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Preface:  

Several methods exist to estimate the cumulative carbon emissions which would keep global 

warming to below a given temperature limit. We here review estimates reported by the IPCC and the 

recent literature, and discuss the reasons underlying their differences. The most scientifically robust 

number – the carbon budget for CO2-induced warming only – is also the least relevant for real-world 

policy. Including all greenhouse gases and using methods based on scenarios that avoid instead of 

exceed a given temperature limit results in lower carbon budgets. To limit warming below the 

internationally agreed temperature limit of 2°C relative to preindustrial levels with >66% chance, the 

most appropriate carbon budget estimate is 590-1240 GtCO2 from 2015 onward. Variations within 

this range depend on the probability of staying below 2°C and on end-of-century non-CO2 warming. 

Current annual CO2 emissions are about 40 GtCO2/yr, and global CO2 emissions thus have to be 

reduced urgently to keep within a 2°C-compatible budget.   
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Main text:  

The ultimate objective of the international climate negotiations is to prevent dangerous 

anthropogenic interference with the climate system1. Since 2010, this objective has been interpreted 

as limiting global-mean temperature increase to below 2°C relative to preindustrial levels2, although 

discussion remains whether it needs to be strengthened to 1.5°C (for example, see Ref. 3). 

Over the past decade, a large body of literature has appeared which shows that the maximum global-

mean temperature increase as a result of carbon dioxide emissions is nearly linearly proportional to 

the total cumulative carbon (CO2) emissions4-11. Maximum warming is also influenced by the amount 

of non-CO2 forcing leading up to the time of the peak12-14. This has culminated in the most recent 

assessment of the Intergovernmental Panel on Climate Change (IPCC) in the form of several 

estimates of emission budgets compatible with limiting warming to below specific temperature 

limits. Here, we first explain the underlying scientific rationale for such budgets and then continue 

with a detailed account of the strengths and limitations of the various budgets reported in both the 

IPCC Fifth Assessment Report (AR5) and the recent literature, and of the differences between them.  

The purpose of budgets  

The IPCC AR5 Working Group I (WGI) Report15 indicated that the total net cumulative emission of 

anthropogenic CO2 is the principal driver of long-term warming since preindustrial times. Therefore, 

to limit the warming caused by CO2 emissions to below a given temperature threshold, cumulative 

CO2 emissions from all anthropogenic sources need to be capped to a specific amount, sometimes 

referred to as carbon budget or quota (which, in the context of this paper, refers to global values and 

not to emission allowances of single countries).   

The near-linearity between peak global-mean temperature rise and cumulative CO2 emissions is the 

result of an incidental interplay of several compensating feedback processes in both the carbon cycle 

and the climate: the logarithmic relationship between atmospheric CO2 concentrations and radiative 

forcing, the decline of ocean-heat-uptake efficiency over time, as well as the change of the airborne 

fraction of anthropogenic CO2 emissions15. This compensating relationship is robust over a range of 

CO2 emissions and over timescales of up to a few centuries, with very few exceptions16. Such a 

relationship is not generally available for other anthropogenic radiatively active species. An 

approximate proportionality exists for other long-lived greenhouse gases (GHG) for warming during 

this century12, while for short-lived climate forcers the rate of emissions leading up to the time of 

peak warming is important12-14.  

The unique characteristics of the Earth system’s response to anthropogenic carbon emissions allow 

the definition of a quantity called the transient climate response to cumulative emissions of carbon 
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(TCRE). TCRE is defined as global average surface temperature change per unit of total cumulative 

anthropogenic CO2 emissions, typically 1000 PgC. The IPCC AR5 assessed TCRE to fall ‘likely’ (i.e. with 

greater than 66% probability17) between 0.8 to 2.5°C per 1000 PgC for cumulative CO2 emissions less 

than about 2000 PgC and until the time at which temperature peaks.  

