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PREFACE 

The problem of the size of a cell population, descendant 
from a single cell or a small group of cells, each of which is 
subject to the alternative fates of death or division into two 
new cells, is a prototype problem for a number of different 
types of population models. I first came across it while 
studying models for the penetration of mutations into a popu- 
lation, for example. At that time, about 20 years ago I could 
not find an exact solution in the literature available to me, 
although asymptotic properties were well known. 

I recently reviewed the problem, primarily as a mathe- 
matical recreation. In so doing, I blundered into the solution. 
I do not know whether it has been published, either before 1958 
or by 1978.  This memorandum may be useful to researchers 
dealing with the problem or with its analysis. I write it 
partly for its potential value as a collection, in one place, 
of properties of the solutions of the stated problem. However, 
I must also admit that, to a certain extent, it is written to 
illustrate that scientific research is much more often dominated 
by heuristics and serendipity than by pure logical inference. 
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PROBLEM STATEMENT 

Let P (t) 5 Probability that at any given time the popu- n lation consists of "n" units. 

f E Probability that a single unit will reproduce 
by fission into two units. 

:.l-f = Probability that the unit will die before 
fissioning 

p E 2f-1 = Average relative increase in population 
per generation ("reactivity") 

T E Average time between formation of a unit and 
its termination by either death or fission. 

With the further assumption (which is itself an approxi- 
mation valid only in the mean for most populations) that the 
probability of death or division is constant in time for any 
existing unit--i.e. that the population is a renewable one--the 
problem may be written mathematically as 

for n > 1. - 

Equation (1) is in principal solvable from initial con- 
ditions, for example that P1(0) = I, Pn(0) = 0 for n > 1, the 

problem of populations descendant from a single ancestor. 

HEURISTICS AND SERENDIPITY 

I actually know of no finite, general way of solving a set 
of equations such as (1). However, two points are notable: 

(a) Terms in "n" disappear if Pn is a constant, and the 

right hand side goes to zero if P is a constant 
divided by n. n 

(b) Both these "possible solution sets" diverge in the 
03 

sense that 1 Pn would increase without limit. 
n= 1 



Thinking abou t  t h e  system a s  a  m u l t i p l y i n g  one ,  a  s i t u a t i o n  
w i t h  which, a s  a  r e a c t o r  p h y s i c i s t ,  I am f a m i l i a r ,  a t  any g iven  
t i m e  one  must expec t  t h a t  t h e  p r o b a b i l i t y  o f  n  be ing  much g r e a t e r  
t han  some ave rage  expec ted  v a l u e  w i l l  be  v e r y  s m a l l .  The 
ave rage  expec ted  v a l u e  w i l l ,  however, grow e x p o n e n t i a l l y .  Thus, 
I expec t  t h a t  t h e  s o l u t i o n  w i l l ,  i n  t h e  l onq  run ,  go t o  a func- 

t i o n  which i s  approx imate ly  c o n s t a n t  o r  v a r y i n g  as up t o  some ii' 
v a l u e  o f  n  a  f u n c t i o n  o f  t i m e ,  above which i t  w i l l  d e c r e a s e  

0 , 
r a p i d l y .  I e x p e c t ,  i n  o t h e r  words, a n  e v o l u t i o n  i n  t i m e  of  Pn 

accord ing  t o  Ske t ch  A or Ske tch  B. ( I n  b o t h  t h e s e  s k e t c h e s ,  I 
have p l o t t e d  Pn a s  a  f u n c t i o n  o f  a  con t i nuous ,  r a t h e r  t h a n  a 

d i s c r e t e  v a l u e  o f  n. ) 

Ske t ch  A 

T i m e  e v o l u t i o n  ( schemat ic )  o f  Pn i f  it approaches  a  c o n s t a n t  up 
t o  some n  

0 

Very s m a l l  t + + I n c r e a s i n g  t i n  s u c c e s s i v e  "frames" 
-n 

. - S k e t c h  B 

T i m e  e v o l u t i o n  i f  Pn approaches  C/n 



Repea ted  t r i a l s  of s o l u t i o n s  o f  t h e  f o r m  f  ( X )  + g  ( X )  h  ( n )  
c o n v i n c e d  m e  t h a t  t h i s  w a s n ' t  t h e  way t o  g e t  a  s o l u t i o n ;  so 
I l o o k e d  h a r d e r  why t h i s  was.  The answer  was c l e a r  a s  t o  what  
was wrong: t h e  d i f f e r e n t i a t i o n  o n  t h e  l e f t  hand s ide  of ( 1 )  
was n o t  p r o v i d i n g  any  m a n i p u l a t i o n  o f  n ,  a n d  t h a t  was needed .  

