NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

A FORTRAN CODE FOR THE TRANS-
SHIPMENT PROBLEM

Markku Kallio
Andras Por
Margareta Soismaa

April 1979
WP-79-26

Working Papers are interim reports on work of the
International Institute for Applied Systems Analysis
and have received only limited review. Views or
opinions expressed herein do not necessarily repre-
sent those of the Institute or of its National Member
Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria

Margareta Soismaa is a Research Assistant at the Helsinki
School of Economics.

ACKNOWLEDGEMENT

The authors are grateful to William Orchard-Hays for his
helpful comments. Of course, however, the authors are respon-
sible for possible remaining mistakes. :

-iii-

ABSTRACT

A code written in FORTRAN for PDP-11 is reported for solving
the capacitated transshipment problem.

A FORTRAN CODE FOR THE
TRANSSHIPMENT PROBLEM

Markku Kallio, Andras Por and
Margareta Soismaa

1. Introduction and Summary

Capacitated transshipment problems comprise an important
class of structured linear programming problems. Being the
most general pure network problems, they have found a wide
variety of applications for problems such as transportation,
manpower planning, water resources management, regional location
problems, production-inventory systems, cash management, etc.

The main advantage of the transshipment problems is that
the problem structure can be exploited in a very efficient way
while solving the problem. This amounts to far less computer
time and core requirement than what is the case when using
standard LP software. For instance, network problems which are
considered large in the usual LP terminology, can be handled
even by the relatively small PDP-11 at IIASA. Another fundamen-
tal feature of these network problems is that the optimal solu-
tion is integral provided that the problem data is integral.

This is important, as such optimal integer solutions for

-1

-2-

optimization problems are extremely difficult to obtain in
general. This property is applicable, for instance, to some
regional development problems within IIASA.

The code reported here has been written for solving the
capacitated transshipment problem, as well as its special cases,
such as transportation, assignment, maximum flow, etc. problems.
The program has been written in FORTRAN for PDP-11. Currently,
the maximum problem size is restricted by 1.8 m + n < 3640,
where m is the number of nodes and n is the number of arcs (in-
cluding slack and possible artificial arcs). Of course, this
restriction can be easily relaxed if the necessary core is
available.

The simplex method has been employed to solve the optimi-
zation problem. Our main goal then was to exploit the struc-
tural properties (such as the triangularity) for the basis
matrices. A special scheme of a forthcoming paper [2] has been
implemented for updating the triangular representation of the
basis at each simplex iteration. (For an excellent presenta-
tion of network technigques and further references, see also
reference [1].) Another goal was to keep the core requirement
at a moderate level. However, through further polishing, core
requirement can still be reduced rather easily, for instance,
taking a more sophisticated approach for storing the arc list
and the upper bound vector.

The input/output section has been designed as simple as
possible. In actual use, one should easily be able to change
these sections if necessary. Neither has much attention been
paid to initialization of the algorithm when no advanced start-

ing basis is available. 1Indeed, in such a case, we start with

an all logical basis where the cost coefficients for slacks, as
usual, have been set to zero and for artificials to a number,
which is large enough to prevent them appearing in the optimal

solution.

2. The Capacitated Transshipment Problem

Let N be a set of nodes j and A a set of arcs (directed
pairs of indices ij) pointing froﬁ i to j, for some i € N and
j € N. For each node j € N, define Dj = {jk : jk € A} and
Sj = {ij : ij € A} as the set of arcs starting from j and ending

to j, respectively. In this notation, the capacitated trans-

shipment problem is to

find xij for all ij € A to
minimize) c..x.. (1)
ijéa I 13
subject to
] Xis -) x., = d. for all j €N , (2)
ijés, Y3 4k&p, Ik]
J J

0 < xij < uij for all ij € a , (3)

Where £ stands either for =, for < or for >. Here xij is the
flow (or shipment) along arc ij from node i to node j, cij is
the corresponding unit cost for transporting from i to j, uij
is the maximum possible amount for flow Xij (which may be

infinite) and dj is the external flow (out) from node j. We

may also interprete dj as an external demand at node j. 1If

this is negative it actually means supply.

-l

Problem (1)-(3) is a structured linear programming problem
which is characterized by the following: each variable xij has
two nonzero coefficients in constraints (2), one being equal to
1 and the other equal to -1. This property implies that each
basis matrix corresponding to constraint (2) is a triangular
matrix. This fact shall be exploited in our code for solving

the problem (1)-(3).

