [W m−2] −48.10 −51.05 −33.61 −37.14 −55.61 −31.55 −38.64 −33.87 −55.39

CLEC2020 1[W m−2] 0.25 1.21 −0.10 −0.04 0.20 0.15 0.69 0.87 0.05

CLEC2030 1[W m−2] 0.25 1.26 −0.16 −0.11 0.33 0.14 0.75 0.94 0.00

CLECC2020 1[W m−2] 0.29 1.23 −0.02 0.07 0.26 0.17 0.76 0.89 0.03

CLECC2030 1[W m−2] 0.38 1.42 −0.02 0.07 0.75 0.25 0.95 1.05 0.05

BCAdd2030 1[W m−2] 0.38 1.59 0.18 0.24 1.07 0.40 0.78 1.02 0.18

MTFR2030 1[W m−2] 0.82 2.51 0.98 0.98 2.77 0.70 1.47 1.72 0.55

Figure 2. The annual mean black carbon (BC) burden in the reference run and the relative differences between the scenarios and the reference

run.

the biomass burning regions of South America and Africa

show negligible change in all the scenario runs because the

GAINS scenarios do not predict reductions for this sector

(and the wildfire emissions from GFED are the same for all

simulated years).

In regions with lower absolute BC burden values, all the

scenarios predict significant decreases by 2030 over Europe

(−24 to−66 %, mainly from residential combustion and traf-

fic sectors) and North America (−3 to −54 %, mainly traf-

fic sector), although in CLECC2030 the burden slightly in-

creases over Mexico and southern parts of USA (increment

over western USA 8 %, caused by residential combustion

sector). Furthermore, in the CLEC and CLECC scenarios,

the BC burden increases over Africa (9 and 5 % respectively;

from residential combustion sector) and western China (28

and 15 % respectively from residential combustion, traffic

and industrial sectors). In these scenarios, small increases are

seen also in southern Argentina, the west coast and southern

parts of Africa and the border area of Indonesia and Papua

New Guinea. There changes are caused by the overall emis-
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sion increases over land areas in the Southern Hemisphere,

as can be seen in Fig. S1. Partly due to atmospheric transport

from continental areas and partly due to increased shipping

emissions, the BC burden also increases over Antarctica as

well as over most oceanic regions in the Southern Hemi-

sphere. Although the absolute BC values in these regions

are low, the increased burdens could lead to changes in the

surface albedo over snowy and sea-ice-covered areas. In the

CLEC2030 scenario, the burden also increases over the Arc-

tic region. This is due to transport coming from southeastern

Asia (around India), where the increased emissions cause in-

creased values of BC at higher altitudes (lifting) which are

eventually transported to the Arctic regions. In our analy-

sis (details not shown here, but for more information please

visit http://www.maceb.fi/result_viewer.html), we found that

the lower-tropospheric BC burden decreases in CLEC and

CLECC over the Arctic, but the transported BC from south-

eastern Asia makes the overall burden change quite small or

even positive in the case of CLEC2030. A similar pathway

for upper-tropospheric Arctic BC from southeastern Asia has

been discussed already in a previous study by Stohl (2006).

In any case, since the albedo change due to BC deposition is

not included in the current model version, further investiga-

tion concerning BC effects on snowy regions is left for future

studies.

The two other scenarios (BCAdd and MTFR) show a de-

creased BC burden over the whole globe (−26 and−27 % re-

spectively). The differences between the burdens in these two

scenarios are quite modest also on regional scales (Table 2),

which means that the targeted sectors (transport and espe-

cially residential combustion) in BCAdd include most of the

reduction potential of BC and very little further reductions

can be obtained with additional technological measures (as

in MTFR). These additional measures come from waste dis-

posal and treatment as well as from agricultural waste burn-

ing. In the latter sector, the MTFR scenario assumes that all

activity can be stopped and thus the emissions are set to 0.

Our reference simulation can be compared with previous

model estimates on the atmospheric aerosol burden. Schulz

et al. (2006) reported results from a multi-model comparison

for global BC, organic aerosol (OA) and SO4 burdens for

the year 2000. In the subset of models using AeroCom emis-

sions, the global ensemble mean for BC was 0.25 mg m−2

(standard deviation σ = 0.08 mg m−2), whereas in the subset

of model using other emission inventories, the global ensem-

ble mean was 0.37 mg m−2 (σ = 0.08 mg m−2). In addition,

Bond et al. (2013) collected results from recent publications

(some the same as in Schulz et al. (2006); details in the pa-

per) and calculated a mean burden of 0.26 mg m−2. These

results are in good agreement with our result of 0.25 mg m−2

(Table 2). Shindell et al. (2013) evaluated the Atmospheric

Chemistry and Climate Model Intercomparison Project (AC-

CMIP) models and calculated the multi-model mean of BC

burden in 2000 to be 0.16 Tg (σ = 0.07 Tg). Our equivalent

value is 0.13 Tg for the year 2005. In a similar study (using

older versions of both the ECHAM model and the IIASA

emissions) Kloster et al. (2008) calculated the BC burden

in 2000 to be 0.12 Tg. These results show that our updated

emissions can reproduce similar global BC burdens. Kloster

et al. (2008) also included two IIASA emission scenarios for

2030: a current legislation (CLE) scenario and a maximum

feasible reduction (MFR) scenario. They reported burdens of

0.11 and 0.10 Tg respectively for the two scenarios. Our val-

ues are 0.13 Tg for CLEC2030 and CLECC2030 and 0.09 Tg

for BCAdd and MTFR. The results do not differ much, so the

different estimates are consistent with each other.

