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Abstract. Processes that describe the distribution of veg-

etation and ecosystem succession after disturbance are an

important component of dynamic global vegetation mod-

els (DGVMs). The vegetation dynamics module (ORC-VD)

within the process-based ecosystem model ORCHIDEE (Or-

ganizing Carbon and Hydrology in Dynamic Ecosystems)

has not been updated and evaluated since many years and

is known to produce unrealistic results. This study presents a

new parameterization of ORC-VD for mid- to high-latitude

regions in the Northern Hemisphere, including processes that

influence the existence, mortality and competition between

tree functional types. A new set of metrics is also proposed to

quantify the performance of ORC-VD, using up to five dif-

ferent data sets of satellite land cover, forest biomass from

remote sensing and inventories, a data-driven estimate of

gross primary productivity (GPP) and two gridded data sets

of soil organic carbon content. The scoring of ORC-VD de-

rived from these metrics integrates uncertainties in the obser-

vational data sets. This multi-data set evaluation framework

is a generic method that could be applied to the evaluation of

other DGVM models. The results of the original ORC-VD

published in 2005 for mid- to high-latitudes and of the new

parameterization are evaluated against the above-described

data sets. Significant improvements were found in the model-

ing of the distribution of tree functional types north of 40◦ N.

Three additional sensitivity runs were carried out to separate

the impact of different processes or drivers on simulated veg-

etation distribution, including soil freezing which limits net

primary production through soil moisture availability in the

root zone, elevated CO2 concentration since 1850, and the ef-

fects of frequency and severity of extreme cold events during

the spin-up phase of the model.

1 Introduction

The terrestrial biosphere plays an important role in the car-

bon (Schimel, 1995; Ciais et al., 2013), water (Oki and

Kanae, 2006) and energy balances of Earth (Trenberth et

al., 2009). Interactions between vegetation and the atmo-

sphere involve complex biophysical and biogeochemical pro-

cesses and feedbacks (Heimann and Reichstein, 2008; Fo-

ley et al., 2003). To simulate past and future changes on

long timescales, Earth system models must represent how the

distribution and structure of ecosystems respond to changes

in climate, CO2 and land use. This need provides the mo-

tivation for the development of dynamic global vegetation

models (DGVM). In DGVMs, vegetation distribution, car-

bon stocks and fluxes exchanged with the atmosphere are

simulated through fast processes (canopy exchange, soil heat

and moisture dynamics, photosynthesis), intermediate pro-

cesses (vegetation phenology, carbon allocation and growth,

soil carbon decomposition) and slow processes (vegetation

dynamics, recovery from disturbances) (Sitch et al., 2003;
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Krinner et al., 2005). DGVMs have been used to study the re-

sponse of ecosystems to recent climate change (e.g., Piao et

al., 2006) and to project the evolution of the coupled carbon–

climate system (e.g., Cox et al., 2000). The coupling of vege-

tation dynamics with a climate model allows for the inclusion

of vegetation–atmosphere interactions related to ecosystem

migration in global climate simulations (Quillet et al., 2010).

The representation of vegetation structural dynamics in

DGVMs builds on principles previously applied in biogeog-

raphy models and “gap models” (Sitch et al., 2003). Biogeog-

raphy models define the patterns of vegetation physiognomy

based on plant functional types (PFTs) driven by temper-

ature, precipitation, CO2, climate-related disturbances, and

soil properties (Prentice et al., 1992; Haxeltine and Prentice,

1996). Gap models on the other hand simulate forest dynam-

ics at patch scale, including demographic processes (recruit-

ment, growth, death), competition, and disturbance (Prentice

and Leemans, 1990; Bugmann, 2001).

Vegetation distribution largely depends on bioclimatic

limits and competition between species, which are regrouped

into PFTs in most DGVMs (Woodward, 1987; Sitch et al.,

2003; Krinner et al., 2005). Bioclimatic limits consist of di-

rect limiting factors (e.g., minimum temperature for survival)

and indirect limitations that control primary productivity and

in turn the competitive ability of a PFT (e.g., optimal temper-

ature for photosynthesis, various temperature and moisture

phenological controls of leaf-out and senescence). PFTs with

a better tolerance to extreme climate conditions and higher

growth efficiency during the growing season are more com-

petitive than others and their distribution will therefore ex-

pand. The competence of any PFT is dependent on the under-

lying plant traits that define this PFT. The traits for a given

PFT are fixed in most DGVMs but can also be variable within

PFTs based on trait–climate relationships derived from a trait

database. For example, Verheijen et al. (2013) conducted a

variable trait simulation with the JSBACH DGVM for three

leaf traits (specific leaf area, and the constants defining the

maximum rate of photosynthesis, vcmax,jmax), showing sig-

nificant difference in predicted dominant PFTs compared

with fixed trait simulation. Higgins et al. (2014), however,

pointed out the inherent limitations in Verheijen et al. (2013)

using a statistical method to parameterize plant trait diversity

and proposed that the focus should not be on trait values, but

rather on the tradeoffs between traits (Scheiter et al., 2013).

In this study, we will use a fixed trait approach to describe

the characteristics of each PFT in ORCHIDEE (Organizing

Carbon and Hydrology in Dynamic Ecosystems;the PFTs are

listed in Table 1).

ORCHIDEE is the terrestrial surface component of the

Institut Pierre Simon Laplace (IPSL) Earth system model.

Since the first model description by Krinner et al. (2005),

the representation of existing processes has been improved

and new processes have been implemented, such as a phys-

ically based multi-layer soil hydrology scheme (de Rosnay

et al., 2002) and a scheme describing soil freezing and its

effects on root-zone soil moisture and soil thermodynam-

ics (Gouttevin et al., 2012). These new parameterizations

have been evaluated for static runs in which the geographi-

cal distribution of PFTs is specified based on observed satel-

lite land-cover information. Yet, their influence on the simu-

lated PFT distribution when the vegetation dynamics module

is activated has not been addressed. The original vegetation

dynamics module in ORCHIDEE (hereafter ORC-VD) de-

scribed by Krinner et al. (2005) was adapted from the LPJ

model (Lund–Potsdam–Jena; Sitch et al., 2003) with minor

modifications. Unlike the rest of the model, ORC-VD has not

been updated since the Krinner et al. (2005) description, and

it produces unrealistic results in dynamic runs. For example,

Woillez et al. (2011) have shown that the boreal forest area is

largely modeled as broadleaf deciduous, whereas in reality it

is mainly comprised of needleleaf trees.

The work described here improves ORC-VD, with a focus

on Northern Hemisphere vegetation dynamics. Different sets

of recent observations have been used to evaluate model per-

formance using quantitative metrics, either related directly to

the spatial distribution of vegetation (satellite-observed land-

cover and tree fraction) or resulting from it (data-driven spa-

tial distribution of gross primary production (GPP), biomass

and soil carbon stocks). The evaluation methodology devel-

oped here could be used for other DGVMs as well, and is

thus of general interest for the DGVM modeling community.

We present a new parameterization of vegetation dynam-

ics in the ORCHIDEE high-latitude version (ORC-HL) de-

scribed by Gouttevin et al. (2012), with modifications to the

equations and parameters describing tree mortality, thermal

constraints and a calibration of photosynthesis parameters

(vcmax/jmax) (Sect. 2.2). The results of the original mod-

ule (ORC-HL-OVD) and of the new parameterization (ORC-

HL-NVD) are evaluated (Sects. 4, 5). Because the biogeo-

chemical and physical processes that characterize high lati-

tudes interact in a complex way with the processes that con-

trol vegetation structure, in Sect. 6 we performed and ana-

lyzed factorial model simulations changing one process or

driver at a time to isolate their impacts on vegetation dis-

tribution. In addition, because the initial distribution of the

vegetation in 1850 is sensitive to preindustrial climate condi-

tions, we also tested the effect of the return frequency of cold

extremes relating to tree mortality during the spin-up phase

of the model and discussed its implications.

2 Model description

2.1 ORCHIDEE high latitude

ORCHIDEE consists of two main modules: SECHIBA (the

surface–vegetation–atmosphere transfer scheme) which sim-

ulates energy and water exchanges between the atmosphere

and land surface at a half-hourly time step, as well as

photosynthesis based on enzyme kinetics (Ducoudré et al.,
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Table 1. PFT-specific parameters in ORC-HL-NVD.

PFT Tmin,crit kBG vcmax,opt jmax,opt acrit

1: bare ground – – – – –

2: tropical broadleaf evergreen trees 0 0.14 65 130 730

3: tropical broadleaf dry-season deciduous trees 0 0.14 65 130 180

4: temperate needleleaf evergreen trees −30 0.1 35 70 910

5: temperate broadleaf evergreen trees −14 0.1 45 90 730

6: temperate broadleaf summer-green trees −30 0.1 55 110 180

7: boreal needleleaf evergreen trees −45 0.05 33 66 910

8: boreal broadleaf summer-green trees −45 0.05 30 60 180

9: boreal needleleaf summer-green trees – 0.05 35 70 180

10: natural C3 grass – – 70 140 120

11: natural C4 grass – – 70 140 120

12: agricultural C3 grass – – 100 200 90

13: agricultural C4 grass – – 100 200 90

Tmin,crit: minimum temperature limitation ( ◦C), below which the mortality rate will increase as Eq. (3). kBG: maximum

background mortality rate (yr−1) for tree PFTs. vcmax,opt : optimal maximum rubisco-limited potential photosynthetic capacity

(µmol m−2 s−1). jmax,opt : maximum rate of photosynthetic electron transport (µmol m−2 s−1). acrit: critical leaf age for leaf

senescence (days); the dependence of vcmax and jmax on leaf age for PFTs 4 and 7 was eliminated as described in Sect. 2.2.3.