The constancy of TCRE means that it can also be assessed for the real world by dividing an estimate 

of CO2-induced warming to date by an estimate of anthropogenic CO2 emissions5,10. Such an 

approach relies on a calculation of GHG-attributable warming using a regression of observed 

warming onto the simulated response to GHG and other forcings, and an estimate of the ratio of CO2 

to total GHG radiative forcing or temperature response. Alternatively TCRE may be assessed from 

observations by applying observational constraints to the parameters of a simple carbon-cycle 

climate model7,8, and evaluating the ratio of warming to emissions for the constrained model.  

For a carbon budget approach to make sense, TCRE must be reasonably independent of the pathway 

of emissions. Earlier studies have indeed shown that this is the case7,8,18,19, at least for peak warming 

and monotonously increasing cumulative carbon emissions. If a set carbon budget limit is exceeded, 

CO2 needs to be removed actively from the atmosphere afterwards20-22 to bring emissions back to 

within the budget. Figure 1 illustrates this path independency (even for moderate amounts of net 

negative CO2 emissions), and shows with the simple carbon-cycle and climate model MAGICC7,23,24 

that even with large variations in the pathway of CO2 emissions during the 21st century, the transient 

temperature paths as a function of cumulative CO2 emissions are very similar – a characteristic also 

found in other models18,25. Once all pathways achieve the same end-of-century cumulative CO2 

emissions, the temperature projections are virtually identical (Figure 1b).  

Given these considerations, carbon budgets are a useful guide for defining and characterizing 

emissions pathways which limit warming to certain levels, such as 2°C relative to preindustrial. 

An abundance of carbon budgets 

Budget for CO2-induced warming only 

The most direct application of TCRE is to derive cumulative carbon budgets consistent with limiting 

CO2-induced warming to below a specific temperature threshold. For instance, IPCC WGI indicates26 

that limiting anthropogenic CO2-induced warming to below 2°C relative to 1861-1880 with an 

assessed probability of greater than 50% will require cumulative CO2 emissions from all 

anthropogenic sources since that period to stay approximately below 4440 GtCO2. Alternatively, 

doing so with a greater than 66% probability would imply a 3670 GtCO2 budget. These values assume 

a normal distribution of which the standard-deviation (1-sigma) range is given by the assessed ‘likely’ 
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TCRE range of 0.8 to 2.5°C per 1000 PgC (i.e., about 3670 GtCO2), and make use of the near-linearity 

of the ratio of CO2-induced warming and cumulative CO2 emissions15.  

While being the most robust translation of the TCRE concept into a cumulative carbon budget, it is at 

the same time also the least directly useful to policy-making. In the real world, non-CO2 forcing also 

plays a role, and its global-mean temperature effect is superimposed on the CO2-induced warming. A 

carbon budget derived from a TCRE-based estimate should thus not be used in isolation. 

The near-linear relationship of TCRE does hence not necessarily apply to the ratio of total human-

induced warming to cumulative carbon emissions (as might be suggested by Figure SPM.10 in 

Ref. 26). The latter relationship is scenario dependent, because, for example, the percentage 

contribution of non-CO2 climate drivers to total anthropogenic warming increases in the future in 

many scenarios. Therefore, to take into account the influence of non-CO2 forcing on carbon budgets, 

the TCRE-based approach can be extended using multi-gas emission scenarios. Multi-gas emission 

scenarios provide an internally consistent evolution over time of all radiatively active species of 

anthropogenic origin. They are often created with “integrated assessment models” (IAMs) which 

represent interactions within the global energy-economy-land system (for examples, see Refs. 27-

29).   

Threshold exceedance budgets  

A first, straight-forward methodology to extend TCRE-based carbon budgets for CO2-induced 

warming to budgets that also take into account non-CO2 warming is here defined as threshold 

exceedance budgets (TEB) for multi-gas warming (see Table 1).  

This approach uses multiple realisations of the simulated response to a multi-gas emission scenario. 