The residence time of aerosols is also one factor worth

mentioning. In the reference simulation, we get a residence

time of 6.0 days for BC. This compares well with earlier

results, as shown by Textor et al. (2006), who did a multi-

model comparison of the AeroCom models (simulating the

year 2000). Authors reported that the BC residence time

for ECHAM was 5.3 days while the mean for all the Aero-

Com models was 7.1 days (σ = 33 %). In addition, Shindell

et al. (2013) reported the multi-model mean residence time

of BC for 2000 to be 7.4 days (σ = 3.4 days), while Kloster

et al. (2008) got 5.6 days in their year 2000 reference run,

5.8 days in 2030 CLE and 6.1 days in 2030 MFR. Our re-

sults indicate BC residence times of 6.3 days in CLEC2020

and CLECC2020, 6.4 days in CLEC2030 and CLECC2030,

6.6 days in BCAdd and 6.8 days in MTFR. The higher res-

idence times in the scenarios reflect mainly the decreased

washout due to less clouds, mainly caused by sulfate reduc-

tions (Lohmann and Feichter, 1997).

3.1.2 Organic aerosol burden

The absolute values of OA burden in the reference simula-

tion (Fig. 3) are higher than those for the BC burden (al-

most by a factor of 10), but overall the burden maps are very

similar. This reflects the fact that these two compounds are

often co-emitted from the same sources, although organic

emissions dominate in magnitude especially in the residen-

tial combustion sector. The OA burdens differ less between

the different scenarios and show overall much smaller rel-

ative changes from the reference run than the BC burdens

(Figs. 2 and 3). The main reason for this is that the current

legislation measures do not have a major impact on domes-

tic and agricultural sectors, which are two biggest sectors

emitting OC (domestic is 5 times bigger than agricultural

sector). This, together with unperturbed natural emissions,

diminishes the differences seen in Fig. 3. However, the do-

mestic sector will change quite dramatically (down to one-

fifth of the reference) in the BCAdd and MTFR scenarios,

which mainly explains the larger differences in the OA bur-

den for these scenarios. Furthermore, the difference between

BCAdd and MTFR can be explained by the agricultural sec-

tor, which, as was mentioned before, does not include any

emissions in MTFR.

Atmos. Chem. Phys., 15, 5501–5519, 2015 www.atmos-chem-phys.net/15/5501/2015/
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Figure 3. Like Fig. 2 but for organic aerosol (OA) burden.

The CLEC2030 and CLECC2030 scenarios predict the

largest changes in the OA burden over eastern China (−25

and −31 % respectively) mainly from the residential com-

bustion sector due to reduction of solid fuel use and effective

decline of stove emissions. However, changes over India, Eu-

rope and North America are very small in contrast to the BC

burden changes. The differing behaviour of BC and OA bur-

dens can be explained by the traffic sector, in which BC emis-

sions are impacted much more strongly than OC emissions.

This is because the reductions in the traffic sector are targeted

to diesel emissions, which is a high BC emitter.

In the BCAdd simulation, the OA burden decreases glob-

ally and the highest reductions are over Europe (−25 %,

mainly from residential combustion and traffic sectors), In-

dia (−50 %, mainly residential combustion sector), western

China (−47 %, residential combustion sector) and eastern

China (−53 %, residential combustion and energy sectors).

The geographical pattern of the change is similar in MTFR,

although the decrement is higher; the highest reductions oc-

cur over China, Japan, India, Middle East and Europe reach-

ing a −21 % decrement globally (all sectors decrease, with

residential combustion sector having the biggest reductions).

In these two scenarios, the pattern of the OA burden change

is again quite different from the pattern of the BC burden

change (Figs. 2 and 3). The OA burden change is much larger

over India due to a very large contribution from both stoves

and agricultural burning, and these two sources have a high

share of OC. Larger BC changes are seen over Europe and

North America as there are less stoves with high OC emis-

sions, and instead most mitigation will be in diesel controls

with a high BC share and some in the residential combustion

sector. It is also noticeable that changes over the Southern

Hemisphere are small in all the scenarios.

The values for the global OA burden from Schulz et al.

(2006) are in good agreement with our results. Again,

if only the models which used AeroCom-based emissions

are taken into account, the global mean is 1.32 mg m−2

(σ = 0.32 mg m−2). For the other models, Schulz et al.

(2006) reported a mean of 2.40 mg m−2 (σ = 0.39 mg m−2).

