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Probabilistic spatial and temporal resilience landscapes for the Congo basin

Introduction
Recent research by Hirota et al. (2011) introduced the
concept of resilience landscapes for tropical forests and
savannahs by statistically relating the probability of current
forest/savannah occurrence with the concept of tipping
points. This work uses biogeochemical modelling to create
probabilistic resilience landscapes.

Tipping points
Sudden forest dieback results from a combination of
favourable and unfavourable climate years. A favourable
climate year boosts leaf area for the next year. When the
next year is unfavourable, NPP may be insufficient to
support the larger leaf area. Leaf area declines in the
following year, causing reduced NPP. A tipping point has
been surpassed and the forest stand breaks down. The
occurrence of tipping points is related to inter-annual
variation in mean annual precipitation.

Resilience landscape
The number of occurences of forest dieback events within
a 100.000 year simulation gives the dieback probability.
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Methods & Data
We use Biome-BGC 4.1.2 (Thornton et al, 2002) including
dynamic mortality (Pietsch and Hasenauer, 2006) with a
parameterization for the Congo Basin (Gautam, 2012) at a
half degree resolution. Soil data for the Congo basin were
taken from the harmonized World Soil Database (HWSD;
FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). Daily climate data
for running the model were generated using MarkSim
(Jones and Thornton, 1999) with corrections for the Congo
basin (Bednar, 2011).

Spatial occurence
Under current climate conditions, patch level forest dieback
events may occur along the meteorological equator, where
cosecutive years may exhibt either no dry season or two
dry seasons, and in the rainshadows of mountain ranges.

Temporal resilience
Along the patch level forest growth dynamics dieback
probability differs with growth stage.

The probability of forest dieback differs during the five
stages of the forest stand development cycle (see Pietsch
and Hasenauer, 2009). It is highest during the
adolescence and optimum growth stage, declines during
the old growth phase and reaches a minumum during the
breakdown and regeneration phases.

Conclusion
Besides spatial resilience landscapes the temporal
evolution of resilience provide information on the resilience
status of the rainforest biome. For the forests of the Congo
basin, resilience is highest during the breakdown and
regeneration phases, when only a few large, old trees are
surrounded by massive regeneration. Management
operations should spare the largest individuals per species
in favour of middle class diameters. Forestry Codes of the
Congo basin may consider to reduce the current diameter
thresholds for exploitation (> 60-80cm).
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