1993; de Rosnay and Polcher, 1998), and STOMATE (Saclay

Toulouse Orsay Model for the Analysis of Terrestrial Ecosys-

tems; Viovy, 1997) which simulates carbon dynamics at a

daily time step, including carbon allocation, biomass accu-

mulation, litter and soil carbon decomposition, and phenol-

ogy. STOMATE includes a dynamic vegetation module with

equations adapted from the LPJ model (Sitch et al., 2003) as

described by Krinner et al. (2005).

ORC-HL is an evolution of ORCHIDEE including ad-

ditional high-latitude processes, described by Gouttevin et

al. (2012). In particular, the simple two layer soil hydrology

(Ducoudré et al., 1993) was replaced by an 11-layer diffusion

scheme (de Rosnay et al., 2002), which describes water infil-

tration and diffusion through soil in a physically based way.

A soil-freezing scheme is implemented in the 11-layer model

to calculate liquid and ice water fractions in each soil layer.

This scheme has been shown to improve the representation

of pan-Arctic river discharge and soil thermal regimes in per-

mafrost regions (Gouttevin et al., 2012). The basic structure

of ORC-HL used in this study is shown in Fig. S1 in the

Supplement, in which processes different from Krinner et

al. (2005) are marked red.

2.2 Modifications to ORCHIDEE vegetation dynamics

Figure 1 is a schematic of ORC-VD, which simulates the dy-

namic area covered by each PFT as functions of bioclimatic

limitation, competition, mortality and establishment. The ba-

sic equations to calculate fractional cover of each PFT are

listed below:

V = CA×P,

dP

dt
= E−M ×P, (1)

where V is fractional vegetation cover (dimensionless); CA

is crown area of individual plant (m2); P is population den-

sity (m−2); E is establishment rate (m−2 d−1); M is mortal-

ity rate (d−1), including components described in Sect. 2.2.1.

The modifications made in this study are described in the fol-

lowing, shown red in Fig. 1.

2.2.1 Tree mortality

Mortality is defined as the reduction in population density

during each time step (daily). The overall tree mortality rate

(maximum 1) is the summation of each component includ-

ing background mortality (MBG), extreme-coldness- (MEC)

and spring-frost-related (MSF) mortalities, fire-induced mor-

tality, and light competition-induced mortality.

Background mortality

In ORC-HL-OVD, the default calculation of mortality rate

for tree PFTs was the inverse of a PFT-specific longevity pa-

rameter (30 years for tropical trees, 40 years for temperate

trees, 80 years for boreal trees). An alternative calculation in

ORC-HL-OVD was a dynamic mortality related to growth

efficiency, inherited from LPJ (Sitch et al., 2003):

MBG =

(
kBG

1+ 0.035 V

)
/365, (2)

where MBG is the dynamic background mortality for tree

PFTs (d−1); kBG is the maximum background mortality rate

www.geosci-model-dev.net/8/2263/2015/ Geosci. Model Dev., 8, 2263–2283, 2015
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Figure 1. Schematic of ORCHIDEE vegetation dynamics module (ORC-VD). The modifications in this study are marked red.

(yr−1), set to 0.1 for all tree PFTs in ORC-HL-OVD; and V

is vigor or growth efficiency, defined as the ratio of the net

annual biomass increment to maximum LAI of the preceding

year. V equals to 0 in case of net annual biomass loss.

The default calculation defines a constant mortality for

each PFT in all grid cells, without considering the varia-

tions in mortality of that PFT caused by adaptation to dif-

ferent climate conditions. The dynamic mortality formula-

tion MBG takes into account the influence of growth effi-

ciency on tree mortality and thus can simulate the compet-

itiveness of tree PFTs under various climates, but it does not

consider longevity differences between PFTs. In the new ver-

sion, ORC-HL-NVD, the dynamicMBG formulation, Eq. (2),

is again adopted, but kBG is set to different values for tropi-

cal (0.14), temperate (0.1) and boreal (0.05) tree PFTs, pro-

portional to the inverse of their respective longevities in the

original ORC-HL-OVD model code.

Tree mortality during extremely cold days

In ORC-HL-OVD, when instantaneous minimum tempera-

ture on each day (Tmin) drops below a PFT-dependent thresh-

old (Tmin,crit, Table 1), the corresponding tree PFT was com-

pletely eliminated. This assumption makes the vegetation

distribution highly sensitive to the minimum temperature

during a few extremely cold days, which varies from year

to year. In reality, trees within a grid cell are unlikely to all

die during a single extremely cold event and, moreover, at

the resolution at which global models usually run (0.5◦ or

coarser), a single minimum temperature cannot depict the

heterogeneity within each grid cell. Therefore, we replaced

the original threshold-based LPJ equation by a linearly in-

creasing mortality rate as a function of daily minimum tem-

perature, such that when Tmin < Tmin,crit:

MEC = kEC

(
Tmin,crit− Tmin

)
, (3)

where MEC is mortality caused by extreme coldness in win-

ter (d−1); kEC = 0.04, estimated by trial and error based on

the return frequency of below-threshold Tmin both within and

between years according to the CRU-NCEP climate forcing.

The PFT-specific Tmin,crit (Table 1) confines the distribu-

tion of each tree PFT to their adaptable temperature zones.

Boreal needleleaf deciduous trees (PFT 9) have no Tmin,crit

value, meaning that they are insensitive to extreme coldness

and thus can prevail over other boreal tree PFTs in the model

in regions with extreme winters such as eastern Siberia.

Broadleaf tree mortality caused by spring frost

Broadleaf species have the specific property of being vul-

nerable to freezing events that occur after the spring leaf-

out. Spring frost can cause damage to leaf buds, developing

shoots and flowers, leading to reproductive failure and re-

duced peak growing-season leaf area index. These effects

may result in a natural selection of species with a higher

frost resistance and affect species distribution in the long

term (Augspurger, 2009). Kollas et al. (2013) found that min-

imum temperature during bud-break was a better predictor of

the climate space of seven broadleaf tree species in Europe

than winter temperature or mean growing-season tempera-

ture.

The change of temperature variability projected by cli-

mate models (Cohen et al., 2012; Screen, 2014) may in-

crease or alleviate the risk of spring frost damage. Warmer

winters and springs and earlier leaf presence may lead to a

greater exposure of midlatitude broadleaf species to spring

frost events (Bokhorst et al., 2009; Gu et al., 2007), while

the severity of individual cold spells may also decrease be-

cause of a faster warming of the Arctic compared to mid-

latitudes (Screen, 2014). DGVMs must therefore represent

Geosci. Model Dev., 8, 2263–2283, 2015 www.geosci-model-dev.net/8/2263/2015/
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spring-frost-induced mortality if they are to account for the

response of broadleaf trees to altered climate variability.

We added a frost damage limitation to the distribution of

the two broadleaf deciduous tree PFTs (PFTs 6 and 8). After

leaf-out in the model, if daily minimum temperature drops

below a threshold of −3 ◦C (Kollas et al., 2013), tree mortal-

ity is assumed to increase with decreasing temperature. This

frost-induced mortality is multiplied by the period elapsed

since leaf-out because the more time that has elapsed, the

larger the mass of vulnerable foliage. Thus, during the con-

secutive 40 days after leaf-out, when

Tmin < TSF,crit and t − tleaf-out < 40 days,

MSF(t,Tmin), the spring-frost-induced mortality for

broadleaf deciduous trees in PFT 6 and PFT 8 (d−1), is given

by

MSF(t,Tmin)= 0.01(TSF,crit− Tmin)

{
t − tleaf-out

40

}
, (4)

where TSF,crit =−3 ◦C; and tleaf-out is the day of the year

when leaf-out was simulated in the model.

2.2.2 Growing-season temperature limits to tree

extension

In the version of ORCHIDEE described by Krinner et

al. (2005), a warm season air temperature (Tws) limit was set

to exclude all tree PFTs from cold Arctic regions, with Tws

being required to exceed 7 ◦C for trees to become established

or be able to stay at a grid point. Tws was calculated using a

linear relaxation method (a substitute for the running mean

method to reduce computer memory requirement) given by:

Tws =
(τ −1t)Tws,(t−1t)+1tTdaily

τ
, (5)

where 1t is the time step, 1 day; τ is the relaxation time of

60 days; and Tdaily is the daily mean air temperature.