Our results show a global OA burden of 2.01 mg m−2, which

falls into the range of the values reported in Schulz et al.

(2006). Kloster et al. (2008) reported the OA burden to be

1.08 Tg in 2000, 1.00 Tg in 2030 CLE and 0.47 Tg in 2030

MFR. Our values for 2005 are 1.03 Tg and for 2030 they

are 1.04 Tg in CLEC, 1.02 Tg in CLECC, 0.86 Tg in BCAdd

and 0.81 in MTFR. Overall, the relatively large uncertain-

ties in simulating the global and regional OA burdens arise

from poorly quantified primary emissions and secondary or-

ganic aerosol formation, together with uncertainties in the

sufficient complexity of the OA parametrizations (Tsigaridis

et al., 2014).

The residence time of OA in our reference simulation was

5.8 days. Textor et al. (2006) reported for ECHAM a res-

idence time of 5.4 days and overall AeroCom multi-model

mean of 6.5 days (σ = 27 %), whereas Kloster et al. (2008)

got 5.7 days. This means that, similar to BC, the residence

times of OA in our simulations are in good accord with pre-

vious studies. Our future estimates show an OA residence

time of 5.8 days in CLEC2020 and CLECC2020, 5.8 days

in CLEC2030, 5.9 days in CLECC2030, 5.9 days in BCAdd

and 6.0 days in MTFR. These are similar to Kloster et al.

(2008) estimates: 5.8 days in CLE and 5.9 days in MFR.

www.atmos-chem-phys.net/15/5501/2015/ Atmos. Chem. Phys., 15, 5501–5519, 2015
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Figure 4. Like Fig. 2 but for sulfate aerosol (SA) burden.

3.1.3 Sulfate burden

The absolute sulfate aerosol (SA) burden map in Fig. 4 dif-

fers from the BC and OA maps, because the anthropogenic

emission sources are more similar between BC and OC com-

pared with SO2. For BC and OC, the biggest source is the

residential combustion sector, whereas SO2 is mainly emit-

ted from the industrial and energy sectors.

Figure 4 shows that the highest absolute values of the SA

burden are over eastern China, India, Middle East, North

Africa, southern Europe and eastern USA. The latitudinal de-

pendence of the burden over the continents follows directly

the emission pattern (Fig. S3).

In Europe, it is well known that sulfate precursor (SO2)

emissions have decreased over the last 2–3 decades (Hamed

et al., 2010, and references therein). The same decreasing

trend is also visible in the current legislation-based simu-

lations, which have reductions from 26 % (CLEC2030) to

35 % (CLECC2030) over Europe. In North America, the re-

ductions in the SA burden are even higher, especially over

eastern and central parts of USA. CLEC2030 gives −33 %

decrement over western USA and −40 % over eastern USA,

whereas in CLECC2030 the values are −41 and −48 % re-

spectively. These significant decreases in both Europe and

North America are mainly from the energy sector, although

the industrial sector has also reductions that influence the re-

sults.

Quite the opposite can be seen over India, where the

SA burden will increase in all the scenarios, except in

MTFR. The increment is smallest in the CLECC2030 sce-

nario (12 %) and the highest in the CLEC2030 scenario

(62 %), although almost as high an increase (58 %) is simu-

lated in the BCAdd scenario. However, in the MTFR scenario

the SA burden decreases by 60 %. These features come from

the industrial and energy sectors and mean that the SA bur-

den over India could be controlled with technical measures,

such as flue gas desulfurization.

The global SA burden was also reported by Schulz et al.

(2006). For model using AeroCom emissions, the global

mean burden was 2.12 mg m−2 (σ = 0.82 mg m−2) and for

the other models 2.70 g m−2 (σ = 1.09 mg m−2). The SA

burden from our simulation is slightly lower at 1.85 mg m−2.

Shindell et al. (2013) got the multi-model mean of 2.0 Tg

(σ = 0.5 Tg) for the SA burden. Our equivalent value is

0.95 Tg, which is more than 2 times lower. However, our re-

sult is close to the Kloster et al. (2008) estimate of 0.86 Tg.

For the near future, Kloster et al. (2008) estimated that sul-

fate burden will be 0.94 Tg in CLE and 0.53 Tg in MFR.

Our simulations show 0.90 Tg in CLEC2030, 0.78 Tg in

CLECC2030, 0.88 Tg in BCAdd and 0.60 Tg in MTFR. De-

spite of all these differences, we feel confident in saying that

our result shows a realistic global SA burden as there are dif-

ferences in sources and sinks (e.g. different emission years,

deposition modules etc).