Remark. I1f all constraints (2) are of equality type, then
Zdj must be 0 in order for the problem to be feasible. 1In this
case, one or more of the equations are redundant: they can be
obtained as linear combinations of other constraints. Corre-
sponding to a redundant constraint, an artificial variable will
appear in the optimal basis at zero level. For computing the
final price vector, we shall, at the end, set the cost coeffi-
cients for such artificials to zero. According to the usual
convention, this amounts to a dual variable equal to zero for

each redundant constraint.

3. System Description

The optimization system consists of the main program, an
input subroutine INPUT, an output subroutine PRINT, two minor
subroutines IDEN and ORDER, and the optimizer subroutine SLEX.

A program list appears in the Appendix. The system is imple-
mented on our in-house PDP-11/70. The load module can be called

as a UNIX shell command of the following form:

TRNETWORK 5=input 6=+output

where "input" is the name of the problem input file (see below),

and "output" is a printfile name. The program also uses a file

for saving the basis. The name of this file has to be defined
by the user as indicated shortly.
The program first needs the problem description from a

Problem Input File numbered as 5 in our code. We shall give a

precise description for this file shortly. If the problem is
too large, the following message will be printed before termin-

ation:

THE PROBLEM IS TOO LARGE,

ADDITIONAL CORE REQUIREMENT IS ., BYTES

Otherwise, slacks and artificials are first constructed, and
thereafter the maximum allowable number of iterations is re-~

quested:
ENTER MAXIMUM NUMBER OF INTERATIONS:

If nothing is inserted (press RETURN key), a default value equal
to 5 times the number of nodes is used. Next an initial basis

is requested:
ENTER THE NAME OF STARTING BASIS:

If nothing is inserted, the main program constructs an all logi-
cal starting basis. Otherwise, the file named for an advanced

basis is loaded. The description of such a Basis File is given

below. This file may have been generated during-previous runs

or it may have been generated by other means. The starting basis
need not be feasible in the sense that the basic solution corre-
sponding to the initial basis may not be within bounds (3).

Such a basis may also include artificial variables which cannot
appear at a nonzero level at any feasible solution for the trans-

shipment problem.

—-6-

Optimization may terminate in the following cases:

(a) an optimal basic solution has been found;

(b) an unbounded optimal solution has been detected;
(c) the problem is found to be infeasible;

(d) the maximum allowable number of iterations has

been reached.

In each case, a name for the final basis is requested:
ENTER THE NAME OF THE FINAL BASIS:

If nothing is entered, the basis will not be saved. Otherwise,
the basis is saved under the file name entered containing at
most 8 characters. The format of this file is as deséribed be-
low for é Basis File.

The final basic solution is printed and an indication given
as to which case (a to d) occurred. The format is described

under Solution Printout section below.

Problem Input File

The problem file is a file with the following structure:

} ' 1

;1 8 16 24) ag| position
- . -
) NODE! DEMAND TYPE, | T
' node, deman# typée ! | Node section
L_ _namei_ I

| - - = =
| ARG FROM 1d cost BOUND
! arcstarting, ending unit' uppeﬂ Arc section
| number] node nodel cost| bound
! | nam name | on
| | l | I arc

| |
\ENDATA | N I R N

Figure 1. Problem input file.

-7-

For the node section, there is a title record containing
NODE in positions 5-8, and one record for each node j. The
node name contains at most 8 characters. Demand dj may be
positive, negative (meaning supply), or zero. The node TYPE

is defined as

EQ if constraint j in (2) is of "=" - type
LE if constraint j in (2) is of "<" - type
GE if constraint j in (2) is of ">" - type.

The FORTRAN format for a node record is (A8,18,6x,A2).

For the arc section, there is a title record containing ARC
in positions 6-8, and one record for each arc ij. The names of
the starting node i and the ending node j, as well as the unit

cost cij and the upper bound u; is given. The arcs will be

3
numbered in the same order as they are entered. This running
number may also be given in the ARC column. The FORTRAN format

for an arc record is (18,2A8,218). The arc section is termin-

ated with a record containing ENDATA in positions 1-6.

An Example of a Problem File. Consider the following trans-

shipment network, where the circled nodes have their numbers j
inside, each arc from i fo j denotes a pair ij in A. The cost
coefficients cij and upper bounds uij associated with arcs have
been expressed by pairs of numbers. Demand dj at node j is
associated with an arc pointing out from that node (and not
pointing to another node). The node type (<, =, or >) has been
written beside the node demand. For this problem we have the
set of nodes N = {1,2,3,...,12} and the set of arcs A = 0—5,1—7,

1-8,1-9,2-3,2-6,2-9,2-11,2-12,3-4,3-9,3-10,4-8,4-10,5-8,6-9,6-12}.