In ORC-HL-OVD, used as a starting point for this study,

this Tws criterion was removed. In ORC-HL-NVD, we rein-

troduced a growing-season temperature criterion to constrain

tree extension to Arctic regions but modified the original

formulation using recent results. In their global study of

temperature controls on high altitude treelines, Körner et

al. (2004) found a growing-season mean soil temperature

of 6.7± 0.8 ◦C to be the most consistent criterion to pre-

dict treelines across different climate zones. Other predic-

tors tested (growing-season length, thermal sums and ther-

mal extremes) were shown to have too large amplitudes and

were therefore less suitable indicators of the altitudinal tree-

line position (Körner et al., 2004). We assumed that the cold

limits of trees at both high altitude and high latitude are sim-

ilar, which is supported by the recent study of Randin et

al. (2013), and thus used the Körner et al. (2004) empirical

results to redefine the thermal constraint on the existence of

trees (treeline) in ORCHIDEE.

Combining the same definition of growing season as

Körner et al. (2004), i.e., the period during which 10 cm

depth soil temperature exceeds 3.2 ◦C, with their linear re-

lationship between soil temperature in the root zone and

canopy air temperature, we prescribe the large-scale ther-

mal limitation of trees in ORC-HL-NVD as follows: mean

weekly air temperature during the growing season (TGS)

must exceed 7 ◦C, corresponding to TGS,root larger than

6.7 ◦C; the growing season is calculated as the period when

weekly air temperature is greater than 0 ◦C, which corre-

sponds closely to Troot above 3.2 ◦C. The new TGS crite-

rion shows more consistency with the current treeline posi-

tions than the earlier Tws criterion described by Krinner et

al. (2005) (Fig. S2).

2.2.3 Modifying vcmax and jmax

The values of the maximum rate of rubisco carboxy-

lase (vcmax,opt) and maximum rate of photosynthetic elec-

tron transport (jmax,opt) for each PFT were revised using the

results of the ORCHIDEE parameter optimization against

flux tower measurements from Kuppel (2012). Correspond-

ing values are given in Table 1. In ORC-HL-OVD, vcmax

(or jmax) is the product of vcmax,opt (or jmax,opt) and a leaf

efficiency factor (erel), itself determined by relative leaf

age (arel). arel is defined as the ratio of the calculated leaf

age since leaf-out considering four leaf cohorts to a PFT-

dependent leaf longevity (acrit in Table 1) (Krinner et al.,

2005). As the value of arel increases with time since tleaf-out,

erel increases from 0 to 1 quickly at the beginning of the

growing season and then gradually decreases if arel > 0.5

when leaves become senescent near the end of the grow-

ing season. This rule was originally implemented to simu-

late the influence of seasonal variation in leaf age on photo-

synthetic activity for all tree PFTs. However, unlike decid-

uous trees, temperate and boreal evergreen needleleaf trees

can keep their needles for 4–6 consecutive years, or even

longer for some species (Richardson et al., 2000), resulting

in a rather constant leaf age. Thus, we removed the depen-

dence of vcmax and jmax on leaf age for temperate and boreal

evergreen needleleaf trees (PFTs 4 and 7) in ORC-HL-NVD.

3 Data sets and methods

3.1 Simulation protocol

Six different runs with ORC-HL (Table 2) were performed

to test the impact of the new dynamic vegetation parameter-

izations and parameter calibrations. Since the modifications

in the vegetation dynamics module were mainly for temper-

ate and boreal PFTs, the simulation domain is the Northern

Hemisphere from 20 to 90◦ N. All runs were conducted at 2◦

resolution. The climate forcing files were from the 6-hourly

CRU-NCEP data set (http://dods.extra.cea.fr/store/p529viov/

cruncep/V4_1901_2012/readme.htm), resampled from their

www.geosci-model-dev.net/8/2263/2015/ Geosci. Model Dev., 8, 2263–2283, 2015
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Table 2. Characteristics of each ORC-HL offline run. OLD follows the same simulation protocol as NEW. EXP1–3 and STAT are similar to

NEW except for one different setting for each run.

Name Model Module Spin-up Simulation (1850–2010)

Climate forcing CO2 level Climate forcing CO2 level

NEW ORC-HL-NVD Activate ORC-VD, soil

freezing and fire schemes

CRU-NCEP

1901–1920 cycle

285ppm CRU-NCEP 1901–2010

(for 1850–1900: randomly

select from 1901–1920)

rising

OLD ORC-HL-OVD – – – – –

EXP1 ORC-HLNVD Deactivate soil freezing

EXP2 ORC-HL-NVD – – – – fixed at 285 ppm

EXP3 ORC-HL-NVD – CRU-NCEP

1901–1920 average

climatology

– –

STAT1 ORC-HL-NVD Deactivate ORC-VD (PFT map

prescribed from ESA)

– – – –

STAT2 ORC-HL-NVD Deactivate ORC-VD (PFT map

prescribed from SYNMAP)

– – – –

original 0.5◦ data. CRU-NCEP is widely used as standard

climate forcing in current offline terrestrial models, such as

MsTMIP (Multi-scale synthesis and Terrestrial Model Inter-

comparison Project; Huntzinger et al., 2013) and TRENDY

(Trends in net land–atmosphere carbon exchange over the pe-

riod 1980–2010). Tests with different resolutions were car-

ried out, showing quite similar results in the simulated veg-

etation distribution and carbon fluxes and pools (results not

shown), indicating that the results presented below do not

depend significantly on the spatial resolution of input cli-

mate and soil property data within the tested resolution range

[0.5◦, 2◦].

Each simulation was preceded by a spin-up from bare

ground (i.e., fractional cover of PFT 1 equals to 1 ev-

erywhere). For the standard run with the new vegetation

dynamics parameterizations (NEW), in spin-up, ORC-HL-

NVD was forced by repeatedly using CRU-NCEP 1901–

1920 climate data and constant preindustrial CO2 concen-

tration (285 ppm) for 250 years. Then the soil carbon sub-

model was driven by the previous outputs for 1000 years

for the soil carbon pools to reach equilibrium; this was fol-

lowed by another 50 years of ORC-HL-NVD to complete

the spin-up. Each transient simulation from 1850 to 2010

was started from the last year of the spin-up, forced by his-

torical CRU-NCEP climate and rising CO2 concentration.

No climate data were available before 1901, so for that pe-

riod randomly selected years between 1901 and 1920 were

used. The OLD run used the original vegetation dynamics

equations from Krinner et al. (2005) in the ORC-HL ver-

sion so that comparing NEW and OLD allows us to evalu-

ate the improvements listed. The other four runs (EXP1–3,

STAT) were similar to NEW except for one different setting

for each run (Table 2). In EXP1, we deactivated soil freez-

ing to test its impact on vegetation distribution. In EXP2,

we used fixed CO2 concentration at 285 ppm to test the sen-

sitivity of vegetation distribution to rising CO2. In EXP3,

the model spin-up was forced by the CRU-NCEP 1901–

1920 average climatology instead of the 20-year cycle, in or-

der to examine the impact of interannual climate variability

on the initial PFT distribution after spin-up. In STAT runs,

dynamic vegetation was deactivated and a fixed land-cover

map was prescribed, in order to separate the effect of sim-

ulated versus observed PFT fractions on GPP, biomass and

soil carbon. In STAT1 and STAT2, the PFT map was pre-

scribed from ESA CCI land cover v1.1 (European Space

Agency Climate Change Initiative; Bontemps et al., 2013,

http://maps.elie.ucl.ac.be/CCI/viewer/index.php) and a syn-

ergetic land-cover product (SYNMAP; Jung et al., 2006), re-

spectively.

Fires play an important role in determining vegetation pat-

terns by preventing trees from achieving their climate po-

tentials of height, biomass and fractional cover (Bond et al.,

2005). Fire occurrence in ORC-HL is formulated using the

fire model of Thonicke et al. (2001), based on litter quan-

tity and moisture (Krinner et al., 2005). In this study, the

fire module was activated in all the runs. But in a separate

test, ORC-HL-NVD was run without the fire module. Com-

pared to NEW, this simulation showed a small increase (5 %)

in the total temperate and boreal forest area in the Northern

Hemisphere (20–90◦ N) without fire. Since a more sophisti-

cated fire model, SPITFIRE (Thonicke et al., 2010), was im-

plemented in the ORCHIDEE standard version (Yue et al.,

2014), we compared the results of burned area simulated by

the Thonicke et al. (2001) fire module (implemented in ORC-

HL) with that simulated by SPITFIRE (implemented in OR-

CHIDEE standard version). The similar results of the aver-

age annual burned area during 1981–2010 (2.7 Mkm2 for the

former and 2.1 Mkm2 for the latter, in Northern Hemisphere

forests) justify the use of the Thonicke et al. (2001) fire mod-

ule in this study.

In this study, agriculture is excluded from all the dynamic

runs in order to simulate the potential vegetation distribu-
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tion without croplands and pasture. The results were post-

processed for comparison with observed vegetation cover or

carbon stocks. For vegetation cover, this is done by subtract-

ing the observed cropland fraction from the simulated natural

PFT fraction in each grid:

Vk,c = Vk,c,orig×
(
1−Vcrop,c

)
, (6)

where Vk,c,orig is the model-simulated fractional vegetation

cover for PFT k (except C3 and C4 crops) and for grid cell

c; Vk,c is the fraction of PFT k for grid cell c, after post-

processing; and Vcrop,c is the observed fraction of cropland

for grid cell c, in this study we use croplands estimated from

the ESA land-cover map.