For sulfate, the residence time in the reference simulation

was 3.8 days. From Textor et al. (2006), ECHAM sulfate resi-

dence time was the same 3.8 days, while the AeroCom multi-

model mean was 4.1 days (σ = 18 %). Shindell et al. (2013)

reported that their multi-model mean for sulfate residence

time was 5 days (σ = 2 days), whereas Kloster et al. (2008)

got 4.4 days. Our results are comparable with all the pre-

vious studies. Our future estimates show a sulfate residence

time of 3.9 days in CLEC2020 and CLECC2020, 4.0 days

in CLEC2030, 4.1 days in CLECC2030, 4.0 days in BCAdd

and 4.3 days in MTFR. These result are also in accord with

Kloster et al. (2008), who simulated 4.6 days for CLE and

4.7 days for MFR.
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3.1.4 Aerosol burdens in 2020

In order to explore the timeline of the emission reductions,

we will shortly summarize the current legislation scenar-

ios changes between 2005 and 2020. Details about the bur-

den changes between these years are shown in Table 2 and

Fig. S4.

Regarding the BC burden, the same general features which

were visible in the CLEC2030 simulation can also be seen

in CLEC2020. While the changes from 2005 through 2020

to 2030 do not follow a linear path, the CLEC2020 simula-

tion shows overall the same global pattern as the CLEC2030

simulation (Fig. S4). Globally, the BC burden increases 2 %

between 2005 and 2020 and 5 % between 2005 and 2030, in-

dicating an accelerated BC emission rate in the 2020s mainly

from the traffic sector. Regionally, the biggest contributors to

the increased BC burden in the 2020s are India and west-

ern China (Table 2). In both of these regions, the relative BC

burden change (from the reference year 2005) almost dou-

bles between 2020 and 2030. However, there is a significant

decrease in the BC burden in eastern China after 2020 (−4 %

between 2005 and 2020, −15 % between 2005 and 2030).

This is caused by the reductions in the residential combus-

tion and energy sectors, although it should be mentioned that

the traffic sector increases between 2020 and 2030 in eastern

China roughly as much as energy sector decreases.

In the CLECC scenario, the global BC burden decreases

slightly between 2005 and 2020 (−0.2 %) and increases be-

tween 2005 and 2030 (1 %). The reason for this is the same

as in the CLEC scenario, i.e. the traffic sector. The geograph-

ical patterns of BC burden change are quite similar for the

CLECC2020 and CLECC2030 scenarios, even though there

are some significant differences over North America. At the

border area of Mexico and USA, the BC burden change

shows no clear signal by 2020, but there is an increase by

2030. This can be also seen from Table 2: over western USA

the BC burden decreases 13 % by 2020 but increases 8 % by

2030. This feature comes from the residential combustion

sector, which is estimated to increase quite significantly by

2030. The reason for this is that in CLECC the underlying

idea is to move from fossil fuels to bio fuels and residential

burning, which takes place mainly between 2020 and 2030.

Another region with a large difference in CLECC between

2020 and 2030 is eastern China, where the BC burden change

(with respect to 2005) will increase from −9 to −25 % and

this comes from the reductions in residential combustion and

energy sectors. Similarly as in CLEC, the reduction in the

energy sector is roughly balanced out by the increased traffic

sector.

The global OA burden changes are small in both scenar-

ios. However, in the CLEC scenario, the burden increases

1.0 % between 2005 and 2020 and 0.9 % between 2005 and

2030, indicating a slight reduction during the 2020s. A much

stronger reduction after 2020 takes place in the CLECC sce-

nario as the OA burden change is−0.05 % by 2020 and−1 %

by 2030. Regionally, the largest differences are over east-

ern China and the Mexico–USA border. The decrement over

eastern China increases between 2020 and 2030 in CLEC

from −10 to −25 % and in CLECC from −15 to −31 % and

mainly comes from the residential combustion sector. Over

the Mexico–USA border, the scenarios show no signal by

2020, but by 2030 both have a strong positive sign; over west-

ern USA the burden change in CLEC is −2 % by 2020 and

4 % by 2030 and in CLECC is −2 and 13 % respectively. As

explained above, this is caused by the increases in residen-

tial combustion sector. In other regions the changes are quite

small and do not show significant changes in the pattern of

OA burden.

In terms of the global SA burden, most of the reductions

already take place before 2020 in both scenarios and, in fact,

the CLEC scenario predicts an increase of SA in the 2020s

(change from year 2005 burden is −9 % by 2020 and −5 %

by 2030). This increase in the SA burden takes place mainly

because of the increment over India (from 25 % change in

2020 to 62 % change in 2030) and western China (from 15

to 42 %) and is caused by higher industrial and energy sec-

tor emissions. At the same time, Europe and both North and

South America experience very low emission reductions, or

even slight emission increases, in the 2020s. In the CLECC

scenario, the decreasing global trend in the SA burden con-

tinues throughout the 2020s, although it slightly slows down:

the change from 2005 burden is −12 % by 2020 and −18 %

by 2030. This global decrease is mainly caused by the de-

creasing trend in emissions from the energy sector. In this

scenario, all studied regions show decreasing SA burdens

between 2020 and 2030, with the largest decrease taking

place in eastern China (burden change of−10 % in 2020 and

−33 % in 2030). Over the other regions, the reductions after

2020 are at most 6 percentage units.

