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PREFACE

The problem of the size of a cell population, descendant
from a single cell or a small group of cells, each of which is
subject to the alternative fates of death or division into two
new cells, is a prototype problem for a number of different
types of population models. I first came across it while
studying models for the penetration of mutations into a popu-
lation, for example. At that time, about 20 years ago I could
not find an exact solution in the literature available to me,
although asymptotic properties were well known.

I recently reviewed the problem, primarily as a mathe-
matical recreation. 1In so doing, I blundered into the solution.
I do not know whether it has been published, either before 1958
or by 1978. This memorandum may be useful to researchers
dealing with the problem or with its analysis. I write it
partly for its potential value as a collection, in one place,
of properties of the solutions of the stated problem. However,
I must also admit that, to a certain extent, it is written to
illustrate that scientific research is much more often dominated
by heuristics and serendipity than by pure logical inference.

-iii-







PROBLEM STATEMENT

Let Pn(t) Probability that at any given time the popu-

lation consists of "n" units.

f = Probability that a single unit will reproduce
by fission into two units.

*“1-f = Probability that the unit will die before
fissioning

p = 2f-1 = Average relative increase in population
per generation ("reactivity")

T = Average time between formation of a unit and
its termination by either death or fission.

With the further assumption (which is itself an approxi-
mation valid only in the mean for most populations) that the
probability of death or division is constant in time for any
existing unit--i.e. that the population is a renewable one--the
problem may be written mathematically as

- _ 140, 1-p
b= —5—(n-1)P__, - nP_ + —>—(n+1)P__ (1)

for n > 1.

Equation (1) is in principal solvable from initial con-
ditions, for example that P1(0) =1, Pn(O) = 0 for n > 1, the

problem of populations descendant from a single ancestor.

HEURISTICS AND SERENDIPITY

I actually know of no finite, general way of solving a set
of equations such as (1). However, two points are notable:

(a) Terms in "n" disappear if P is a constant, and the

right hand side goes to zero if Pn is a constant
divided by n.

(b) Both these "possible solution sets" diverge in the
o]
gense that Z Pn would increase without limit.
n=1



Thinking about the system as a multiplying one, a situation
with which, as a reactor physicist, I am familiar, at any given
time one must expect that the probability of n being much greater
than some average expected value will be very small. The
average expected value will, however, grow exponentially. Thus,
I expect that the solution will, in the long run, go to a func-

tion which is approximatély constant or varying as %, up to some
value of s a function of time, above which it will decrease
rapidly. I expect, in other words, an evolution in time of Pn

according to Sketch A or Sketch B. (In both these sketches, I
have plotted Pn as a function of a continuous, rather than a

discrete value of n.)

Sketch A

Time evolution (schematic) of Pn if it approaches a constant up
to some n,
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-Sketch B

Time evolution if Py approaches C/n
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Repeated trials of solutions of the form f(X) + g(X)h(n)
convinced me that this wasn't the way to get a solution; so
I looked harder why this was. The answer was clear as to what
was wrong: the differentiation on the left hand side of (1)
was not providing any manipulation of n, and that was needed.

An easy way of manipulating n on differentiating is to
write a solution as some function to the nth power. Accord-

X(0) [y (e)1”
n
Pn = u(t)[v(t)]n. This turned out to be pay dirt.

nd

ingly I tried solutions of the form Pn =

I first present the results of trying Pn = XYn/n, which,

because it is not the desired solution, I call Pn(z).
P (2) , A NON-PHYSICAL SOLUTION

Pn(z) (t) = X(t) [Y(t)]1%/n (2)
Substituting into (1)

T’.‘:n R L e l;—p xy? 1 o oxy? o4 1—;—0 xy"*1 (3)

The only term with "n" in it is the first term on the lhs
of (3). 1If this is to be a solution X = 0. Thus, X is a
constant. The rest of the equation then reduces to

. 1+p 2

- - - 1-p
TY = —5 Y + 5 Y (4)
Equation (4) can be solved routinely to give
cy - e_pt/T
Y= c. - T-p e—p£7% (5)
L )

where "c1 is an arbitrary constant of integration. Thus, a

solution of equation (1) is the set of probabilities



-pt/T n

e
n vl U 1-p n (6)

-pt/T
+p e

The constant Czis, of course, the value assigned to X.