215 =0 =3
g e 19.9 , 202 (T
24,5

56,7 14 13
=> 28,10 34,11
-— ¥ 2 —~>-41
57,21 61,5 ’ ' 45,20 100,12
6 34,16
>18 =4

Figure 2. A transshipment network.

The problem input file is as follows:

node .demand type
' 1 -34 ge
2 -4] ge
3 -5 eq
4 g eq
5 5 eq
6 4 eq
7 18 ge
8 15 " ge
9 8 ge
14 3 eq
11 11 ge
12 16 eq
arc from to cost ub
1 2 3 34 11
2 3 4 23 6
3 1 5 28 10
4 2 6 45 20
S 1 7 57 21
6 5 8 24 S
7 1 8 56 7
8 4 8 19 9
9 1 9 61 5
18 2 9 99 12
11 6 9 48 3
12 3 9 53 24
13 3 10 26 8
14 4 10 20 2
15 2 11 14 13
16 6 12 34 16
17 2 12 108 12

endata

Figure 3. An example of problem input file.

Solution .Printout

For the final basic solution the associated total cost as
well as arc and node data is printed. For the arc-section, the

following information is shown:

ARC = arc number for arc ij

FROM = starting node name of i

TO = ending node name of j

ACTIVITY = Xij’ activity level at basic solution
BOUND = upper bound uij

COST = unit cost cij

RESUCED COST = reduced cost for x.lj

The node section contains the following information:

NODE = node name
SLACK ACTIVITY = slack for an inequality type node
DUAL ACTIVITY = simplex multiplier corresponding to

node

Example. The optimal solution of our example would be

reported as follows:

=}
[*]
Q
(1]

slack activity dual activity
26.08
.00
34,00
63.08
54.90
45.00
83.00
82.08
87.00
60 .09
14.09

=R 0NV WN
S

e

Figure 4. A solution printout: Node section.

-10-

optimal solution at iteration number 12
arc from to . activity bound cost reduced cost
1 2 3 18 11 34.09 .20
2 3 4 6 6 23 .08 -6.00
3 1 5 19 . 19 28 .00 2.00
4 2 6 20 28 45.00 0.00
S 1 7 18 21 57.89 0.060
6 5 8 5 5 24.00 ~-4.00
7 1 8 4 7 56 .00 8.00
8 4 8 6 9 19.09 .90
9 1 9 2 5 ° 61.00 0.2@
10 2 9) 12 99.08 12.00
11 6 9 2 3 48 .00 6.09
12 3 9 6 24 53.08 : 0.09
13 3 10 3 8 26.00 0.00
14 4 19] 2 20.09 23.00
15 2 11 11 13 14.090 0.00
16 6 12 16 16 34.00 p.08o
17 2 12 8- 12 180.80 21.00

total cost = 4358.98

Figure 4. A solution printout: Arc section.

Basis File

The basis file defines a basic solution, a basis matrix and
a triangular permutation for this basis.

First there is a record for each node j containing an arc
number B(j) (or its negative) and a row number W(j) in FORTRAN
format (2I8). The order in which basic arcs are entered is the
order of corresponding columns from left to right in the basis.

. Row number W(j) defines a row permutation: the constraint of
node j corresponds to the W(j)th row in the permuted basis.

. The permuted basis determined by B(+) and W(+*) has to be lower

" triangular. Furthermore, if the jth diagonal element of this
matrix is equal to -1, then B(j) is the negative of the corre-

sponding arc number. Otherwise, B(j) is the arc number.

~-11-

Next, there is a list of variables at their upper bounds.
At most ten such variables may be indicated in one record. The
FORTRAN format for such a record is (10I8). At the end of this
list there is a record containing ENDBASIS in positions 1-8.
This indicates the end of a basis file. The optimal basis of

our example is given in Figure 5 below.

o
[

[}
O
[

[}
- -
v N
s
WO WNNN SO

endbasis

Figure 5. A basis file.

REFERENCES

[1] Bradley, G.H., G.G. Brown and G.W. Graves, "Design and
Implementation of Large-Scale Primal Transshipment
Algorithms," Management Science, 24 (1977), 1-33.

[2] Kallio and M. Soismaa, "On Basis Representation for Net-
work Optimization Problems," forthcoming.