An e a s y  way o f  m a n i p u l a t i n g  n  o n  d i f f e r e n t i a t i n g  i s  t o  
w r i t e  a s o l u t i o n  as some f u n c t i o n  t o  t h e  nth power.  Accord- 

i n g l y  I t r i e d  s o l u t i o n s  of t h e  form P  = X ( t )  [ Y  ( t )  1 "  and 
- n  n  
I1 

'n = u ( t )  [ v ( t ) ]  . T h i s  t u r n e d  o u t  t o  b e  pay  d i r t .  

I f i r s t  p r e s e n t  t h e  r e s u l t s  o f  t r y i n g  P  = xyn/n,  wh ich ,  n  
b e c a u s e  it i s  n o t  t h e  d e s i r e d  s o l u t i o n ,  I c a l l  Pn ( 2 )  

P  -n ( 2 )  , A NON-PHYSICAL SOLUTION 

S u b s t i t u t i n g  i n t o  (1  ) 

The o n l y  t e r m  w i t h  "n"  i n  it i s  t h e  f 4 r s t  t e r m  o n  t h e  l h s  
o f  ( 3 ) .  I f  t h i s  i s  t o  be a s o l u t i o n  X = 0. Thus ,  X i s  a  
c o n s t a n t .  The r e s t  of t h e  e q u a t i o n  t h e n  r e d u c e s  t o  

E q u a t i o n  ( 4 )  c a n  b e  s o l v e d  r o u t i n e l y  t o  g i v e  

where  " c l "  i s  a n  a r b i t r a r y  c o n s t a n t  o f  i n t e g r a t i o n .  Thus ,  a 

s o l u t i o n  o f  e q u a t i o n  ( 1 )  i s  t h e  se t  o f  p r o b a b i l i t i e s  



The c o n s t a n t  c 2 i s ,  o f  c o u r s e ,  t h e  v a l u e  a s s i g n e d  t o  X.  

Tha t  Pn ( 2 )  i s  non-physica l  c a n  b e  n o t e d  by summing P ( 2  
n  

o v e r  a l l  n .  The r e s u l t  i s  

For  some t, t h e  sum must b e  g r e a t e r  t h a n  1 ,  r e g a r d l e s s  o f  
o u r  c h o i c e  o f  c 2  ' T h i s  would amount t o  a  p r o b a b i l i t y  g r e a t e r  

t h a n  u n i t y .  The o n l y  e x c e p t i o n s  a r e  t h e  t r i v i a l  c a s e ,  c2  = 0,  
and t h e  n o n - t r i v i a l  one ,  c1 = 0. I f  c l  = 0,  w e  g e t  

whose sum a l s o  d i v e r g e s  f o r  p o s i t i v e  p .  

P -n ( ' I ,  A PHYSICAL SOLUTION 

W e  now t r y  

P n  ( I )  ( t)  E u ( t )  [ v ( t ) l n  

S u b s t i t u t i n g  i n t o  ( 1  ) 

n  n-1 - l+p  
TUV + n-ruvv n- 1  - ~ ( n - 1 ) u v  n  1-p - nuv + - ( n + l ) u v  2  (9) 



I s o l a t i n g  t e r m s  i n  "n"  g i v e s  

T h i s  h a s  t h e  same form a s  ( 4 ) ,  and t h e  same s o l u t i o n :  

T e r m s  r emain ing  i n  (9) g i v e  r ise t o :  

T h i s  h a s  t h e  s o l u t i o n  

Then 

The sum of  a l l  Pn ) converges :  

I f  w e  u s e  a  s t a n d a r d  i n i t i a l c o n d i t i o n  t h a t ,  a t  z e r o  t i m e ,  t h e  
sum of a l l  Pn s h a l l  b e  u n i t y ,  w e  s o l v e  f o r  c2 t o  g e t  



RELATION BETWEEN Pn AND P  ( 2  
n- 

I f  w e  d i f f e r e n t i a t e  Pn ( 2 )  w i t h  r e s p e c t  t o  t i m e ,  w e  g e t  