3.2 Radiative effects

We will next investigate how the simulated changes in the

aerosol burden translate into aerosol radiative effects. As

the radiative effects presented in the following sections are

mostly negative, i.e. they have a cooling effect, positive

changes in radiative effects translate into a weaker cooling by

aerosols and vice versa. This should be kept in mind when the

radiative effect plots are analyzed. Additionally, the values

given in the following sections refer to the top of the atmo-

sphere and are obtained directly from the radiation scheme

(parallel calls with and without aerosols/clouds).

3.2.1 Direct radiative effect

Aerosols scatter and absorb the incoming solar radiation and

the sum of these is called the direct radiative effect. Inves-

tigating changes in the DRE between two time periods, or

years, tells us how the direct radiative forcing by aerosols

changes between these years in different emission scenarios.

www.atmos-chem-phys.net/15/5501/2015/ Atmos. Chem. Phys., 15, 5501–5519, 2015
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Figure 5. The yearly mean clear-sky direct radiative effect (DRE) at the top of the atmosphere in the reference run and the difference between

scenarios and the reference run.

Besides short-wave radiation permutations, aerosols (espe-

cially large particles, for example dust) can also influence the

long-wave radiation through absorption and emissivity. How-

ever, this is of minor importance for the small anthropogenic

aerosols (Ramanathan and Feng, 2009). We have conducted

tests to estimate the magnitude of the long-wave component

in our simulations and, based on the results, the impact was

found to be not important. Thus, the DRE in our analysis is

only calculated for the short-wave radiation. It should also be

noted that the DRE values are clear-sky values, which means

that they are calculated assuming a zero cloud cover.

Figure 5 shows the annual mean DRE for the reference

run and the difference plots for the scenarios. The refer-

ence run shows that overall, the DRE is negative around the

world (global mean −3.94 W m−2). Previous studies have

shown similar estimates. For example, Yu et al. (2006) pre-

sented a review of DRE estimates and concluded it to be

−4.9± 0.7 W m−2 over land and −5.5± 0.2 W m−2 over

oceans. Since many of the satellite measurements only give

estimates over oceans, we have also calculated the equiv-

alent value and got −4.68 W m−2 (globally). This can be

compared with Zhao et al. (2008), who estimated an oceanic

DRE of −4.98± 1.67 W m−2, and with Forster et al. (2007),

who estimated from satellite remote sensing studies a value

of−5.4 W m−2 (σ = 0.9 W m−2) over the oceans. Therefore,

our simulations seem to give realistic values and are in good

agreement with previous studies.

In the reference simulation, the strongest cooling effect

caused by DRE takes place over the Atlantic ocean near the

coast of eastern Africa; this is mainly because of the dust

transport from Sahara. The overall aerosol burden is high

over the polluted areas, including eastern China, where it

leads to a DRE of −5.16 W m−2. Over Europe, India, Africa

and eastern USA, the values are quite close to the global

mean, whereas in western China and western USA, they are

only approximately half of it. Over limited regions, the DRE

can also be positive (Fig. 5). This happens when the under-

lying surface has a high albedo and the aerosols above are

absorbing. This occurs mainly over Sahara, Antarctica and

Greenland. Seasonally, positive DRE could also be seen over

the Arctic and other snow-covered regions. Note that DRE

could be positive also if the absorbing aerosol are above

clouds, but here we use only clear-sky values.

Consistent with reductions in aerosol emissions, all the

scenario simulations predict a decreasing cooling effect by

aerosols due to DRE over both Europe and North America.

The decrease in the magnitude of the DRE is predicted to

be 0.5–1.0 W m−2 over Europe, 0.9–1.3 W m−2 over eastern

USA, and 0.5–0.8 W m−2 over western USA. The smallest

changes are seen in the CLEC and CLECC scenarios and

the largest in the MTFR scenario. These changes are mainly

caused by reductions in SO2 emissions, which lead to lower

aerosol concentrations and thus decrease the cooling effect.

The main sector causing these reductions is the energy pro-

duction and distribution sector, which has the highest reduc-

tions in the CLECC and MTFR scenarios. These reductions

are also visible over eastern China, where BCAdd and CLEC

scenarios show modest reduction in the cooling effect due to

DRE change (0.07 and 0.29 W m−2 respectively), whereas

they are much higher in the CLECC and MTFR scenarios

(1.18 and 2.38 W m−2 respectively).

The simulated changes over India show significant varia-

tion between the different scenarios. Our simulations predict

that the cooling effect will increase in BCAdd and CLEC

(−1.32 and −0.84 W m−2 respectively), and no significant

changes will occur in CLECC, whereas in MTFR the cool-
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ing effect will decrease (1.15 W m−2). The reason for this

behaviour can be drawn from the changes in aerosol compo-

nent burdens (Figs. 2–4).