For total GPP and soil carbon stocks, since ORCHIDEE

outputs the values per unit PFT which are multiplied by PFT

fractions and summed up to derive the total amount, the re-

sults from dynamic runs were post-processed using the fol-

lowing equation (taking GPP as an example) to compare with

observational data:

GPPc =

n∑
k

(GPPk,c×Vk,c)+GPPcrop,c×Vcrop,c, (7)

where GPPk,c is GPP for natural PFT k and for grid

cell c (g C m−2 yr−1 PFT−1), simulated by dynamic runs;

GPPcrop,c is GPP for crops (including C3 and C4) for

grid cell c (g C m−2 yr−1 PFT−1), simulated by STAT1 (pre-

scribed from the ESA map); GPPc is total GPP for grid cell c

(g C m−2 yr−1), after post-processing; and n= 11, the num-

ber of natural PFTs.

3.2 Evaluation data sets

We use satellite observations of land cover translated into

the PFTs of ORCHIDEE to evaluate the simulated vege-

tation distribution. In order to account for uncertainties in

observation-based estimates, we used three different land-

cover maps: the ESA CCI land cover v1.1 for year 2010,

GLC2000 (JRC, 2003), and ISLSCP II vegetation continuous

field for 1992–1993 (DeFries and Hansen, 2009). The first

two land-cover products (hereafter ESA and GLC) were con-

verted from their original classifications (22 categories based

on LCCS system) into PFT maps, using the cross-walking

method of Poulter et al. (2011). The third product (hereafter

VCF) provides the fractional cover of bare ground, herba-

ceous vegetation and forest (further split into evergreen or de-

ciduous, and broadleaf or needleleaf), and was merged with

climate zones of the Köppen–Geiger classification system to

resolve to PFT classes, based on Poulter et al. (2011). For

Siberia, two additional regional land-cover maps were used,

the PFT map of Siberia at 1 km scale from Ottlé et al. (2013)

based on the GlobCover2005 product (Bicheron et al., 2006),

hereafter OSIB, and the Russian land-cover data set produced

by the International Institute for Applied Systems Analysis

(Schepaschenko et al., 2011), hereafter IIASA, which was
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Figure 2. Composite-color map of the fractional vegetation cover

in PFT maps converted from the five land-cover products based

on Poulter et al. (2011). Color indicates the fraction of three

PFT groups: broadleaf (including evergreen and deciduous, red),

needleleaf evergreen (green), and needleleaf deciduous (blue) trees.

Deeper colors represent higher fractional covers.

converted into a PFT map using the cross-walking method

of Poulter et al. (2011). Along with ESA, GLC and VCF, the

five land-cover products were used to evaluate the model skill

at simulating the vegetation distribution across Siberia. The

PFT maps were aggregated at 2◦× 2◦, matching the resolu-

tion run by ORCHIDEE in this study. Figure 2 displays an

RGB composite-color map of the vegetation fractional cover

partitioned between broadleaf (including evergreen and de-

ciduous, red), needleleaf evergreen (green), and needleleaf

deciduous (blue) trees, from the five PFT maps.

Simulated GPP was evaluated using the data-derived field

obtained from FLUXNET data, satellite fAPAR and grid-

ded climate and land-cover data using a model tree ensem-

ble (Jung et al., 2011), hereafter MTE. A recent forest car-

bon density map (Thurner et al., 2014) for Northern Hemi-

sphere boreal and temperate forests (30–80◦ N), derived from

radar remote sensing of growing-stock volume (GSV), was

used to evaluate modeled forest biomass. For soil carbon

stocks, the simulated soil carbon density was compared with

the Harmonized World Soil Database (HWSD; 0–1 m depth,

FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) and the Northern

Circumpolar Soil Carbon Database (NCSCD; Hugelius et

al., 2013). Since the model results for soil carbon are not

fully comparable to NCSCD due to lack of peatland carbon

accumulation and cryoturbation processes in ORC-HL, met-

rics were not applied to soil carbon for establishing a model

score. All gridded observation-derived data were aggregated

at 2◦× 2◦.
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Apart from gridded data products based on satellite obser-

vations, independent forest inventory data at country/region

level as compiled by Pan et al. (2011), including forest area

and biomass, were also compared with model results.

3.3 Metrics for model evaluation

Different metrics can be used to quantify the agreement be-

tween model results and observations, including Pearson cor-

relation, model-to-data deviation, mean error, and root mean

square error (see Kelley et al., 2013; Cadule et al., 2010).

However, most of these metrics do not consider observational

uncertainty. When there are multiple observations available

and no particular data set can be proved to be more accu-

rate than others, which is the case for land cover, the choice

of an observational data set for model evaluation may have

a large influence on the model performance score. In order

to quantify the agreement between simulated and observed

fields, as well as to integrate the uncertainty of observations,

a metric normalized by observational uncertainty (skill, S)

was defined to evaluate model performances in terms of PFT

fractional cover, GPP and forest biomass. For the following

equations, M refers to the model results and O to observa-

tional data.

3.3.1 Metrics for PFT fractional abundance evaluation

For PFT fractions, a beta diversity metric (β) was used to

calculate the disagreement between two different PFT maps,

defined as the Euclidian distance of PFT classes (Poulter et

al., 2011; Ottlé et al., 2013). For every grid cell c, beta di-

versity between model and observational data set i (βc,M_Oi)

was calculated as

βc,M_Oi =
2

√√√√ n∑
k=1

(Vk,c,M−Vk,c,Oi)2, (8)

where Vk,c,M is fractional abundance for PFT k and for grid

cell c, simulated by model; Vk,c,Oi is fractional abundance

for PFT k and for grid cell c, from observational data set i;

and n= 11 is the number of natural PFTs.

Similarly, the disagreement between two observations was

quantified using βc,Oi_Oj , as

βc,Oi_Oj =
2

√√√√ n∑
k=1

(Vk,c,Oi −Vk,c,Oj )2, (9)

where Vk,c,Oi and Vk,c,Oj are fractional abundances from dif-

ferent observations i and j separately.

β is bound to the interval [0,
√

2], with higher values repre-

senting larger discrepancies between two PFT maps. To take

into consideration uncertainties of the different satellite land-

cover products (Sect. 3.2), we use the mean of the model

versus all data sets normalized by the mean of all combina-

tions between different data sets. In order to derive a bounded

score, with higher values representing better model perfor-

mance, the metric for the model skill at simulating vegetation

distribution in every grid cell (SV,c) was defined as

SV,c =

(
1

P

P∑
i 6=j

βc,Oi_Oj

)
/

(
1

Q

Q∑
i=1

βc,M_Oi

)
, (10)

where P is the number of all combinations between different

data sets; Q is the number of data sets. If SV,c > 1 for both

models, indicating that the observation-based estimates have

too large uncertainties to be qualified for model evaluation,

this grid cell c is left out.

The SV,c of each grid cell was averaged over the North-

ern Hemisphere (20–90◦ N) to get an overall score (SV). In

the calculation of SV, grid cells where mean βc,O_O is higher

than mean βc,M_O for both models (SV,c > 1) were excluded,

because in these pixels the uncertainties in the observational

data are too large to qualify them for model evaluation – the

choice of data set might significantly alter the model evalua-

tion result. Grid cells where both model and data sets have

100 % bare ground (Sahara and Greenland) and grid cells

with a crop fraction higher than 0.5 were masked out (18 %

of the total number of land points in that part of the North-

ern Hemisphere included in the study). The same rules were

also applied to the calculation of regional average βc,M_O and

βc,O_O.

To analyze the improvement of NEW over OLD for dif-

ferent PFTs, a dissimilarity index (D) was also calculated

for groups of PFTs: broadleaf evergreen (PFTs 2 and 5),

broadleaf deciduous (PFTs 3, 6 and 8), needleleaf evergreen

(PFTs 4 and 7), needleleaf deciduous (PFT 9), and total tree

and grass (PFTs 10 and 11). For each PFT group and grid

cell c, Dgroup,c was defined as the absolute bias in fractional

cover between two maps:

Dgroup,c,M_Oi =
∣∣Vgroup,c,M−Vgroup,c,Oi

∣∣ ,
Dgroup,c,Oi_Oj =

∣∣Vgroup,c,Oi −Vgroup,c,Oj

∣∣ , (11)

where Vgroup,c,M is fractional abundance for PFT group and

for grid cell c, simulated by the model; and Vgroup,c,Oi and

Vgroup,c,Oj are fractional abundances from different observa-

tions i and j separately.

The average Dgroup,M_O and Dgroup,O_O were calculated

over the studied region, in which the grid cells where the

corresponding group does not exist in any of the models or

observations were excluded. In practice, we set a threshold

of 0.01 to determine the existence of each group. We did not

use the β equation here after regrouping PFTs (e.g., needle-

leaf deciduous versus non-needleleaf deciduous, so that there

are only two PFTs in the β equation), because in that case the

average βgroup,M_O (or βgroup,O_O) for the Northern Hemi-

sphere (20–90◦ N) would be too optimistic, considering that

many of the pixels will be equal to 0 due to the limited distri-

bution range of the corresponding group. A detailed justifica-

tion for the use of β and D can be found in the Supplement.