(2) (2)

That Pn is non-physical can be noted by summing Pn

over all n. The result is

(o]

(2) 1
P t) = 1
n£1 n ) €27t cq - e_pt/T
1 -
_1-p _-pt/t
€1 7 1% €
(7)
ot (1+p)c, - e PH/T
= C2 T + 1n 70

For some t, the sum must be greater than 1, regardless of

our choice of Cye This would amount to a probability greater

than unity. The only exceptions are the trivial case, c, = o,
and the non-trivial one, cq = 0. If c, = 0, we get

(2) _ 1+p \»
- i)

whose sum also diverges for positive p.

P (1), A PHYSICAL SOLUTION

We now try

s (1)

o8 = ue) [ve)]” (8)

Substituting into (1)

av? + ntuvv? 7 = l%—e(n—ﬂuvn'-1 - nuv® + 1%£{n+1)uvn+1 (9)



Isolating terms in "n" gives

* n-1 1+p _n-1 n n+1
2

TVV = v - v+ l%E v (10)

This has the same form as (4), and the same solution:

c - e—pt/T

e (11)
1 1+

O

Terms remaining in (9) give rise to:

Tav = - ——u + —5 - uv (12)
This has the solution
c e_pt/T
u = —pt/T2 1-p _-pt/T 13
(eg-e 7y mqgpe "7 )

Then
‘ n-1 -n-1
p (M - ¢ e pt/T(c1 - e pt/r) (01 S e RPN pF/T) (14)
The sum of all Pn converges:

T (1) _ 1+p 1-p -pt/T
Bl me)

If we use a standard initial condition that, at zero time, the
sum of all Pn shall be unity, we solve for c, to get

_ 2p _ 1-p :
€y = TJ?E(‘H 1_+p'> (16)



RELATION BETWEEN Pq(1} AND Pq(z)

(2)

If we differentiate Pn with respect to time, we get
(1)
P

n
since the c2's in equations (7) and (14) are both arbitrary

, except for a normalizing factor which may be ignored

anyway. This suggests that further differentiations could
lead to other solutions. Examination of equation (1) shows us
that I should have known this from the beginning! Indeed,
inverse differentiation, i.e., indefinite integration could
also give valid solution of the differential equations. We
shall return to this point later.

THE PROTOTYPE PROBLEM

Equation (14) has a property which enables us immediately
to set c; for an important problem. This is the problem for

which P1(0) = 1 and all other Pn= 0 at time zero, and is thus
the one whose time evolution was sketched in Sketches A and B.
n-1
We note that there is a factor (c,- e—pt/T) in Pn(1). At
zero time, this is (c1 - 1)n-1’ and if cq = 1 all terms vanish
at t = 0 except for P1. Thus, we may write
2
P = P_(1)(c =0) = 2p/ (1+p) e-pt/T
n n 1 (1. - 1=P TPt
T+p
(17)
n-1
. (1 - ept/T)
_ 1-p _-ot/T
(1 TIE e )

as a solution for this important problem. We shall call this
solution, Pn as given by equation (17), P

ni

P

Pl AS THE CORRECT SOLUTION

Pn1 satisfies the differential equations, (1), and the

boundary conditions of a problem which describes a population
consisting initially of one unit. I suspect that this solution
is unique from general theorems, but the way I fell into it
makes me a little uneasy. Therefore, 1 then went about proving
that Pn1 led to the same moment equations as arise from summing

equations (1) multiplied by powers of n. After doing this, I



noted that this had to be the case; moreover, the moment equa-
tions, which are simple differential equations, may be solved
one by one, as will be exhibited later. But since I know that,
given sufficient moments, I can construct appropriate solutions
which are as precise as I please (the physicists' faith in the
power of variational methods!), for me, this proves uniqueness.

P

P2 AND HIGHER SOLUTIONS

What about problems for which, for example, P1 = 0 and

P2 = 1--0or P3,

that the differentiation of Pn

or any Pn? This is easy. I have already noted

(1) leads to another set of

solutions of (1). Specifically, then, if I start with Pn1' the

set of functions §11, P21, 531... is also a solution. But
ﬁ11(0) - % and §21(0) = 1%?. The equations are linear and
superposable, so that the solution of the system when P1 = 0,
P, = 1 can be immediately written, under the defining symbolism
Pn2’ as
P = <2 (P_, + Tb_.) (18)
nl

Explicitly, this results in

P = 2p/(1+p) omPt/T)2(=n+1) | 1 - e”PH/T
n2 1 - T1-p p—pt7r (1+p) 1 -p ~pt/T
— o - =— e
+p T+p
n-2
+ {n-1) 1 - e PE/T (19)
(T+p) |4 _ 1=p -pt/t

(1+p) 1-p _-pt/

- 0 e

n
L Q=p) (n+) [ 1 = ¢7PH/T
1 T
+p

It next becomes clear from inspection that solutions which,
at time zero, have non-zero probabilities for n and zero

probabilities for all n > n, can be written as linear combi-

nations of Pn1 and its first (no - 1) derivatives.