'n ) , e x c e p t  f o r  a  n o r m a l i z i n g  f a c t o r  which may b e  i g n o r e d  

s i n c e  t h e  c2 ' s  i n  e q u a t i o n s  ( 7 )  and (1  4)  a r e  b o t h  a r b i t r a r y  

anyway. T h i s  s u g g e s t s  t h a t  f u r t h e r  d i f f e r e n t i a t i o n s  c o u l d  
l e a d  t o  o t h e r  s o l u t i o n s .  Examina t ion  o f  e q u a t i o n  ( 1 )  shows u s  
t h a t  I s h o u l d  have  known t h i s  f rom t h e  b e g i n n i n g !  I n d e e d ,  
i n v e r s e  d i f f e r e n t i a t i o n ,  i - e . ,  i n d e f i n i t e  i n t e g r a t i o n  c o u l d  
a l s o  g i v e  v a l i d  s o l u t i o n  o f  t h e  d i f f e r e n t i a l  e q u a t i o n s .  W e  
s h a l l  r e t u r n  t o  t h i s  p o i n t  l a t e r .  

THE PROTOTYPE PROBLEM 

E q u a t i o n  (14 )  h a s  a p r o p e r t y  which  e n a b l e s  u s  immedia t e ly  
t o  s e t  c, f o r  an i m p o r t a n t  problem.  T h i s  is  t h e  problem f o r  

which P  ( 0 )  = 1  and a l l  o t h e r  P  = 0 a t  t i m e  z e r o ,  and  i s  t h u s  1  n  
t h e  o n e  whose t i m e  e v o l u t i o n  was s k e t c h e d  i n  S .ke tches  A and  B. 

- P t / r )  
n- 1  

W e  n o t e  t h a t  t h e r e  i s  a f a c t o r  ( c l -  e i n  Pn ( I ) .  A t  
n- 1  z e r o  t i m e ,  t h i s  i s  (c l  - 1 )  , and i f  c l  = 1  a l l  terms v a n i s h  

a t  t = 0 e x c e p t  f o r  P I .  Thus,  w e  may w r i t e  

a s  a  s o l u t i o n  f o r  t h i s  i m p o r t a n t  problem. W e  s h a l l  c a l l  t h i s  
s o l u t i o n ,  Pn a s  g i v e n  by e q u a t i o n  ( 1 7 ) ,  P n l .  

P  AS THE CORRECT SOLUTION -n 1  

Pnl s a t i s f i e s  t h e  d i f f e r e n t i a l  e q u a t i o n s ,  ( I ) ,  and  t h e  

boundary  c o n d i t i o n s  o f  a problem which  d e s c r i b e s  a  p o p u l a t i o n  
c o n s i s t i n g  i n i t i a l l y  o f  o n e  u n i t .  I s u s p e c t  t h a t  t h i s  s o l u t i o n  
i s  u n i q u e  f rom g e n e r a l  t h e o r e m s ,  b u t  t h e  way I f e l l  i n t o  it 
makes m e  a l i t t l e  uneasy .  T h e r e f o r e ,  I t h e n  wen t  a b o u t  p r o v i n g  
t h a t  Pnl l e d  t o  t h e  same moment e q u a t i o n s  a s  a r i se  f rom summing 

e q u a t i o n s  ( 1 )  m u l t i p l i e d  by powers  o f  n .  A f t e r  d o i n g  t h i s ,  I 



noted that this had to be the case; moreover, the moment equa- 
tions, which are simple differential equations, may be solved 
one by one, as will be exhibited later. But since I know that, 
given sufficient moments, I can construct appropriate solutions 
which are as precise as I please (the physicists' faith in the 
power of variational methods!), for me, this proves uniqueness. 

P AND HIGHER SOLUTIONS -n 2 

What about problems for which, for example, PI = 0 and 

P2 = 1--or P3, or any P ? This is easy. I have already noted n 
that the differentiation of Pn leads to another set of 

solutions of (1). Specifically, then, if I start with Pnl, the 

set of functions , h21 , 631.. . is also a solution. ~ u t  

1 1 +P ( 0 )  = - - and fiZ1 (0) = -- 
T 2P ' The equations are linear and 

superposable, so that the solution of the system when PI = 0, 

P2 = 1 can be immediately written, under the defining symbolism 

Pn2, as 

2 
'n2 = ~~i;('nl + "nl) 

Explicitly, this results in 

It next becomes clear from inspection that solutions which, 
at time zero, have non-zero probabilities for n and zero 

0 
probabilities for all n > n can be written as linear combi- 

0 
nations of P and its first (n - 1) derivatives. 

n 1 o 



At this point, I lost interest in solutions obtained by 
integrating Pnl; I assume they all diverge and are uninter- 
esting. 