-12-

-13-

APPENDIX

c I EXEEERSS SRS 22 222222 X2 X222 22222 2222222 22t X a2 s ot R s X2l

c main program ,
c ***i{
implicit integer (a-2z) |
real *8 dr (3848) ,nodes(1l) ,nam(6) ,naml,nam2,drl1(1558)
real rr(l)
integer *2 ir(1l),typ(l),dem(1)
equivalence (dr(1l),rr(l)), (dr(l),ir(1l)), (dr(l),nodes(1l)),
1 (dr(2098),typ(l)), (dr(3640),dem(l)), (dr(3601),drl(1))
data naml /8h node/, nam2 /8h arc/, eq /2heq/, le /2hle/,
1 ge /2hge/, icore /18204/
¢ icore = length of array dr(.) and array drl(.) 1in words.
c (word = 2 bytes)
n =46
read (5,99999) nam(1l)
if (nam(l).eqg.naml) go to 10
write (6,99998)
stop 22
c read node information
19 read (5,99999) (nam(i),i=1,3)
if (nam(l).eg.nam2) go to 20
n=n+1
decode (24,99997,nam) nodes(n),dem(n) ,ty
typ(n) = @
if (ty.eqg.le) typ(n)
if (ty.eq.ge) typ(n)
go to 14
c distribution of the core defined by arrays dr(.) and drl(.)
¢ among arrays required by procedures input and slex.
20 k1l = 4*n
k2 = 5*n
do 30 i=1,n
ir(kl+1i)
ir(k2+1i)
38 continue
arcmax = (icore-9*n) /5
k1l 2*n + 1
k2 4*%n + 1
k3 2* (kl+n+arcmax-1) + 1
k4 3*n + k3
call input(dr, rr(kl), rr(kl+n), ir(k2), ir(k2+n), ir (k3),
1 ir(k3+n), ir(2*n+k3), ir, ir(n+l), ir(k4), ir(k4+arcmax),
2 arcmax, n)
stop 11
99999 format (5a8)
99998 format (1x, 27hnode-section does not exist)
99997 format (a8, i8, 6x, a2)
end

1
-1

typ (1)
dem(1i)

14~

subroutine input(nodes, pii, cost, typ, dem, x, b, w, alfa, av,
1 ub, a, arcmax, n)

implicit integer (a-z)

real pii(l), cost(l), comax, max

logical *1 nam31(8),sp

real *8 nodes(l),nam(18),nam3,eob

dimension a(2,1), ub{(l), alfa(l), av(2,1), w(l), x(1), b(l),
1 typ(l), dem(l), ib(1@)

equivalence (nam3,nam31(1))

data nam3 /8hendata /, sp /lh /, eob /8hendbasis/

narc = @
narcx = @
do 18 i=1,arcmax
ub(i) = @
18 continue
comax = -l.e32

c read arc information
29 read (5,99992) (nam(i),i=1,5)
if (nam(l).eqg.nam3) go to 40
if (narc.ge.arcmax) narcx = narcx + 1
if (narcx.ne.@) go to 39
narc = narc + 1
38 call iden(nodes, n, nam(2), a, narc)
decode (40,99991,nam) a(2,narc),a(l,narc),cost(narc),ub(narc)
if (cost(narc).lt.comax) go to 280
comax = cost(narc)
go to 20
48 narcl = narc
¢ compute cost coefficient for artificial arcs
c construct slack and artificial arcs
max = 2.*float(n)*comax + 1.
do 98 i=1,n
w(l) 1
ii
33
nn
if
nn
ii
33
5@ if (narc.ge.arcmax) narcx = narcx + 1
if (narcx.ne.9) go to 64
a(2,narc+l) ii
a(l,narc+l) i3
cost(narc+l) = @
if (typ(i).eq.®8) cost(narc+l) = max
narc = narc + 1
60 if (typ(i).eq.-1 .and. dem(i).le.B) go to 84
if (typ(i).eg.l .and. dem(i).ge.@) go to 89
if (typ(i).eq.8 .and. dem(i).le.@) go to 89
if (narc.lt.arcmax) go to 70
narcx = narcx + 1
if (typ(i).eq.8) narcx = narcx - 1
go to 90
7@ if (typ(i).eq.@) narc = narc - 1
a(2,narc+l) = jj :

typ(i).ne.l) go to 5@

=R N

W~ nn

-15=

a(l,narc+l) = ii
cost (narc+l) = max
narc = narc + 1

nn =1

if (typ(i).eg.l) nn = 2
¢ define initial basis using slacks and artificials
80 x(1) = iabs(dem(i))
b(i) = narc
if (nn.eq.2) b(i) = -b(i)
94 continue
if (narcx.eg.d) go to 140
¢ run is abandoned due to violation of the avallable core size