It was shown in Sect. 3.1.1 that over India the BC bur-

den increases in the CLEC and CLECC scenarios and de-

creases in the BCAdd and MTFR scenarios. Since the DRE

change does not follow this pattern, it is obvious that its sign

does not directly follow the changes in the BC burden. The

OA burden changes over India are fairly similar with the BC

burden changes, but overall both changes are so small that

they do not influence the DRE significantly. However, the SA

burden increases in the BCAdd (58 %) and CLEC scenarios

(62 %), has small changes in CLECC (12 %) and decreases

in MTFR (−60 %). It is clear that apart from CLECC, the

changes in the DRE follow quite systematically the changes

in the SA burden. In the CLECC simulation, the increased

absorption coming from the increased BC burden eliminates

the cooling entirely (absorption maps are in the Supplement;

Fig. S5). This means that, based on our model simulation

predictions, the sign of DRE change over India is a combi-

nation of a warming component, for which the changes are

mainly caused by the residential combustion sector, and a

cooling component, for which the changes are mainly due

to energy production and distribution sector. Naturally, the

same counteracting effects from absorbing BC and scattering

sulfate can occur in other locations but is particularly obvious

over India in our simulations.

It is not straightforward to compare the simulated DRE

changes to previously published estimates due to different

baseline and scenario years and differences in emission sce-

narios between the studies. Unger et al. (2009) undertook

sensitivity studies with NASA Goddard Institute for Space

Studies (GISS) model for the future DRE change using 1995

as a reference year and 2050 as a scenario year. The au-

thors reported a global net reduction of 0.179 W m−2 be-

tween these years. Our CLEC simulation shows slightly

lower reductions from 2005 to 2030 (0.11 W m−2) and a

decreasing trend in the 2020s (change from 2005 to 2020

is 0.13 W m−2). CLECC shows somewhat higher values

(0.24 W m−2) than Unger et al. (2009) and no sign of a

changing trend. The predicted DRE changes in BCAdd and

MTFR are clearly lower and higher respectively than simu-

lated in Unger et al. (2009). When comparing these two stud-

ies, it should be noted that some of the reductions assumed

by Unger et al. (2009) may have taken place already before

2005, which we use as the reference year.

Szopa et al. (2013) simulated with a global Earth sys-

tem model the present-day climate and future climate

based on different RCP scenarios. Based on Fig. 14 in

their work, we calculated the global and European forc-

ing change between years 2005 and 2030. Globally, the

change is 0.0–0.125 W m−2 (depending on the RCP sce-

nario), whereas our simulations show a 0.06–0.4 W m−2

change (or 0.11–0.24 W m−2 if only CLEC and CLECC are

considered). In Europe, Szopa et al. (2013) estimate a DRE

change of 0.3–0.7 W m−2, whereas our simulations predict

a 0.51–0.95 W m−2 change (0.54–0.7 W m−2 for CLEC and

CLECC). Smith and Bond (2014) used the Global Change

Assessment Model (GCAM) to estimate the future forcing

change and calculated a global DRE change of 0.175 W m−2

between 2005 and 2030. Overall, our estimates of DRE

change are well in line with the previous studies, especially

given that there are many differences between the models and

simulation set-ups used.

Kloster et al. (2008) did not calculate absolute values of

DRE, but they did calculate the forcing between 2000 and

2030 (equivalent to our 1(DRE)). The authors showed that

in their simulations 1(DRE) is −0.10 W m−2 for CLE and

0.58 W m−2 for MFR. Our results show a similar magnitude

as CLE for the CLEC and CLECC scenarios but with op-

posite signs. This can be due to the different reference year,

model version and overall emissions in the two studies. For

MTFR, our prediction of 0.4 W m−2 change is in a relatively

good agreement with the Kloster et al. (2008) estimate for

MFR.

Our simulations were limited to the coming few decades;

however, there are earlier published estimates on how the

aerosol effect will change by the end of the century. Chen

et al. (2010b) reported a reduction of 0.12 W m−2 between

2010 and 2100 based on three different models. Bellouin

et al. (2011) showed that for the time period of 2000–2090,

HadGEM2-ES model gives a 0.32 W m−2 reduction without

nitrate and 0.83 W m−2 when nitrate is included. Based on

Szopa et al. (2013), the change between 2005 and 2090 was

estimated to be 0.15–0.26 W m−2, and based on Smith and

Bond (2014) the change between 2005 and 2100 was es-

timated to be 0.47 W m−2. These examples give some esti-

mates on how DRE changes might continue after 2030.

3.2.2 Cloud radiative effect (CRE)

The cloud radiative effect is a sum of the short-wave and

long-wave cloud radiative effects. Since the short-wave ra-

diative effect is more dominant, the following analysis only

includes the short-wave component and makes the CRE anal-

ysis more consistent with the DRE analysis. Therefore, as

was with DRE, we only include the short-wave component

when discuss the CRE.

The CRE was calculated based on the method proposed

by Ghan (2013), which removes the effects of aerosol scat-

tering and absorption. The double-moment cloud scheme

used in this work takes into account cloud droplet activa-

tion (Sect. 2.1). Freshly emitted insoluble BC may act as

ice nuclei and thus influence ice clouds directly. In case of

warm clouds, only soluble aerosols have the potential to act

as cloud condensation nuclei. BC is emitted as insoluble but

can in our model become hygroscopic through condensation

of sulfuric acid and coagulation with soluble particles.