These realisations can either be multi-model ensembles or perturbed parameter ensembles. An 

example of the former would be simulations of the Representative Concentration Pathways30,31 (RCP) 

by Earth-System Models (ESMs) that were contributed to the Fifth Phase of the Coupled Model 

Intercomparison Project32 (CMIP5). An example of the latter would be the use of a simple climate 

model in a probabilistic setup7,23,24, as used in the assessments of the IPCC33-35 as well as in other 

recent studies36-38. From such multi-model or perturbed parameter ensembles, the carbon budget is 

estimated at the time a specified share (for example, 50% or one third) of realisations exceeds a 

given temperature limit (i.e., 50% or two thirds of the ensemble members remain below the limit, 

see orange scenario in Figure 2).  

The TEB approach was used by IPCC WGI for determining carbon budgets that account for non-CO2 

forcing15. Applying this methodology to the CMIP5 RCP8.5 (Ref. 39) simulations of ESMs10,40 and 

Earth-System Models of Intermediate Complexity41 (EMICs), they found that compatible CO2 
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emissions since 1870 are about 3010 GtCO2 and 2900 GtCO2 to limit warming to less than 2°C since 

the period 1861–1880 in more than 50% and 66% of the available model runs, respectively. Other 

recent studies36 have used an extended version of this approach which computes TEBs based on 

perturbed parameter ensembles of a subset of scenarios from the IPCC AR5 Scenario Database 

(hosted at the International Institute for Applied Systems Analysis – IIASA, and available at 

https://secure.iiasa.ac.at/web-apps/ene/AR5DB/).  

The results of a TEB approach are most useful if the warming due to non-CO2 forcing as a function of 

cumulative CO2 emissions is similar across scenarios, meaning that the conclusions are not strongly 

dependent on the scenario chosen. However, Figure 3a shows that there is quite a large variation in 

non-CO2 forcing for a given level of cumulative CO2 emissions when looking at all scenarios available 

in the IPCC AR5 Scenario Database. Caution is therefore advised when deriving carbon budgets based 

on one single multi-gas scenario (see more below). Finally, the use of TEBs for limiting warming to 

below a given temperature limit, assumes that non-CO2 warming never increases beyond the level it 

reached at the time the TEB was computed (see Figure 2). Also non-CO2 forcing thus needs to be kept 

within limits over time.  

Threshold avoidance budgets  

Carbon budgets defined in the previous section are derived at the time a given scenario exceeds a 

specific temperature threshold or limit. A complementary approach is to consider multiple emission 

scenarios and evaluate carbon budgets for the subset of scenarios that avoid crossing such a 

threshold with a given probability. We name these budgets threshold avoidance budgets (TAB, see 

Table 1). Because, by definition, such scenarios do not exceed the limit of interest at any specific 

point in time (with a given probability), a time horizon needs to be defined until when a budget is 

computed. This time horizon can either be a predefined period, for example the 2011-2050 or the 

2011-2100 period, or more variable in nature, for example the time period until peak warming (see 

yellow scenario in Figure 2). Both of these approaches were used in the IPCC AR5, and more 

sophisticated approaches based on the TAB methodology have been used in the literature7. 

IPCC Working Group III (WGIII) computed TABs for the periods 2011-2050 and 2011-2100, by 

assessing the probabilistic temperature projections in 210034,35. For this, WGIII categorized a large 

number of scenarios based on end-of-century CO2-equivalent concentrations. The reported TAB 

values – for example, in Table 6.3 in the WGIII Report35 or Table SPM.1 in the Synthesis Report33,34 

(SYR) – are therefore the result of an assessment of the exceedance probability outcomes found in 

each of the CO2-equivalent concentration categories. Alternatively, scenarios could have been 

categorised on the basis of median temperature, probabilities to limit warming to below a specific 

temperature limit, or even carbon budgets. For scenarios that limit end-of-century warming to below 
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2°C with a ‘likely’ probability (greater than 66% chance), the IPCC AR5 WGIII assessment34 reports 

that the TABs in terms of cumulative CO2 emissions in the periods 2011-2050 and 2011-2100 are 150-

1300 GtCO2 and 630-1180 GtCO2, respectively. 

In the IPCC SYR33 TABs are also computed based on the scenarios available in the IPCC AR5 Scenario 

Database – see Table 2.2 in Ref. 33. However, the SYR categorizes scenarios directly based on their 

probability of keeping peak warming to below a specific temperature threshold (1.5°C, 2°C, or 3°C) 

during the 21st century. For example, the IPCC SYR reports TABs for limiting warming to below 2°C 

with at least 66% chance of 2550-3150 GtCO2 from 1870 until peak warming.  