At this point, I lost interest in solutions obtained by
integrating Pn1; I assume they all diverge and are uninter-
esting.

SUMS AND SURVIVAL PROBABILITIES

At this point, we return to equation (15), with C,
evaluated by (16) and cq = 1. In other words,

1+p) (20)

The sum of probabilities of state occupation for any state,
initially unity, asymptotically approaches 2p/(1+p). This is

a well known result. One point of interest is that (20) tells
us how the asymptote is approached. The important point is that

for all p < 1, Z Pn1 asymptotically approaches a number less
n=1

than one: even when p is close to unity, there is a finite

probability that the line will become extinct, owing to the

stochastic nature of the process of multiplication.

MOMENTS

0ddly enough, the population moments form a set of equations
that can be solved deterministically. We define

=7 p oK

My = ; P n (21)
as the kth population moment. Thus, M1 is the mean (expected)
value of the total population, M2 the mean-sgquare, and so on.
We may note that, according to this definition,

) Py = MJ (22)

1

Returning to differential equations (1), we get, for Mo’
TMO = —(1—p)P1 (23)



This is not a very useful equation, of course, unless we know

P1(t). For the prototype problem, solved by Pn1’ we do of

course have P, (t), and the solution of (23) is (20).

1

For higher moments, we get a solvable recursive set:

for M1, the equation is

™, = oM, (24a)
which for the standard problem is solved by

M, = ePt/T (24b)

The average population increases exponentially for positive p;
the "chain reaction" is divergent. This is of interest because
the number of "chains" keeps decreasing. In simple language,
the mean population is the result of a relatively small fraction
of the ancestral units multiplying strongly into the population.
As p - 0, this leads to a type of "gamble against the bank"
situation: almost all ancestral units ultimately are devoid

of progeny; but, because the odds are even, there will be one
unit which has a great many progeny (if one has a large enough
supply of chips!).

Successive moments can be found from:

TM2 = 2pM2 + M
TM3 = 3pM3 + 3M2 + pM1 (25)
TI.I = }5(‘ k M 1+ p + (1-0) (_)4

kT 5Li\3) k1= 2

Since M1 can be solved, M2 can be solved knowing M1, and so

forth. Specific solutions are exercises in elementary calculus.

ASYMPTOTIC PROPERTIES

As already noted, the asymptotic properties of the equation
are well known, and are listed here just to bring everyting
together.
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_pt/T
For large t, the ratio (1 1 ﬁ_e e—pt7f) can be very well
1+p
represented by exp -(f%% e—pt/T). Since for large t such terms
- 3 - - 3
as (1 - e pt/T) or (1 - 1-p e pt/T) , where j is a small

+p
integer, are essentially unity, we can reduce Pn1 to:

2
- 2p -ot/T _{2pn _-pt/T
LI (TIB) e exp (T:E e (26)

Equation (26) can be manipulated more easily than (17) to get,
for example, asymptotic properties of Pn2' etc.

For large n, we may consider n as a continuous variable
in certain manipulations. For example, it can be useful to
determine the probability that the population is n_ or larger.

o . A o)
Defining this number as Qn , we have

o
Q, = ) P, (27)
n
o
o 2p 2 -pt/T 2pn _-pt/T -
zrg (m) e exp (— T © P ) (28a)
o
wf 2p 2 -pt/T 2pn _-pt/T
zf T?E) e exp |- T e dn (28b)
No
2pn
~ 2P - 0 Pt/T
® T30 exP( Tip © ) (28c)

By a similar integration, the total population in groups
n, or larger can be determined as:
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R =) nP, (29a)
n
o
2pn
zept/T exp (— -—1——+—pg e pt/T) (29b)

Manipulation of the asymptotic properties is particularly
useful when the aim is to justify treatment of large popu-
lations by continuum, rather than stochastic, models.