Geosci. Model Dev., 8, 2263–2283, 2015 www.geosci-model-dev.net/8/2263/2015/



D. Zhu et al.: Improving dynamic vegetation model in high latitudes 2271

 

 
 

β between different observations mean D among observations for PFT groups 

broadleaf 
evergreen 

broadleaf 
deciduous 

needleleaf 
evergreen 

needleleaf 
deciduous 

 
grass 

Figure 3. Beta diversity (β) between the three observational data sets (ESA, GLC and VCF) (left panel), and mean dissimilarity index (D)

among them for different PFT groups (right panel). β ranges from 0 to 1.4, and D ranges from 0 to 1, both with higher values representing

larger disagreement.

Figure 3 shows the spatial pattern of β between the three

observational data sets (ESA, GLC and VCF) and mean D

among them for different PFT groups. The β values between

different data sets show a higher agreement for ESA versus

GLC (an average β of 0.25) and lower agreement for VCF

versus ESA or GLC (average β of 0.37 and 0.35 respec-

tively). ESA and GLC legends are based on the FAO Land

Cover Classification System (LCCS), while in VCF the origi-

nal 1 km continuous field data (DeFries et al., 2000), in which

the forest fractional area is given for each grid cell instead

of a discrete classification scheme, was aggregated to 0.5◦

resolution for ISLSCP II under the guidance of IGBP (Inter-

national Geosphere–Biosphere Programme), by DeFries and

Hansen (2009). LCCS uses a low threshold (15 %) of tree

cover for forest definition, whereas IGBP uses a threshold of

60 % (Poulter et al., 2011), resulting in relatively lower tree

cover in VCF than in either ESA or GLC land-cover maps.

For the PFT groups, higherD values were found for grass-

land, indicating significant uncertainty in observed grassland

fractions. The difference may come from uncertainties in the

remotely sensed land-cover products, as well as from uncer-

tainty in the reclassification of land-cover classes into PFT

categories. The overlap of broadly defined arid-land clas-

sifications (i.e., grassland, shrubland, barren) of land-cover

products can introduce errors in partitioning between trees,

grass and bare land, in deserts and tundra regions (Poulter et

al., 2011).

3.3.2 Metrics for GPP and forest biomass evaluation

GPP and forest biomass were evaluated using gridded ob-

servational data containing uncertainty estimates. The metric

for model performances was defined as

SG,c or SB,c =
σO

|Xc,M−Xc,O|
, (12)

where SG,c/SB,c is model skill at simulating GPP or for-

est biomass for grid cell c; Xc,M is GPP or forest biomass

for grid cell c, simulated by model; Xc,O is GPP or forest

biomass for grid cell c, from observation; and σO is the stan-

dard deviation of the observation.

In grid cells where |Xc,M−Xc,O|< σO, indicating a

model–data difference within the uncertainty of the observa-

tional data, SG,c or SB,c is set to 1. The SG,c or SB,c of each

grid cell were averaged over the Northern Hemisphere to get

an overall score (SG or SB).
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Figure 4. Composite color map of the fractional vegetation cover in

OLD and NEW. Color indicates the fraction of three PFT groups:

broadleaf (including evergreen and deciduous, red), needleleaf ever-

green (green), and needleleaf deciduous (blue) trees. Deeper colors

represent higher fractional covers.

4 Modeled and observed vegetation distribution

4.1 Northern Hemisphere vegetation distribution

The present-day vegetation distributions simulated by OLD

and NEW are shown in Fig. 4 as RGB composite color maps

as for Fig. 2. Fractional covers for each PFT are shown in

Fig. S3. Compared with OLD, NEW introduces two ma-

jor improvements to the results. First, the tree distribution

in cold subarctic regions has a northern boundary consis-

tent with observations, mostly due to the introduction of

a growing season temperature constraint (Sect. 2.2.2). Sec-

ond, the observed dominance of needleleaf evergreen trees

over broadleaf deciduous trees in northern Europe and North

America is reproduced by NEW and not by OLD, an im-

provement mainly due to the introduction of the spring frost

limitation for broadleaf deciduous trees (Eq. 4) and the re-

moval of the vcmax (and jmax) leaf-age dependency for ever-

green needleleaf trees (Sect. 2.2.3).

Figure 5 displays the spatial pattern of β index for OLD,

NEW and different satellite land-cover products. Compared

with OLD, the NEW results significantly reduce β in the bo-

real forests of Canada, western Siberia and northern Europe,

consistent with results shown in Fig. 4. The disagreement

is also reduced in pan-arctic tundra regions, after correction

of the unrealistically high fraction of trees in these regions

originally present in OLD. The average β over the Northern

Hemisphere land surface (20–90◦ N, excluding bare ground

and agricultural grid cells) for NEW versus ESA, GLC and

VCF are 0.56, 0.48 and 0.47 respectively, equivalent to a

3.5, 13 and 28 % reduction (i.e., improvement) compared

with OLD. The large variation of β for different observa-

tions shows the importance of accounting for uncertainty in

observation-based estimates of land cover in DGVM evalu-

ations, because the arbitrary choice of a specific land-cover

product may result in quite different scores.

Accounting for uncertainty in observed PFT distributions,

the model skill at simulating the vegetation distribution (SV)

is shown in Fig. 6 for OLD and NEW. The average SV

for the major Northern Hemisphere forested countries or re-

gions are listed in Table 3, showing improvement in all coun-

tries/regions. Larger improvements of NEW over OLD are

found in European Russia (42 %), Asian Russia (29 %) and

Canada (33 %). The overall SV for the Northern Hemisphere

is 0.72 in NEW compared to 0.61 in OLD, equivalent to 18 %

improvement. In OLD, 13 % of the land grid cells have a

βc,M_O value of less than the uncertainty between different

satellite products (βc,O_O); in NEW, this fraction increases

to 27 %. The resolution dependency of SV was tested by con-

ducting two additional runs similar to OLD and NEW ex-

cept for a 1◦× 1◦ resolution (Fig. S4 in Supplement). These

showed robust results for SV.

The forest areas simulated by the dynamic simulations

and estimated from the land-cover products were aggregated

to country level and compared with independent forest area

from national forest inventories (Pan et al., 2011) (Table 4).

In OLD, forest areas are systematically overestimated, espe-

cially for Asian Russia and Canada. The bias is decreased in

NEW, for which most of the differences are less than 30 %

except for an overestimation in Canada (50 %). This overes-

timation is, however, within the differences between the three

land-cover products and the forest inventory data at country

scale (Table 4). Forest areas estimated by VCF are system-

atically lower than inventory data, due to the difference in

forest definition mentioned previously. The largest underesti-

mation of VCF occurs in Asian Russia, where the vast taiga–

tundra transition zones with relatively sparse trees make the

definition-related biases more prominent.

4.2 Distribution of specific groups of plant functional

types

For the different PFT groups described in Sect. 3.3.1, the

Northern Hemisphere average dissimilarity index (D) is plot-

ted in Fig. 7 for OLD and NEW versus observations, as

well as between different observational data sets. For the

broadleaf evergreen group, D is small for both OLD and

NEW, and similar to the uncertainty in the data, because

the broadleaf evergreen fraction is smaller than other tree

PFT groups in temperate and cold zones. For the broadleaf

deciduous, needleleaf evergreen and needleleaf deciduous

groups, the average D for NEW versus the three data sets

is reduced (i.e., improved) by 53, 13 and 67 %, respectively,

compared with OLD. The OLD overestimation of broadleaf

deciduous area in Canada, Scandinavia and European Rus-

sia is corrected in NEW (Fig. 8b). The large underestima-

tion of needleleaf evergreen in OLD is partly corrected in

NEW, but a significant underestimation of the needleleaf ev-

ergreen coverage still exists in southern Siberia and west-

ern Canada (Fig. 8c). For needleleaf deciduous, the unreal-

istically high fractions in subarctic regions in OLD are cor-
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Figure 5. Beta diversity (β) to quantify the disagreement in vegetation distribution between model and observational data sets. β ranges from

0 to 1.4, with higher values representing larger disagreement.

Table 3. Model skills at simulating vegetation distribution (SV), GPP (SG) and forest biomass (SB), averaged over different countries/regions.

STAT1 and STAT2 are static runs prescribing different PFT maps, ESA and SYNMAP.