The numbers compared  

To understand what the different approaches mean in terms of the actual values of carbon budgets, 

we compare the available budgets related to the 2°C limit. Table 2 provides an overview for all the 

numbers discussed in this section, relative to two common base years (2011 and 2015). Taking into 

account that about 2050 GtCO2 (ca. 560 PgC) of CO2 had already been emitted by the end of 2014 

(Ref. 36), a CO2-only budget approach would indicate that 1620 GtCO2 (or 440 PgC) remain to have a 

>66% probability of limiting warming to below 2°C relative to preindustrial levels (here defined as the 

1861-1880 period26). Using a TEB approach and assuming non-CO2 forcing as in RCP8.5, this amount 

is reduced to 850 GtCO2 (or 230 PgC). When assessed with the latter approach, a 1620 GtCO2 budget 

would limit warming to below 2°C in less than 33% of the available models (Ref. 42).  

It is worth noting that the IPCC assessment of the CO2-only budget is based on an assessed 

uncertainty range of TCRE, drawing upon many lines of evidence. The IPCC WGI numbers including 

non-CO2 forcing are based on CMIP5 simulations of the response to RCPs, which – although being a 

valid approach – provide a narrower scientific basis. At least for the four RCPs used by WGI, a similar 

warming as a function of cumulative CO2 emissions is found (see Figure TFE.8 in Ref. 42), despite 

having different non-CO2 evolutions (see Figure 3a). This counterintuitive result is explained further 

below.  

When extensively varying the non-CO2 assumptions for TEBs using a subset of baseline and weak 

mitigation scenarios from the IPCC AR5 Scenario Database (which all exceed the 2°C limit), a range of 

850-1550 GtCO2 (5th-95th percentile range across all TEB scenarios, from 2015 onward) is associated 

with limiting warming to below 2°C with 66% probability36. The difference between this range and 

the 850 GtCO2 number quoted above is, on the one hand, caused by the different modelling 

frameworks and, on the other hand, by the fact that the non-CO2 forcing evolution of RCP8.5 is 

situated amongst the highest percentiles of the non-CO2 forcing in other high emission scenarios that 

exceed the 2°C threshold (see Figure 3).   
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When considering TAB until peak warming, based on the stringent mitigation scenarios of the IPCC 

AR5 Scenario Database, a range of 590-1240 GtCO2 is found for limiting warming to below 2°C with 

>66% probability33 (10th-90th percentile range, as reported by IPCC WGIII, from 2015 onward). Finally, 

for TAB calculated over the 2015-2100 period, an assessment of the stringent mitigation scenarios 

available in the IPCC AR5 Scenario Database and their temperature outcomes results in a range of 

470-1020 GtCO2 (10th-90th percentile range) for limiting warming to below 2°C with a ‘likely’ (greater 

than 66%) chance35.  

In conclusion, moving from a CO2-only budget42 to a multi-gas multi-scenario TEB budget36 removes 

around 420 GtCO2 (i.e., the average of the 70-770 GtCO2 range) from the CO2 budget from 2015 

onward for limiting warming to below 2°C with 66% chance. Subsequently moving to a TAB budget 

until peak warming33 or over the 2015-2100 period35 and a >66% chance would additionally remove 

about 260-310 GtCO2 and 380-530 GtCO2, respectively. (Note that these values are illustrative as they 

are obtained by comparing ranges which are defined in different ways.)  

In conclusion, the TAB range for limiting warming to below 2°C with greater than 66% probability of 

470-1020 GtCO2 for the 2015-2100 period is thus 35 to 70% below what would have been inferred 

from a CO2-only budget with a TEB approach.  