Figure 6 shows the simulated global distribution of CRE

and the difference plots between the reference year and sce-
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Figure 6. The yearly mean cloud radiative effect (CRE) at the top of the atmosphere in the reference run and the difference between scenarios

and the reference run.

narios. The largest values of CRE are seen over oceans

(> 100 W m−2), mostly in temperate latitudes. Several conti-

nental areas, including Europe, China, central Africa, North

America and South America, also have quite high CRE. All

the scenario simulations show cooling due to future changes

in the CRE. This takes place mainly in the Northern Hemi-

sphere, where the change in CRE cooling effect is over

2.5 W m−2 in some areas. The reason for this is that most

of the reductions in emissions are located in the Northern

Hemisphere. In all the scenarios, the CRE cooling effect de-

creases over North Atlantic Ocean, North Pacific Ocean and

Europe. Furthermore, BCAdd2030 and MTFR2030 show de-

creases also over eastern China and the coast of Peru. There

are also other locations in MTFR2030 where decreases in

CRE cooling effect can be seen, for example the east and

west coasts of Africa and south coast of Brazil. Some minor

changes also take place in MTFR over the Southern Hemi-

sphere, but the values are very low (< 0.5 W m−2). It is note-

worthy that globally the absolute changes in CRE are approx-

imately twice as large as the changes in the DRE (except for

BCAdd, for which the CRE change is about 6 times as large

as the DRE change). However, regionally large variability

in the relative magnitudes of CRE and DRE changes can be

seen.

The simulated patterns of CRE changes follow approxi-

mately the patterns of the BC and SA burden changes (Figs. 2

and 4). Over the Northern Pacific Ocean and west coast

of South America, the BC burden change seems to be a

more dominant contributor to the CRE change, whereas over

Atlantic Ocean and coastal areas of Africa the SA burden

changes are the dominant factor. Over India in the BCAdd

scenario the increased SA burden does not lead to an incre-

ment in CRE values, because the influence is limited by re-

ductions in BC.

Previously, Szopa et al. (2013) estimated the indirect forc-

ing change to be 0.05–0.1 W m−2 between 2005 and 2030.

For the same time period, the estimate by Smith and Bond

(2014) is 0.1 W m−2. These values are less than half of our

simulated CRE change (0.25–0.82 W m−2, Table 3). How-

ever, our model includes a sophisticated aerosol activation

scheme that takes into account the aerosol number and com-

position size distribution and simulates both the first and sec-

ond aerosol indirect effects. For example, Szopa et al. (2013)

included only the first aerosol indirect effect and calculated

the cloud droplet number concentration in a more simplistic

way (based on soluble aerosol mass). Smith and Bond (2014)

did not utilize a global atmospheric model at all but obtained

their CRE estimates via direct scaling of aerosol emissions.

Therefore, these two previous studies are not directly com-

parable to our simulations.

It should be stressed that the approach here only tells how

the clouds react to aerosol concentration changes in current

climate conditions as we used year 2005 meteorology in all

simulations. Furthermore, some error is introduced by the

nudging method because it restricts some of the feedback

processes. For example, if emission reductions change the re-

gional or global cloud features in a way that it should impact

the overall circulation, these feedback processes will not be

fully realized in our simulations. Nevertheless, our approach

does show how clouds and their properties react to emis-

sion changes in current climatological conditions and gives

indications on how the future cloud radiative effect might

change.
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3.2.3 Changes in aerosol radiative effect by

the year 2020

We investigated the changes in radiative effects realized by

year 2020 by looking into the current legislation simulation

results (CLEC2020 and CLECC2020). The results are sum-

marized in Table 3 and Fig. S6.

Our model results show that in CLEC, the reduction of

global cooling due to DRE change takes place prior to

2020; the cooling effect even slightly increases between 2020

and 2030 (change from 2005 is 0.13 W m−2 by 2020 and

0.11 W m−2 by 2030). However, in CLECC the decrease in

the global direct aerosol cooling effect continues after the

2020s; the DRE cooling effect change is 0.16 W m−2 be-

tween 2005 and 2020 and 0.24 W m−2 between 2005 and

2030. However, regional differences are large in both of the

scenarios. For example, our model predicts that in the CLEC

scenario the trend in the cooling effect will significantly

accelerate between 2020 and 2030 over India and western

China. For the same time period, the trend in the aerosol

warming effect accelerates in eastern China. In the CLECC

scenario, eastern and western China experience 3 and 5 times

larger DRE change respectively from 2005 to 2030 than from

2005 to 2020. Over India, the negative change in DRE in

2020 (i.e. cooling effect with respect to 2005) turns into a

positive change by 2030 (i.e. warming effect).

