Towards sustainable livestock production systems: Analyzing ecological constraints to grazing intensity

Authors: Fetzel, T.; Havlík, P.; Erb, K.H.

1 Institute of Social Ecology, IFF – Faculty for Interdisciplinary Studies, Alpen Adria University of Klagenfurt, Schottenfeldgasse 29, A-1070 Vienna, Austria
2 International Institute for Applied Systems Analysis, Ecosystem Services and Management, Schloßplatz 1, 2361 Laxenburg, Austria

Abstract:

Food production from grasslands is essential: Grasslands provide 33% of total protein and 17% of total calorie consumption (Herrero et al. 2009, 2013) and make an otherwise unusable resource available to humans. Current sustainability problems on world grasslands (e.g. soil erosion) caused by the conversion of natural ecosystems like forests to pasture and overgrazing pose new challenges to find sustainable ways of increasing food production. A sound understanding of the major determinants and constraints of global livestock production systems is key in this context. We explore ecological constraints to grazing intensity by:

- analysing spatial patterns of grazing intensity (GI; Fig. 1)
- determining the role of seasonality using monthly NPP data and estimating the number of months in which supplementary feed is necessary
- estimating the potential accessible and utilisable NPP (NPP\textsubscript{a}) and the surplus NPP available during biomass growth cycles. Social organization (e.g. storage) could help to bridge periods of deficiency.

Introduction

Food production from grasslands is essential: Grasslands provide 33% of total protein and 17% of total calorie consumption (Herrero et al. 2009, 2013) and make an otherwise unusable resource available to humans. Current sustainability problems on world grasslands (e.g. soil erosion) caused by the conversion of natural ecosystems like forests to pasture and overgrazing pose new challenges to find sustainable ways of increasing food production. A sound understanding of the major determinants and constraints of global livestock production systems is key in this context. We explore ecological constraints to grazing intensity by:

- analysing spatial patterns of grazing intensity (GI; Fig. 1)
- determining the role of seasonality using monthly NPP data and estimating the number of months in which supplementary feed is necessary
- estimating the potential accessible and utilisable NPP (NPP\textsubscript{a}) and the surplus NPP available during biomass growth cycles. Social organization (e.g. storage) could help to bridge periods of deficiency.

Results

Distribution of GI in world’s grazing lands (% of NPP removed):
- 84% of total area: 0-40%
- 9%: 40-100%
- 7%: >100% (e.g. feed-demand exceeds the estimated available NPP caused by data uncertainties in estimated feed composition or NPP data)

Fig. 1: Grazing intensity (e.g. the fraction of available Net Primary Production (NPP) consumed by grazing animals in a year; GI=100% represents areas where NPP is not sufficient to cover the estimated grazers feed demand – e.g. represents data uncertainty)

Fig. 2: NPP\textsubscript{a} balance in gC/m²/yr; a negative balance indicates that annual NPP\textsubscript{a} is not sufficient to cover the grazers feed-demand; a positive balance indicates potentially available surplus biomass;

Fig. 3: Average NPP\textsubscript{a} balance for world regions in gC/m²/yr

- Positive balance: hotspots of available surplus NPP\textsubscript{a} in LAM and SSA, smaller potential in all regions except SA
- Negative balance: insufficient NPP\textsubscript{a} provision due to very high stocking densities, uncertainties and low productivity in arid areas (NAWA&ASA)

Fig. 4: Uncertainty of NPP\textsubscript{a} balance based on two NPP estimates and min, mean and max utilization levels: All positive/negative = total agreement, 5 pos = 1 neg = 5 out of 6 estimates are positive.

Fig. 5: Supplementary feed in GtC/yr in world regions broken down to number of months that need to be bridged.

Data sources

- NPP (annual and monthly): JULES and ORCHIDEE
- Grazing area: Earth System Grid Federation 2013
- Restriction of grazing area: FAO 2008, Olson et al. 2001, Foley and Ramankutty 2010
- IUCN protected areas: IUCN 2015
- Accessibility and utilisation (NPP\textsubscript{a}): Mkhulwane and Lauenroth 1993; own literature survey

References

- Erb et al. 2007
- Krausmann et al. 2013
- FAO 2008, Olson et al. 2001, Foleyand Ramankutty 2010
- World regions: CA&RUSSIA=Central Asia and Russia, E&SE EUR = Eastern and South-Eastern Europe, EA = Eastern Asia, LAM = Latin America, NAWA = Northern Africa & Western Asia, NA = North America, OCE = Oceania, SEA = South-Eastern Asia, SA = Sub-Saharan Africa, WEUR = Western Europe

Conclusions

- Grazing intensity (GI) is between 0 and 40% on 84%, between 40 and 100% on 9%, and exceed available NPP on the remaining 7% of world’s grazing lands (Fig. 1)
- Depending on local ecological characteristics and limits to stocking density, areas with very low GI could exhibit potential to more efficiently use the available resource.
- Total supplementary feed makes up for almost 0.4 GtC/yr
- Our balance estimates suggest that an NPP\textsubscript{a} flow of approximately 2.3 GtC/yr could come from utilizing (seasonally) available surplus NPP\textsubscript{a} by societal organization (e.g. storage)
- More than ½ of this is located in areas with seasonally constrained NPP\textsubscript{a}
- 47% of this (approx. 1 GtC/yr) is located in areas with no seasonal constraints in SSA (48%) and LAM (41%); however uncertainty is very large (2.1 – 0.2 GtC/yr)

Precaution in interpretation:

- Massive logistic efforts necessary to yield this potential and trade-offs need to be considered
- Biodiversity loss or the maintenance of soil fertility need to be considered, but are not quantifiable today due to knowledge gaps
- Avoiding further land expansion and soil degradation is essential
- Understanding the systemic inter-linkages between GI, sustainable utilization levels as well as socio-economic and ecological trade-offs from the global to the local scale is essential to better understand the potentials unfolded by utilizing (seasonal) surplus NPP\textsubscript{a}

** Acknowledgements**

The work was conducted during the YSSP 2015 program at IIAAS. Thank’s to IIAAS staff for providing this research opportunity, technical support and many discussions. We acknowledge the funding of the YSSP 2015 program by the BMWF (Bundesministerium für Wissenschaft, Forschung und Wirtschaft) and from the ERC Starting Grant 2010 263522 (LUISE).