Strengths and limitations  

The various approaches to computing carbon budgets each come with their respective strengths and 

limitations. Understanding what can lead to possible differences in budget estimates is critical to 

avoid misinterpretation of the numbers.  

The budget type definition, the underlying data and modelling, the scenario selection, temperature 

response timescales and the accompanying pathway of CO2 and non-CO2 emissions are identified as 

possible key drivers of the difference between the various budget options discussed above.  

That the budget type definition will have an influence on the resulting numbers is almost trivial. For 

example, when defining TABs from 2011 to 2100 instead of until peak warming, the cumulated net 

negative emissions which can be achieved until the end of the century will lead to consistently lower 

2015-2100 TABs compared to TABs defined until peak-warming levels. Negative emissions occur 

when carbon dioxide is actively removed from instead of emitted into the atmosphere by human 

activities. For instance, for TABs compatible with limiting warming to below 2°C with >66% chance, 

the difference between TABs defined until peak warming and over the 2015-2100 period would be of 

the order of 120-220 GtCO2. Furthermore, the budget type definition also influences other factors, 

like scenario selection, whose impact on the carbon budget is explained in more detail below.  
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Underlying data and modelling 

Some of the differences between the quantitative budgets estimates are simply driven by differences 

in the underlying data and models. In general, these differences apply to TEB and TAB alike. For 

example, while the WGI CO2-only budget is based on the interpretation of an assessed uncertainty 

range, the other TEB and TAB budgets were computed either from CMIP5 RCP results (in the WGI 

Report and the SYR) or from a simple climate model (MAGICC) in a probabilistic setup7,23,24 (in the 

WGIII Report and the SYR).  

Budget estimates can differ depending on whether a single-scenario multi-model ensemble is used 

(for example, all CMIP5 runs for RCP8.5) or alternatively a single-model multi-scenario perturbed 

parameter ensemble is used (for example, the IPCC AR5 WGIII approach which uses MAGICC). The 

former approach allows us to use information from a wide range of the most sophisticated models 

and incorporate state-of-the-art Earth-system interactions in the budget assessment. However, this 

approach comes at a high computational cost, resulting in only a limited ensemble of opportunity of 

model runs being available for any assessment. The latter method, on the other hand, uses a much 

simpler model, and hence comes with great computational efficiency which allows for hundreds if 

not thousands of realisations per scenario. This allows variations in scenario assumptions on the 

pathways and evolution of non-CO2 forcing over time to be explored in more detail. 

These differences in the underlying data and modelling can result in changes in the budget estimates. 

However, while a simple climate model does not provide the detail of ESMs, it can closely emulate 

their global-mean behaviour43 and can represent the uncertainties in carbon-cycle and climate 

response in line with the assessment of the IPCC AR5 (Refs. 7,24,44). Of importance here is that the 

MAGICC setup applied in WGIII and the SYR is consistent with the CMIP5 ensemble for temperature 

projections and TCRE (Figure 12.8 in Ref. 15, and Figure 6.12 in Ref. 35). It is therefore expected that 

these differences are limited.   

A final aspect related to the data and modelling is the interpretation of the nature of the 

uncertainties that accompany the various data. Uncertainty ranges can be the expression of a variety 

of underlying uncertainty sources45, and they can be interpreted in different ways. In the context of 

the quantification of carbon budgets, at least three kinds of uncertainty ranges can be distinguished: 

(1) an uncertainty range resulting from an in-depth assessment of multiple lines of evidence (a so-

called assessed uncertainty range); (2) an uncertainty range emerging from a sophisticated statistical 

sampling of the parameter space or; (3) an uncertainty range which represents the spread across an 

arbitrary collection of model results (a so-called ensemble of opportunity). Each of these uncertainty 

ranges can be interpreted in different ways, and they decline in robustness going from an assessed 

uncertainty range over targeted statistical approaches to ensembles of opportunities. These aspects 
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thus also influence the robustness of any carbon budget estimates based on them. For example, the 

budget for CO2-induced warming from WGI is derived from an assessed uncertainty range, while the 

WGI budgets that additionally take into account non-CO2 forcing are based on an ensemble of 

opportunity, which makes them much less robust (see also Technical Focus Element 8 in Ref. 42). 