Asian European Canada USA Europe China Northern Hemisphere

Russia Russia (20–90◦ N)

Vegetation distribution OLD 0.69 0.63 0.53 0.66 0.62 0.57 0.61

NEW 0.89 0.89 0.70 0.69 0.65 0.61 0.72

GPP OLD 0.53 0.70 0.59 0.63 0.60 0.57 0.63

NEW 0.58 0.68 0.50 0.65 0.60 0.56 0.62

STAT1 0.52 0.63 0.63 0.54 0.55 0.53 0.60

STAT2 0.50 0.68 0.65 0.65 0.53 0.50 0.63

Forest biomass OLD 0.52 0.54 0.37 0.49 0.49 0.56 0.46

NEW 0.62 0.73 0.62 0.57 0.55 0.56 0.59

STAT1 0.58 0.55 0.50 0.53 0.54 0.52 0.56

STAT2 0.57 0.47 0.46 0.47 0.54 0.53 0.54

rected in NEW, but needleleaf deciduous fractions in south-

ern Siberia and Canada are still higher than observations, at

the cost of needleleaf evergreen (Fig. 8d).

A strong disagreement between simulated and observed

grassland fractions persists in NEW (average D of 0.35), but

the data–data comparison also shows significant discrepancy

(average D of 0.19) (Figs. 7, 3). Since there are no specific

shrubland and tundra PFTs in ORCHIDEE, the NEW simu-

lation has high fractions of C3 grass (PFT 10) in both arid

and cold areas, including subarctic regions, the western USA

and the middle of Eurasia (Fig. 8e). The average D for the

grass fraction between OLD and observed land-cover maps

is 0.27, lower than NEW, because the overestimations of tree

cover in OLD decrease the distribution ranges of grassland,

leading to a relatively higher agreement with observations for

grassland cover than NEW.
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Table 4. Forest areas (Mkm2) for different countries/regions simulated by models (OLD and NEW) and estimated from land-cover products

(ESA, GLC, VCF), in comparison with those from Pan et al. (2011). The relative differences compared to Pan et al. (2011) are given in

parentheses.

Asian Russia European Russia Canada USA Europe China

Pan et al. (2011) 6.77 1.69 2.30 2.57 2.05 1.56

OLD 10.0 (48 %) 1.96 (16 %) 6.00 (160 %) 3.33 (30 %) 2.14 (5 %) 2.80 (80 %)

NEW 5.00 (−26 %) 1.80 (7 %) 3.44 (50 %) 2.61 (2 %) 1.56 (−24 %) 1.23 (−21 %)

ESA 6.54 (−3 %) 1.58 (−6 %) 3.64 (58 %) 3.00 (17 %) 1.81 (−12 %) 2.19 (41 %)

GLC 8.42 (25 %) 2.02 (20 %) 4.50 (96 %) 4.73 (84 %) 2.40 (17 %) 2.23 (43 %)

VCF 3.43 (−49 %) 1.18 (−30 %) 2.54 (10 %) 2.00 (−22 %) 1.19 (−42 %) 1.10 (−30 %)
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Figure 6. Model skill at simulating vegetation distribution (SV;

Eq. 10) for OLD and NEW. SV ranges from 0 to 1, with higher

values representing better model performances, integrating obser-

vational uncertainty. Three kinds of grid cells are masked out (in

gray): (1) the grid cells where SV > 1 for both models, indicating

that the observational data have too large uncertainties to be quali-

fied for model evaluation (13 % of the total land points for the stud-

ied region); (2) the grid cells where all models and data sets have

100 % bare ground in the Sahara and Greenland (10 %); and (3) the

grid cells where crop fraction is higher than 0.5 (8 %).
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Figure 7. Dissimilarity index (D, Eq. 11) for fractional cover of

PFT groups including total tree, grass, and four tree subtypes be-

tween model (OLD, blue, and NEW, red) and observations, and be-

tween different observations (black), averaged over Northern Hemi-

sphere (20–90◦ N). D ranges from 0 to1, with higher values repre-

senting larger disagreement.

4.3 Case study for Siberia, using regional land-cover

data sets

For Siberia, the same metrics were calculated based on five

observational data sets (ESA, GLC, VCF, OSIB and IIASA).

As shown in Fig. 9a, the average β for NEW versus all

data sets is significantly reduced compared to OLD along

all longitudes, with a larger reduction (improvement) in cen-

tral Siberia and the most eastern part of Russia. The average

values of β over Siberia for NEW versus ESA, GLC, VCF,

OSIB and IIASA are 0.59, 0.46, 0.38, 0.35 and 0.41, respec-

tively, equivalent to 0, 10, 51, 45 and 26 % reduction com-

pared with OLD, respectively. The average β between differ-

ent data sets is 0.37, with larger β between ESA and VCF

(0.50) and between GLC and VCF (0.47), and smaller β for

GLC and IIASA (0.23), VCF and OSIB (0.28), and ESA and

GLC (0.29). OSIB and VCF both have lower fractions of tree

PFTs than the other three maps. In particular, the needleleaf

deciduous fractions in OSIB and VCF for the densest forest

areas are less than 0.65, while other maps can reach 0.85.

The model skill (SV) that integrates observational uncer-

tainty for Siberia is shown in Fig. 9b (OLD) and 9C (NEW).

The average SV for Siberia is 0.87 in NEW compared to 0.65

in OLD, equivalent to 32 % improvement. In OLD, 11 % of

the Siberian grid cells have a βc,M_O value of less than the

uncertainty between different satellite products (βc,O_O); in

NEW, this fraction increases to 40 %.

5 Modeled and observed carbon stocks and GPP

5.1 Gross primary productivity

The latitudinal pattern of annual GPP averaged for 1999–

2008 from OLD and NEW is shown in Fig. 10, compared

with STAT1 and STAT2 (prescribing ESA and SYNMAP

land cover) and with the data-driven MTE GPP (Jung et

al., 2011). For total GPP in the Northern Hemisphere (20–

90◦ N), the 10-year average annual GPP simulated by NEW

is 45.4 P g yr−1, close to OLD (42.6 P g yr−1) and MTE

(42.2± 2.4 P g yr−1). As for the static runs, total GPP in

STAT1 is 35.9 P g yr−1, smaller than MTE. Since MTE by
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Figure 8. Difference in fractional cover of PFT groups between the model (OLD and NEW) and observation-derived PFT map (VCF).

Similar map for the difference between model and ESA/GLC is shown in Fig. S5.

Jung et al. (2011) was based on SYNMAP land-cover data

(Jung et al., 2006) to describe the vegetation at FLUXNET

sites, STAT2 has a GPP (42.3 P g yr−1) closer to MTE. The

difference between STAT1 and STAT2 shows that the choice

of land-cover map makes a strong impact on modeled GPP.

Compared with ESA, SYNMAP has a larger forest area (29

versus 22 Mkm2) and similar grassland area (∼ 11 Mkm2)

for the Northern Hemisphere, explaining its larger GPP.

The spatial patterns of GPP simulated by OLD and NEW

are similar (Figs. 10, 11a). Compared with MTE, both NEW

and OLD overestimate GPP in eastern USA, western Eu-

rope and southern Asia and underestimate GPP in middle

and eastern Siberia (Fig. 11a), indicating that the similar-

ity in total Northern Hemisphere GPP between NEW and

MTE masks compensating regional biases. The STAT1 and

STAT2 runs produce very similar patterns of GPP to those

from NEW (not shown), suggesting that the regional bias of

GPP in ORCHIDEE is not related to the modeled PFT dis-

tribution, but to other non-modeled factors such as nitrogen

interactions.

The model skill at simulating annual GPP (SG) averaged

over different countries is given in Table 3. The average SG

for the Northern Hemisphere in OLD and NEW are similar

(∼ 0.6). The improvement in vegetation distribution in NEW

does not lead to a significant improvement of GPP, proba-

bly because simulated GPP in the same grid cells for high

latitudes has only a weak dependence on the modeled PFT.

For example, in Canada and northern Europe needleleaf ev-

ergreen trees (PFT 7) are dominant in NEW but broadleaf de-

ciduous trees (PFT 8) are dominant in OLD, the GPP differ-

ences between these two PFTs are less than 1.5 g C m−2 yr−1

per PFT (or 25 %), explaining why different modeled PFT

fractions in this region do not result into large differences in

GPP. This result means that GPP is not a discriminant vari-

able for evaluating the performance of a vegetation dynamics

module at high latitudes.

5.2 Forest biomass

The country-level forest biomass (above- and belowground)

simulated by OLD, NEW and the two static runs with pre-

scribed PFT maps were compared with forest inventory data

from Pan et al. (2011) (Table 5). The satellite-based spatially

explicit forest biomass estimates from Thurner et al. (2014)

over temperate and boreal forests at 30–80◦ N were also ag-

gregated to country level, showing generally good agreement

with the data from Pan et al. The results in NEW are lower

than the inventory for all countries, with the largest underes-

timation by 61 % in Asian Russia. OLD gives a higher total

forest biomass in Asian Russia, but the biomass density of

OLD and NEW are similar (∼ 2.4 kg C m−2 forest) and both

lower than Pan et al. (4.1 kg C m−2 forest). The large overes-

timation of biomass in Canada by OLD is reduced in NEW,

due to both reductions in forest area (Table 4, from 6.0 to

3.4 Mkm2) and in biomass density (from 5.6 to 3.8 kg C m−2

forest). Considering the 50 % overestimation of forest area in

Canada by NEW compared to the inventory data from Pan et
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Table 5. Forest biomass (Pg C) for different countries/regions simulated by models (OLD, NEW and two static runs) and estimated from

Thurner et al. (2014), in comparison with that from Pan et al. (2011). STAT1 and STAT2 prescribe different PFT maps, ESA and SYNMAP.