CRE changes after 2020 show somewhat different be-

haviour in the CLEC and CLECC scenarios. There is no fur-

ther change in the global CRE in CLEC in the 2020s, whereas

in CLECC the cooling effect due to CRE changes contin-

ues decreasing from 0.29 W m−2 (between 2005 and 2020)

to 0.39 W m−2 (between 2005 and 2030). The global change

in CLECC from 2020 to 2030 is mainly caused by the change

over eastern China, where the CRE cooling effect changes

from 0.26 W m−2 by 2020 to 0.75 W m−2 by 2030. This is

caused by overall reductions in all aerosol species. Other-

wise, the changes after 2020 are rather small in both of the

scenarios, which means that most of the emission reduction

based on CRE changes already takes place by 2020.

4 Summary and conclusions

We used the global aerosol–climate model ECHAM-

HAMMOZ to evaluate how changes in the aerosol radiative

effects, and hence forcing, are expected to decrease during

the next couple of decades and how they are influenced by

emission reductions. This was done by modifying the model

to use new and updated emission modules. The most impor-

tant update was the application of continental anthropogenic

emissions produced by the GAINS model. With this version,

four different emissions scenarios were investigated for the

year 2030, and two of the scenarios where also run for the

year 2020. Year 2005 was used as a reference year. The

scenarios included two different current legislation scenar-

ios (CLEC and CLECC), one targeted to short-lived climate

forcers’ emissions (BCAdd) and one introducing the maxi-

mum reduction potential of aerosols and SO2 with currently

available technologies (MTFR).

With the current legislation scenarios, the global BC

aerosol burden was estimated to increase by 2030 com-

pared with the current (2005) situation, the SA burden was

estimated to decrease and the organic aerosol burden may

change either way. In the same scenarios, the BC and OA

burdens showed increase over India, western China, Africa

and South America, and the SA burden showed increases

over India and western China. The residential combustion

and traffic sectors caused the majority of changes for BC and

OC, while energy and industrial sectors caused most of the

SA changes. Over South America, increases in the agricul-

tural waste burning explained the higher burden for BC and

OA in 2030. The targeted and maximum technological re-

ductions showed decreasing trend for all species globally and

regionally, except over India and western China. There, the

BC targeted simulation increased SA burden due to emission

increases in industrial and energy sectors.

The magnitude of negative aerosol radiative effect will de-

crease on a global scale in all the scenarios. Based on the cur-

rent legislation scenarios, the cooling effect resulting from

the clear-sky DRE, compared to the year 2005, will decrease

by 0.11–0.24 W m−2 by 2030. The technical maximum po-

tential for DRE reductions is globally 0.4 W m−2 by 2030.

Regionally, the cooling effect from DRE changes can also

increase, for example over India and western China. These

changes follow mainly the BC and SA concentrations, which

cause DRE changes of different signs. SA that has higher

concentrations is more dominant and causes a cooling effect

through scattering, while BC has the ability to absorb solar

radiation and causes a heating effect. For example, over India

the cooling effect from DRE was estimated to increase due

to the increased SA burden, although in one of the current

legislation simulations the warming effect coming from the

increased BC burden cancelled out the cooling effect.

Our simulations suggest that the magnitude of the cloud

radiative effect will decrease globally by 0.25–0.82 W m−2

by 2030 compared with the year 2005. These changes and

patterns are again connected to the BC and SA burden

changes. Many of the changes occur already by 2020. Glob-

ally, the changes in the CRE cooling effect are roughly dou-

ble the changes in DRE in most scenarios, but regionally

large variability in the relative changes can be seen. For ex-

ample, over India and western China the DRE change is

larger than the CRE change. The changes in CRE take place

over oceans, whereas the DRE changes are seen mostly over

the continents. Regionally, India and western China are the

only areas where the cooling effect from DRE and CRE is

expected to increase. This is because of the aerosol burden

increases over these two regions.

Our simulations predict a notable positive radiative forc-

ing change in the current day climate conditions, up to about
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1 W m−2 globally and > 5 W m−2 regionally, due to the re-

ductions in aerosol and their precursor gas emissions that will

take place during the next couple of decades. The magni-

tude of this forcing depends strongly on the chosen emission

pathway. We have shown that targeted BC emission reduc-

tions are clearly the most beneficial for climate, making it

even possible to achieve further enhancements in the nega-

tive direct radiative forcing (i.e. cooling effect) in some of

the world regions (e.g. India and western China). To the

contrary, reducing aerosol and their precursor emissions as

much as it is technically feasible could be harmful for cli-

mate practically in all continental regions, although poten-

tially beneficial from human health protection point of view.

Finally, our simulations suggest that more than half of the

near-future aerosol forcing change is due to the radiative ef-

fects associated with aerosol–cloud interactions. Noting this

and the large uncertainties associated with this phenomenon

(Boucher et al., 2013), more work is clearly needed for in-

vestigating the sources of cloud active aerosol particles into

the atmosphere, aerosol–cloud–precipitation interactions and

associated feedbacks in the climate system. Moreover, the

use of coupled aerosol–chemistry models with more detailed

aerosol description (e.g. including nitrates) would give more

detailed estimates of the future forcing of aerosols.

The Supplement related to this article is available online

at doi:10.5194/acp-15-5501-2015-supplement.
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