narcx = l@*narcx
write (6,99999) narcx
stop

108 write (7,99998)
read (1,99997) niter
if (niter.eg.8) niter = 5*n
write (7,99996)
read (1,99994) nam3
do 114 i=1,8
if (nam31(l).ne.sp) go to 120
118 continue
phase = 2
go to 218
Cc restore basis from the file whose name is contained in variable nam3
120 call setfil (8, nam3)
do 138 i=1,n
read (8,99993) b(i), w(i)
139 continue
148 read (8,99994) nam
if (nam(l).eg.eob) go to 169
decode (86,99993,nam) 1ib
do 156 i=1,10 _
if (ib(i).eqg.8) go to 169
il = ib (i)
ub(il) = -ub(il)
158 continue
go to 140
168 call closef (8)
c setup of basis solution
phase = 2
do 176 i=1,narc
if (ub(i).ge.8) go to 174
il = a(2,1)
i2 = a(1,1)
dem(il) = dem(il) - ub(1i)
dem(i2) = dem(i2) + ub(i)
178 continue
do 2064 i=1,n

i2 = iabs(b(i))
il = a(2,12)
x(i) = -dem(il)

if (b(i).le.8) go to 18¢
il = a(1,12)
x(1) = dem(il)

-16-

180 if (x(i).lt.8 .or. x(i).gt.ub(i2)) phase =1
do 1960 j=1,2
if (a(j,1i2).eq.8) go to 194
dem(a(j,i2)) = dem(a(j,1i2)) + x(i)*(-1)**)
194 continue
280 continue
c save node-names on file "trnames"
210 call setfil (2, 7htrnames)
write (2) (nodes(i),i=1,n)
call closef(2)
c optimize
call slex(a, cost, ub, pii, x, b, w, n, narc, niter, ind, colin,
1l av, alfa, phase, max)
write (7,99995)
read (1,99994) nam3
do 220 i=1,8
if (nam31(i).ne.sp) go to 238
223 continue
go to 274
c save basis on the file whose name is contained in variable nam3
230 call setfil (8, nam3)
do 249 i=1,n
write (8,99993) b(i), w(i)
248 continue
il =@
do 250 i=1,narc .
if (ub(i).ge.f) go to 2540
il = i1 +1
ib(il) =1
if (il1.1t.19) go to 259
write (8,99993) ib
il =8
250 continue
if (il.eq.8) go to 260
write (8,99993) (ib(i),i=1,1il)
260 write (8,99994) eob
278 call order(x, b, n, nnl, narcl)
¢ print solution
call print(a, nodes, x, b, w, cost, ub, pii, n, narcl, nnl, n,
1 ind, colin, niter)
99999 format (4x, 25hthe problem is too large,/4x, 17hadditional core r,
1 l4hequirement is , 15, 6h bytes)
99998 format (4x, 35henter maximum number of iterations:)
99997 format (1i6)
99996 format (4x, 37henter the name of the starting basis:)
99995 format (4x, 34henter the name of the final basis:)
99994 format (10a8)
99993 format (101i8)
99992 format (5a8)
99991 format (8x, 2i8, f8.04, 1i8)
end

-17-

subroutine print(a, nodes, x, b, w, cost, ub, pii, n,

1 mm2, ind, colin, niter)

implicit integer (a-z)

real *8 nodes(l)

real cost(l), pii(l), px, costt

dimension x(1), b(l), ub(l), a(2,10888), w(l)
costt = 0.0

¢ restore node-names from file "trnames"

call setfil(2, 7htrnames)
read (2) (nodes(i),i=1,n)
call closef (2)

c print type of solution

10

29

30

if (ind.ne.3) go to 14
write (6,99999) niter

go to 49

if (ind.ne.4) go to 24
write (6,99998) niter

go to 40

if (ind.ne.2) go to 38
write (6,99997) niter

go to 49

write (6,99996) niter

c print arc section

40

50

60

70

84d

90

Imax = 5@
lin = narc/lmax

1lre narc - lin*lmax

if (lre.ne.@) lin = l1lin + 1
ii =1

jj =1

do 110 i=1,1lin
write (6,99995)
lpr = lmax
if (i.eq.lin) 1lpr = lre
do 146 j=1,lpr

xx = 0@

px = cost(ii)

ij=0

kv = a(l,1ii)

if (kv.eqg.6) go to 640
kv = w(kv) '

if (ij.eg.f) px = px - pii(kv)
if (ij.eg.l) px = px + pii(kv)
ij = 1j + 1

if (ij.gt.l) go to 7@

kv = a(2,11)

go to 54
if (ub(ii).ge.@) go to 84
ub(ii) = -ub(ii)

xx = ub(ii)
if (jj.gt.mml) go to 99
bjj = b(3j)
if (bjj.lt.8) bjj = ~bjj
if (bjj.ne.ii) go to 90

xx = x(33)
Jj =33 +1
il = a(2,11)

narc, mml,

-18-

i2 = a(l,11i)
costt = costt + xx*cost(ii)
if (ub(ii).ne.@) write (6,99994) ii, nodes(il), nodes(i2),