The relative differences compared to Pan et al. (2011) are given in parentheses.

Asian Russia European Russia Canada USA Europe China

Pan et al. (2011) 27.9 9.6 14.0 19.4 13.0 6.5

Thurner et al. (2014) 25.2 (−10 %) 9.0 (−6 %) 15.9 (14 %) − 10.6 (−18 %) −

OLD 24.3 (−13 %) 14.7 (53 %) 33.4 (138 %) 17.7 (−9 %) 16.2 (27 %) 8.1 (25 %)

NEW 11.0 (−61 %) 7.6 (−21 %) 13.2 (−6 %) 12.0 (−38 %) 8.3 (−36 %) 3.5 (−47 %)

STAT1 6.9 (−75 %) 10.8 (12 %) 21.2 (52 %) 8.7 (−55 %) 8.0 (−39 %) 3.6 (−44 %)

STAT2 13.7 (−51 %) 15.5 (62 %) 36.1 (158 %) 17.9 (−8 %) 13.8 (6 %) 4.5 (−31 %)
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Figure 9. (a) Longitudinal average beta diversity (β) between

model (OLD, blue, and NEW, red) and observational data sets (in-

cluding ESA, GLC, VCF, OSIB and IIASA) and between different

observations (black) in Siberia. β ranges from 0 to 1.4, with higher

values representing larger disagreement. (b) and (c): Model skill

at simulating vegetation distribution (SV) for OLD and NEW in

Siberia. SV ranges from 0 to 1, with higher values representing bet-

ter model performances, integrating observational uncertainty. The

pixels where SV > 1 for both models, indicating that the observa-

tional data have too large uncertainties to be qualified for model

evaluation (12 % of the total land points in Siberia), were masked

out (in gray).

al. (2011) (Table 4), the small underestimation (6 %) in total

biomass results from a negative bias in biomass density sim-

ulation in the model. It is notable, however, that the biomass

density in Canada estimated by Thurner et al. (3.7 kg C m−2

forest) is also significantly lower than that given by Pan et

al. (2011) (6.1 kg C m−2 forest).

In order to separate the bias of simulated biomass density

from the bias of modeled tree cover, the spatial distributions
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Figure 10. Latitudinal mean annual GPP (2◦ bands) during 1999–

2008 from OLD (blue) and NEW (red), compared with that from

STAT (static run in which ORC-VD is deactivated, green dashed

lines) and MTE (Jung et al., 2011; black). In STAT1 and STAT2,

the PFT map is prescribed from ESA and SYNMAP, respectively.

of forest biomass per unit forest area (kg C m−2 forest) simu-

lated by OLD and NEW are shown in Fig. 11b and compared

with the satellite-based estimates by Thurner et al. (2014).

The original overestimation in eastern Canada, northern Eu-

rope and European Russia by OLD is improved in NEW, al-

though underestimation in western Canada and Siberia still

exists in NEW. Biomass at equilibrium is positively corre-

lated with both NPP (net primary production) and turnover

time of carbon in biomass pools. Natural disturbances and

forest management can thus lower biomass by reducing the

turnover time (Jandl et al., 2007; Litton et al., 2004). Since

older forests store more biomass carbon than younger forests

(Wei et al., 2013; Luyssaert et al., 2008), managed and fre-

quently burned forests may not be able to reach their climate-

dependent maximum biomass.

In order to diagnose the possible causes of the biomass

deviation from data, the ratio of forest biomass from NEW

to that from Thurner et al., as well as the ratio of forest

NPP (average during 2001–2010) from NEW to MODIS-

NPP (NTSG), is plotted in Fig. S6. In eastern Canada, for-

est biomass is overestimated by NEW, while NPP is close to

MODIS NPP, indicating an overestimation of biomass car-
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Figure 11. Spatial pattern of (a) mean annual GPP (g C m−2 yr−1) during 1999–2008 from OLD, NEW, and MTE (Jung et al., 2011);

(b) forest biomass density (per forest area, kg C m−2 forest) from OLD, NEW and Thurner et al. (2014); and (c) total soil carbon density

(kg C m−2) simulated by OLD and NEW (0–2 m depth), and from HWSD (0–1 m depth) and NCSCD (0–1 m depth).

bon turnover time in ORCHIDEE compared to reality. In

western Canada and southern Siberia, the underestimation of

biomass is attributable to underestimation of NPP.

The model skill at simulating forest biomass (SB) averaged

over different countries is given in Table 3. SB is improved

in NEW for all countries compared to OLD, with the largest

improvement found in Canada (66 %). The overall SB for 30–

80◦ N is 0.59 in NEW, compared to 0.46 in OLD, equivalent

to 28 % improvement.

5.3 Soil carbon

The spatial patterns of soil carbon density simulated by

OLD and NEW (0–2 m depth) are shown in Fig. 11c,

compared with those from HWSD (0–1 m depth;

FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) and NCSCD

(0–1 m depth; Hugelius et al., 2013). Over the grid cells

present in NCSCD, the total soil carbon is 285 Pg in HWSD,

markedly lower than that in NCSCD (460 Pg C for the

upper meter of soil), indicating large uncertainties in the

empirical soil carbon data. Since the ORC-HL in this study

does not include processes of peatland and wetland carbon

accumulation, whereas in NCSCD the peat deposits contain

about 30 % of the total soil organic carbon mass in the upper

meter (Tarnocai et al., 2009) and wetland carbon stock is

estimated to account for 20 % of the total 1 m deep soil

organic carbon pool in Russia (Schepaschenko et al., 2013),

the model results are not fully comparable to NCSCD. The

spatial patterns of soil carbon from OLD and NEW are

similar (Fig. 11c). Over the grid cells present in NCSCD,

the total soil carbon simulated by OLD and NEW is 263 and

283 Pg C, respectively.

A comparison of soil carbon simulations from several

land-surface models coupled with climate models in CMIP5

(Todd-Brown et al., 2013) suggested that most models can-

not reproduce grid-scale variation in soil carbon and that the

substantial disagreement between the HWSD and NCSCD

data sets, and their lack of quantitative uncertainty estimates,

limit their ability for benchmarking land carbon models.

6 Critical model processes influencing vegetation

distribution

6.1 Soil freezing

The area of seasonally frozen ground covers 50 % of the

Northern Hemisphere land, or 48 Mkm2 (Zhang et al., 2003).

Soil freezing limits plant access to soil moisture and thus im-

pacts the simulated PFT distribution through a set of com-

plex interactions between productivity, tree–grass competi-

tion, and soil water limitations. In permafrost regions, the

limitation of growing-season water availability due to soil

freeze–thaw processes was shown to substantially contribute

to the low vegetation carbon densities (Beer et al., 2007). In

ORCHIDEE, a soil heat diffusion equation with latent heat

(Gouttevin et al., 2012) is solved for each soil layer that im-

pacts soil temperature and liquid water content. In this study,

we tested the effects of soil freezing on the vegetation dis-

tribution by comparing NEW and EXP1 in which soil freez-

ing processes were not activated (all other parameters being

the same). In EXP1, soil temperature can drop below 0◦, but

liquid water continues to be available in the root zone ir-

respective of soil temperature conditions. Figure 12 shows

the difference in tree fraction and in water availability (WA)

during the growing season (May–September) between NEW

and EXP1. In the model, soil moisture available to plants is

defined by WA, the relative soil moisture in the root zone,
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Figure 12. Difference of tree fractional cover (a) and water avail-

ability (WA) (b) between with and without soil freezing (NEW–

EXP1). WA is averaged over the growing season (May–September)

and over tree PFTs (PFTs 2–9) weighted by their fractions.

weighted by PFT-specific root profiles. A value of WA = 0

defines the wilting point, and WA = 1 the field capacity. A

stress factor is applied to stomatal conductance and canopy

photosynthesis if WA drops below a critical value of 0.4, and

this stress factor increases linearly for 0<WA≤ 0.4 (Krinner

et al., 2005).

When soil freezes in autumn and winter, the amount of liq-

uid water in the root zone is reduced as water is immobilized

as ice in soil pores. In the growing season, WA in NEW is

also lower than that in EXP1 (Fig. 12b). This is consistent

with previous results of model validation at site scale (Gout-

tevin et al., 2012) in which the upper layer (0–20 cm) soil

moisture in summer was found to be more depleted if the

soil freezing module was activated. In regions underlain by

permafrost, there is a spring peak in runoff originating from

meltwater which does not infiltrate into frozen soils (Gout-

tevin et al., 2012). If soil freezing is not modeled as in EXP1,

meltwater will infiltrate into soil, leading to overestimated

soil water content in the growing season. The reduction of

tree fraction in the presence of freezing occurs where there is

significant reduction of WA (Fig. 12a). In areas with a small

reduction (less than 0.1) in WA, however, there is a slight in-

crease in tree fraction. The tree fraction in the model equals

to population density multiplied by individual crown area.