SUMS AND SURVIVAL PROBABILITIES 

At this point, we return to equation (.IS) , with c2 
evaluated by (1 6) and cl = 1 . In other words, 

The sum of probabilities of state occupation for any state, 
initially unity, asymptotically approaches 2p/(l+p). This is 
a well known result. One point of interest is that (20) tells 
us how the asymptote is approached. The important point is that 

m 

for all p - < 1, 1 Pnl asymptotically approaches a number less 
n= 1 -- ~ 

than one: even when p is close to unity, there is a finite 
probability that the line will become extinct, owing to the 
stochastic nature of the process of multiplication. 

MOMENTS 

Oddly enough, the population moments form a set of equations 
that can be solved deterministically. We define 

as the kth population moment. Thus, is the mean (expected) 
value of the total population, M~ the mean-square, and so on. 
We may note that, according to this definition, 

Returning to differential equations (I), we get, for Mot 



T h i s  is  n o t  a  v e r y  u s e f u l  e q u a t i o n ,  o f  c o u r s e ,  u n l e s s  w e  know 
p l ( t ) .  For  t h e  p r o t o t y p e  problem, s o l v e d  by P n l ,  w e  do  o f  

c o u r s e  have P I  ( t ) ,  and t h e  s o l u t i o n  of ( 2 3 )  is  ( 2 0 ) .  

For  h i g h e r  moments, w e  g e t  a  s o l v a b l e  r e c u r s i v e  set: 
f o r  M I ,  t h e  e q u a t i o n  i s  

which f o r  t h e  s t a n d a r d  problem i s  s o l v e d  by 

The a v e r a g e  p o p u l a t i o n  i n c r e a s e s  e x p o n e n t i a l l y  f o r  p o s i t i v e  p ;  
t h e  " c h a i n  r e a c t i o n "  i s  d i v e r g e n t .  T h i s  i s  of  i n t e r e s t  because  
t h e  number o f  " c h a i n s "  keeps  d e c r e a s i n g .  I n  s i m p l e  l anguage ,  
t h e  mean p o p u l a t i o n  i s  t h e  r e s u l t  of a  r e l a t i v e l y  s m a l l  f r a c t i o n  
of  t h e  a n c e s t r a l  u n i t s  m u l t i p l y i n g  s t r o n g l y  i n t o  t h e  p o p u l a t i o n .  
A s  p -+ 0,  t h i s  l e a d s  t o  a  t y p e  o f  "gamble a g a i n s t  t h e  bank" 
s i t u a t i o n :  a l m o s t  a l l  a n c e s t r a l  u n i t s  u l t i m a t e l y  a r e  devo id  
of  progeny;  b u t ,  because  t h e  odds  a r e  even ,  t h e r e  w i l l  b e  one  
u n i t  which h a s  a  g r e a t  many progeny ( i f  one  h a s  a  l a r g e  enough 
supp ly  o f  c h i p s  ! ) . 

S u c c e s s i v e  moments c a n  be  found from: 

S i n c e  M1 c a n  b e  s o l v e d ,  M 2  c a n  be  s o l v e d  knowing M I ,  and s o  

f o r t h .  S p e c i f i c  s o l u t i o n s  a r e  e x e r c i s e s  i n  e l ementa ry  c a l c u l u s .  

ASYMPTOTIC PROPERTIES 

A s  a l r e a d y  n o t e d ,  t h e  a s y m p t o t i c  p r o p e r t i e s  o f  t h e  e q u a t i o n  
a r e  w e l l  known, and a r e  l i s t e d  h e r e  j u s t  t o  b r i n g  e v e r y t i n g  
t o g e t h e r .  



For large t, the ratio can be very well 
1 - 

represented by exp -(- *' e p t  . since for large t such terms 
1 +P 

j 
as (1 - e -pt/T) or (1 - e p  , where j is a small 

1 +P 
integer, are essentially unity, we can reduce Pnl to: 

Equation (26) can be manipulated more easily than (17) to get, 
for example, asymptotic properties of P n2' etc. 

For large n, we may consider n as a continuous variable 
in certain manipulations. For example, it can be useful to 
determine the probability that the population is no or larger. 
Defining this number as Qn , we have 

0 

By a similar integration, the total population in groups 
n or larger can be determined as: 
0 



Manipulation of the asymptotic properties is particularly 
useful when the aim is to justify treatment of large popu- 
lations by continuum, rather than stochastic, models. 