1 xx, ub(ii), cost(ii), px
if (ub(ii).eq.B) write (6,99993) ii, nodes(il), nodes(i2),
1 XX, cost(ii), px
ii = ii + 1
199 continue

118 continue
c print total cost
write (6,99992) costt
c print node section
lin = n/lmax
lre = n - lin*lmax
if (lre.ne.@) lin = lin + 1
ii =1
do 148 i=1,lin
write (6,99991)
lpr = lmax
if (i.eq.lin) lpr = 1lre
do 138 j=1,lpr

Xx = @

kv = w(il)

px = pii(kv)

if (jj.gt.mm2) go to 129
ind = b(3jj)

if (ind.1t.9) ind = ~-ind

indl = a(2,1ind)

if (indl.eqg.f) indl = a(l,ind)
if (indl.ne.ii) go to 120

xx = x(3jj)
jid = 3j + 1
120 write (6,99998) nodes(ii), xx, px
ii = ii +1
130 continue
148 continue
return

99999 format (lhl//4x, 28hsolution at iteration number, i6//)
99998 format (1lhl//4x, 38hunbounded solution at iteration number,
l i6/4x, l1l@hray-arc is, 1i6//)
99997 format (lhl//4x, 36hoptimal solution at iteration number, i6//)
99996 format (1lhl//4x, 32hinfeasible solution at iteration, i6//)
99995 format (//1x, 3harc, 6x, 4hfrom, 8x, 2hto, 3x, 8hactivity, 1l1x,
1 Shbound, 12x, 4hcost, 4x, l12hreduced cost//)
99994 format (1x, i3, 2(2x, a8), 3x, i8, 4x, 112, 4x, f12.2, 4x, £12.2)
99993 format (1x, i3, 2(2x, a8), 3x, i8, 4x, 8x, 4hnone, 4x, fl2.2, 4x,
1 f12.2)
99992 format (//4x, l1l3htotal cost = , gl3.6)
99991 format (lhl//8x, 4hnode, 4x, l4hslack activity, 4x, 10hdual activ,
1 3hity)
99999 format (4x, a8, 4x, 114, 4x, £13.2)
end

-19-

subroutine iden(noden, n, nam, a, narc)
integer a(2,16%0)
real *8 noden(l),nam(1l)
¢ set from- and to-node numbers for arcs
ic =0
do 39 i=1,n
if (ic.eg.l) go to 190
if (nam(l).ne.noden(i)) go to 10
ic = ic + 1
a(2,narc) =1
go to 28
12 if (ic.eq.2) go to 30
if (nam(2).ne.noden(i)) go to 39
ic = ic + 2
a(l,narc) =i
29 if (ic.eq.3) go to 43
39 continue
narc¢ = narc -1
write (6,99999) nam(l), nam(2)
40 return
99999 format (1x, 2lhundefined node-names:, 2(2x, a8))
end

subroutine order (x, b, nrow, nnl, narcl)
implicit integer (a-z)
dimension x(1), b(1l)
¢ reorder basic variables
do 20 i=1,nrow-1
do 18 j=i+l,nrow
if (iabs(b(i)).lt.iabs(b(j))) go to 18

bb = b(1)

b(i) = b(3j)

b(j) = bb

bb = x (i)

x(i) = x(J)

x(j) = bb
19 continue

if (nnl.ne.@) go to 20
if (iabs(b(i)).le.narcl) go to 20
nnl =i -1
20 continue
if (nnl.ne.®) go to 3@
nnl = nrow
if (b(nrow).gt.narcl) nnl = nnl -1
30 return
end