On the one hand, as WA decreases, GPP, LAI and crown area

are smaller; yet, on the other hand, reduced LAI leads to in-

creased available space for establishment, resulting in a sub-

sequent increase in population density, compensating for the

loss of crown area. Therefore, reductions in WA may lead

to inconsistent changes in tree fraction, depending on their

relative effects on crown area and population density.

6.2 Changing CO2 since 1850

Terrestrial plants respond to elevated atmospheric CO2 con-

centration by increasing assimilation rate and reducing diffu-
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Figure 13. Difference of tree fractional cover (a), tree NPP

(g C m−2 d−1) (b) and WA (c) between with and without CO2 ris-

ing (NEW–EXP2). NPP is averaged over tree PFTs (PFTs 2–9)

weighted by their fractions. WA is averaged over the growing sea-

son (May–September) and over tree PFTs (PFTs 2–9) weighted by

their fractions.

sive stomatal conductance (Lammertsma et al., 2011), both

processes are included in ORCHIDEE (Krinner et al., 2005).

Under elevated CO2 concentration, the enhanced photosyn-

thetic capacity and thus increased NPP of forest (Norby et

al., 2005; Hickler et al., 2008) leads to higher growth effi-

ciency of trees and thus higher tree fractional coverage. In

the model, tree PFTs are superior to grass PFTs in terms of

light competition, i.e., when trees expand, grass PFTs will

give way to trees. Therefore, tree cover is expected to in-

crease at the cost of grasslands under elevated CO2. Here

we conducted a sensitivity test (EXP2) with fixed preindus-

trial CO2 concentration (285 ppm). Compared with EXP2,

the simulation NEW forced by historical CO2 concentration

produces higher tree fractions (Fig. 13a) by 2010, the spa-

tial pattern of which mirrors the pattern of tree NPP increase

(Fig. 13b) in the model. In NEW, total temperate and boreal

forest area in the studied region (20–90◦ N) are modeled to

increase by 2.6 Mkm2 (11.5 %) from 1850 to 2010. In EXP2

the increase is only 1.1 Mkm2 (4.8 %) indicating that about

58 % of the increase in forest area is attributable to the his-

torical increase of CO2, the rest being attributable to climate

warming (longer growing seasons) and changes in rainfall.

Since the processes of CO2 uptake by photosynthesis and

water loss by transpiration are tightly coupled, increasing

CO2 concentration results in increased water use efficiency

(Lammertsma et al., 2011; O’ishi et al., 2009). Figure 13c

displays the difference of WA for trees between NEW and

EXP2. Compared to the fixed-CO2 simulation, NEW pro-
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duces higher WA by ∼ 5 % in mesic regions such as Eu-

rope, western Siberia and the eastern part of North America,

and similar WA in drier regions such as middle and eastern

Siberia and the western part of North America.

6.3 Effects of the return frequency and severity of

extreme cold events during the spin-up

As mentioned in Sect. 2.2.1, the distribution range of tree

PFTs in ORCHIDEE is influenced by extremely cold days

in winter, which vary from year to year. When the PFT-

dependent threshold Tmin,crit (Table 1) is applied (Eq. 3), this

mechanism results in a considerable difference in modeled

tree fraction between the results of a spin-up forced by cy-

cling multi-year climatic data versus an average climatology.

In EXP3, the model spin-up used the average climatology of

the period 1901–1920 from CRU-NCEP and was compared

with NEW where interannually variable climate from years

1901–1920 was repeated in a loop. The minimum tempera-

ture in winter (Tmin) derived from the climatology is signif-

icantly higher than Tmin considering the 20 individual years

(Fig. 14a). Since the intra-annual variations among different

years are not synchronous, a low temperature of a day in 1

year is offset by a higher temperature of the same day during

another year; this leads to a milder climate in the climatology.

The vegetation distributions after spin-up are very differ-

ent between NEW and EXP3, as shown in Fig. 14. In EXP3,

temperate trees (PFTs 4–6) can extend northward, taking

up the boreal tree positions, while the distribution of boreal

needleleaf evergreen (PFT 7) and broadleaf deciduous (PFT

8) trees is squeezed to the climatic range of needleleaf de-

ciduous trees (PFT 9). Compared with the initial state after

spin-up in NEW, total forest area in the studied region (20–

90◦ N) in EXP3 increases by 5.1 Mkm2 (22 %), among which

PFTs 4–6 increase by 2.7 Mkm2, PFTs 7 and 8 increase by

6.3 Mkm2, and PFT 9 decreases by 3.9 Mkm2. Apart from

average climatology, recycled single-year climate is occa-

sionally used in spin-up phase, which can also lead to large

variance in initial vegetation distribution after spin-up due to

interannual climate variability. Figure 14d shows the consid-

erable difference in the fraction of PFTs 7 and 8 between two

spin-ups forced by 2 different single years arbitrarily chosen

(1914 and 1901). Similar results were obtained when three

sets of forcings (1-year, climatological mean, and cycling of

the whole period 1960–1999) were used in the spin-up pro-

cess of CLM-DGVM (Li et al., 2011). Since climatology or

recycled 1-year climatic data are sometimes used in the spin-

up of land-surface models, it is notable that this may bias

DGVMs to produce unrealistic or unstable results if vegeta-

tion distribution is sensitive to extreme temperatures in the

model. Thus, it is more appropriate to cycle multi-year cli-

matic data to force DGVMs in a spin-up.
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Figure 14. (a) minimum temperature (Tmin) isotherms calculated

from the 20-year average climatology (red lines) and the mean of

the 20 Tmin for each year (green lines). The Tmin values are la-

beled on the lines, corresponding to the PFT-dependent Tmin,crit

for temperate and boreal trees (see Table 1). (b, c) difference of

the vegetation fractional cover for the last year of spin-up between

EXP3 (using 20-year climatology as forcing file in spin-up) and

NEW for temperate trees (PFTs 4–6) (b) and boreal broadleaf de-

ciduous/needleleaf evergreen trees (PFTs 7–8) (c). (d) difference

in fraction of PFTs 7–8 between spin-up results forced by climatic

data of 2 different single years (1914 and 1901).

7 Conclusions

This study has presented an improved parameterization and a

calibration of Northern Hemisphere vegetation dynamics in

the ORCHIDEE process-based ecosystem model, based on a

version that includes frozen soil moisture and its impacts on

plant productivity. Keeping the original model’s concept of

plant functional types, we modified the processes that influ-

ence tree existence, mortality and competition. We are aware

that most of these modifications are based on empirical bio-

climatic constraints; if a more mechanistic understanding of

mortality could be determined in the future, especially re-

garding physiological pathways in cold temperatures, these

bioclimatic constraints might be replaced by sufficient phys-

iological processes to enable the model to more realistically

simulate vegetation distribution. A new performance met-

ric applicable for DGVM evaluation in terms of vegetation

fractional cover was used to evaluate ORCHIDEE, which

integrates uncertainties in different land-cover maps. The

new version of the ORCHIDEE vegetation dynamics module

shows marked improvement in the simulated PFT distribu-

tion compared to the previous version. A more realistic sim-

ulation of the northern tree limit is obtained, as well as of the
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distribution of evergreen and deciduous conifers in the bo-

real zone. The model still overestimates grass fraction in dry

regions of central Asia and western North America, possibly

because of the lack of a specific shrubland PFT. Grass frac-

tion was also overestimated in the Arctic tundra. Considering

the large coverage of shrubland and tundra in northern mid-

dle and high latitudes, a proper representation of shrub and

tundra plant functional types in DGVMs, as well as their bio-

physical and biogeochemical processes, should be a priority

for future development. The better PFT distribution results in

improvements in simulated forest biomass, while significant

regional biases still remain for GPP, forest biomass and soil

carbon distributions, indicating other structural biases in the

carbon cycle parameterizations in the model. Incorporating

the PFT trait variation into DGVMs, which allows for more

variation in vegetation responses to climate in the model than

fixed traits, might be an interesting future development to im-

prove the modeled vegetation dynamics and carbon cycle.

Code availability

The ORCHIDEE model used as a starting point in this

study is ORCHIDEE rev1322. The source code can be

obtained at http://forge.ipsl.jussieu.fr/orchidee/browser/

branches/ORCHIDEE-MICT/ORCHIDEE?rev=1322.

A detailed documentation and the forcing data

needed to drive ORCHIDEE can be found at

http://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation

and http://forge.ipsl.jussieu.fr/orchidee/wiki/Forcings.

ORC-HL-NVD is derived from rev1322 with the

modifications presented in Sect. 2.2, the source

code of which can be obtained upon request (http:

//labex.ipsl.fr/orchidee/index.php/contact). The modifica-

tions of ORC-HL-NVD from rev1322 are also implemented

in ORCHIDEE standard version (trunk), recorded as the

difference between rev2672 (source code: http://forge.ipsl.

jussieu.fr/orchidee/browser/trunk/ORCHIDEE?rev=2672)

and rev2658 (source code: http://forge.ipsl.jussieu.fr/

orchidee/browser/trunk/ORCHIDEE?rev=2658).

The Supplement related to this article is available online

at doi:10.5194/gmd-8-2263-2015-supplement.
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