-20-

subroutine slex(a, cost, ub, pii, x, b, w, nnode, narc, niter,

1l ind, colin, av, alfa, phase, max)

i AR R 2222 i R 222 i s Rt R R 22

nnoanoonNnaOnnonNnNNNOo0O0NOOQOCOOONOONNOO0OOO0OOO0OO000O0OO0O0O0O00O0O00O

symbol description

narc = number of arcs including slacks and art1f1c1als

nnode = number of nodes excluding dummy node
(n in the main program)
a(k,j) = to - node for arc j ; for k=1

from - node for arc j ; for k=2
@ if the respective node is dummy
cost(j) = cost coefficient for arc j
@ for slack arcs
max for artificial arc j , where
max = 2*nnode* (maximum cost coefficient) + 1
ub(j) = upper bound for arc j if variable j is currently on its
lower bound or is basic
-(upper bound for arc j) if variable j is currently on its
upper bound
@ if arc j does not have an upper bound
phase =1 for phase 1
2 for phase 1I1I
iternr = current iteration number
niter = maximum allowable number of iterations
given by the user
b(.) = current list of basic arcs: the ith arc in the basis is b(i).
the sign of b(i) is the sign of the ith diagonal element
of the triangularized basis
current values for basic arcs
row permutation which lower triangularizes the basis
when the column permutation is given by b(.)
pii(.) = vector of simplex multipliers
redc reduced cost for an arc
rc = reduced cost for the arc entering basis
colin = arc entering basis
alfa(.) = alfa-column of entering arc: basis inverse * column of
entering arc
mini = step size for current simplex iteration
colout column leaving the basis
ind = -1 if entering arc is to be decreased
if entering arc is to be increased
if optimal solution has been obtained
if max. allowable iterationnr. has been reached
if unbounded optimal solution has been detected
if the problem is found to be infeasible

x(.)
wi.)

I~

Ut W Nt

input and output parameters

the transshipment problem (including slacks and artificials) is
defined by arc list a(.), cost vector cost(.), upper bound

vector ub(.) as well as by nnode, the number of nodes, and narc,
the number of arcs. the maximum allowable number of iterations is
given by niter. an initial basic solution has been given by

C
C
C
C
C
C
C

21

b(.), w(.) and x(.) as well as by ub(.) indicating arcs at their
lower or upper bounds at the initial solution. after executing
the subroutine, these parameters define the final solution found
with simplex iterations and pii(.) gives the corresponding
simplex multipliers. ind indicates the type of this solution.

hhkhkhhkhhbhhhhhhhhhhhrhhhhhhkhhhhhhhhhhhhhkrhhhkhhhrkhkhkhhhkhkrhkhhhrahhkhkhdkkdk

implicit integer (a-z)
real max, pii(l), cost(l), rc, redc, costi
integer alfa(l), nnode, w(l), b(l), a(2,1), colin, mini, colout,

1 x(1), iternr, 4i, nf, ns, begin, ub(l), av(2,1)

ind = 0

max = max - 1.

iternr = -1

c compute price vector pii

19

20

30

40
¢ did

50

60

k = 2

do 48 ii=1,nnode
i = nnode - ii + 1
call eb(b(i), mja, n)

pii(i) = cost(mja)
if (phase.eq.2) go to 30
pii(i) = @.

if (x(i).ge.B8) go to 20
pii(i) = =-1.

k =1

go to 39

if (ub(mja).eq.8 .or. x(i).le.ub(mja)) go to 30
k =1

pii(i) = 1.

ed = 3 - n

if (ed.eq.l) pii(i) = -pii(i)
if (a(ed,mja).eq.8) go to 49
j-= a(ed,mja)
j = w(i)
pii(i) = pii(i) + pii(3)
continue
the phase change ?
if (k.eg.phase) go to 50
phase = k
go to 10
if (ind.eq.2) go to 1448
iternr = iternr + 1
ind = 1

¢ maximum allowable number of iterations reached

if (iternr.le.niter) go to 78
ind = 3
return

c compute reduced cost and choose entering variable

78

rc = 0.

do 120 i=1,narc
costi = cost (i)
if (costi.ge.max) go to 128
vyl = a(l,1)
y2 = a(2,1)
if (phase.eq.l) costi = 6.
if (yl.eq.8) go to 84

-22-

if (y2.eq.8) go to 98
yl = w(yl)
y2 = w(y2)
redc = costi - pii(yl) + pii(y2)
go to 109
89 y2 = w(y2)
redc = costi + pii(y2)
go to 100
99 vyl = w(yl)
redc = costi - pii(yl)
189 if (redc.lt.rc .and. ub(i).ge.8) go to 110
if (redc.le.-rc .or. ub(i).ge.f) go to 120
ind = -1
rc = ind*redc
colin = i
go to 120
110 ind = 1
rc = redc
colin = i
128 continue
if (rc.lt.-1l.e-18) go to 154
optimal solution or infeasibility has been detected
do 138 i=1,nnode
call eb(b(i), ib, n)
if (cost(ib).lt.max) go to 130
if (x(i).gt.d) ind = 5
if (ind.ne.5) ind = 2
cost(ib) = 0.
138 continue ‘
if (ind.eg.2) go to 18
if (ind.eq.5) go to 140
ind = 2
148 niter = iternr
if (phase.eq.l) ind = 5

return
compute alfa column = (basis inverse)*(entering column)
150 do 168 j=1,nnode
av(l,j) =28
av(2,j) = 0
alfa(j) =9

168 continue
i1 = a(l,colin)
j = a(2,colin)
begin = nnode
if (i.ne.d) begin = w(i)
if (j.eq.8) go to 178

J = w(j)
if (j.lt.begin) begin = j
170 t = 1

188 ia = a(t,colin)
if (ia.eq.f) go to 208
ia = w(ia)
call eb(b(ia), ib, n)

ic=3-¢t -t
199 id = ic
n3 =3 -n

-23-

if (n3.eg.l) id = -ic
av(t,ia) = id
alfa(ia) = alfa(ia) + id
if (a(n3,ib).eg.f8) go to 208
ia a(n3,1ib)
ia = w(ia)
call eb(b(ia), ib, n)
go to 190
200 t =t + 1
if (t.le.2) go to 180
carry out minimum ratio test for determining step
size mini and leaving column colout
mini = 30000
do 280 i=1,nnode
izz = 31000
pivot = alfa(i)
izx = ind*pivot
call eb(b(i), j, n)
if (izx) 228, 280, 218
2190 izz = x(1i)
go to 230
220 izz = ub(j) - x (1)
2390 if (izz) 286, 248, 250
2490 if (izx.lt.@# .and. x(i).eq.f) go to 280
250 if (izz-mini) 270, 268, 280
260 if (cost(j).lt.max) go to 289
2780 int = izx
mini = izz
colout = i
if (mini.eq.f) go to 320
2808 continue
test whether the bound on entering arc determines
the step size

if (ub(colin).eq.® .or. ind*ub(colin).gt.mini) go to 298

call eb(b(colout), kk, 11)

if (cost(kk).ge.max .and. ind*ub(colin).eq.mini) go to 296

mini = ind*ub(colin)
ub(colin) = -ub(colin)
colout = @
299 if (mini.ne.300008) go to 300
unbounded optimal solution has been detected
ind = 4
niter = iternr
return
update solution vector x(.)
3909 mini = mini*ind
do 319 i=1,nnode
if (i.ne.colout) x(i) = x(i) - alfa(i)*mini
318 continue
test whether the basis has to be changed
if (colout.eq.B8) go to 60
320 if (ind.eq.l) x(colout) = mini
if (ind.eg.-1) x(colout) = -ub(colin) + mini
ub(colin) = ub{colin)*ind
call eb(b(colout), j, n)
ub(j) = ub(j)*int

-2~

b(colout) = colin
c start updating
di =1
if (av(l,colout).eg.f) d4i = 2
nf = @
ns = -1
do 330 j=begin,colout
if (av(di,j).ne.B) ns = ns + 1
if (av(3-di,j).ne.f) nf = nf + 1
330 continue
c retriangularize the basis
av{(l,colout-nf) = colin*(3-2*%4i)
av(2,colout-nf) = x(colout)
if (nf.eqg.8) go to 350
ib = colin
in = di
do 344 i=1,nf
j = a(3-in,ib)

J = w(j)
call eb(b(j), ib, in)
av(l,colout-nf+i) b(j)
av(2,colout-nf+i) x(3)
340 continue
350 if (ns.le.f) go to 370
ib = colin
in = di
do 368 i=1l,ns
j = a(in,ib)
3 = wi(j)
call eb(b(j), ib, n)
in = 3 - n
av(l,colout-nf-i) .= -b(j)
av(2,colout-nf-i) = x(3j)
368 continue
370 in = @
do 388 i=begin,colout
if (alfa{(i).ne.@) go to 389
av(l,begin+in) = b(i)
av(2,begin+in) = x (1)
in = in + 1
388 continue
do 398 i=begin,colout
b(i) = av(l,1)

x(1) = av(2,1)

call eb(b(i), ib, n)
j = a(n,ib)

w(j) =i

390 continue
c end of simplex iteration
go to 190
end

subroutine eb(ibi, ib, in)
if (ibi.gt.B8) go to 1@

ib = -ibi

in = 2

return

ib = ibi

in = 1

return

end