Scenario selection 

Applying the definition of TEB and TAB budgets to a large scenario ensemble for the assessment of 

CO2 budgets in line with a particular temperature limit results in the selection of two disjoint subsets 

of emission scenarios: a subset of baseline and weak mitigation scenarios that exceed the 

temperature limit with a given probability in case of TEB budgets, and a disjoint subset of more 

stringent to very stringent mitigation scenarios that all keep warming to below the specified 

temperature limit with a given probability in case of TAB budgets.  

A first implication of the use of these disjoint scenario sets results from only very few scenarios being 

available that have, for example, precisely a 66% probability for limiting warming to below a given 

temperature threshold. While TEBs are consistently computed for each scenario at the time a 

scenario exceeds a temperature limit with a given probability, the value of TABs is further driven by 

the choice of the range of probabilities that is used to select appropriate TAB scenarios. For example, 

the IPCC SYR selected all scenarios that have a 66 to 100% probability of limiting warming to below a 

given threshold (compared to exactly 66% for TEB). This resulted in an average probability of staying 

below 2°C across the subset of TAB scenarios that comply with the abovementioned selection 

criterion of about 75%. This can explain about one third to half of the 260-310 GtCO2 difference 

between the TEB estimates from Friedlingstein et al. (Ref. 36) and the IPCC SYR TAB estimates. 

Moreover, for some temperature levels, for example around 3°C, the scenarios available in the IPCC 

AR5 Scenario Database do not sample the possible range extensively, which can lead to additional 

biases in the numbers obtained.  

Temperature response timescales 

A second aspect that is different in the disjoint scenario subsets are the CO2 emission pathways and 

hence the annual CO2 emissions at the time the compatible carbon budget is derived. In the TAB 

subset, CO2 emissions will typically approach zero or become negative in order to stabilize global 

temperatures, and will thus be very low at the time of maximum warming during the 21st century. In 

the TEB subset this is not the case. Because of the timescales of CO2-induced warming46,47 this leads 

to differences in the carbon budget estimates. 

Recent research indicates that, at current emission rates, maximum CO2-induced warming only 

occurs about a decade after a CO2 emission46,47. Thus, even in a CO2-only world, TABs and TEBs with 
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complementary probabilities (for example, a 66% probability to limit warming below 2°C and a 34% 

probability to exceed 2°C) would not be entirely identical. In case of the TEB approach, the maximum 

warming of the CO2 emissions of the last decade before the temperature limit was exceeded has 

possibly not yet fully occurred. In a TAB approach the emissions in the last decade would be 

significantly lower, if not zero, and this would allow a much larger fraction of the warming to already 

be realized. The TEB approach thus leads to a consistent overestimate of the CO2 budget compatible 

with a given temperature limit, while this is not the case with the TAB approach. At least one third of 

the approximately 260-310 GtCO2 difference between the TEB estimates from Ref. 36 and the IPCC 

SYR TAB estimates can be explained by accounting for the approximately one decade delay between 

CO2 emissions and their maximum warming. 

Non-CO2 warming contribution 

A third and last aspect that differs between the two disjoint TEB and TAB scenario subsets is the 

mixture of CO2 and non-CO2 forcers. This mixture differs over time and therefore, depending on 

when the compatible carbon budget is determined, the TAB and TEB are derived under possibly very 

different non-CO2 forcing (see Figure 3b). The relationship between CO2 emissions and non-CO2 

forcing is complex, as it covers the total non-CO2 forcing which results from both positive and 

negative climate forcers. Climate policy influences these non-CO2 forcers both directly (via 

abatement measures) and indirectly (via changes induced in the energy system), which is captured in 

different ways in IAMs. For example, stabilizing and peaking global temperatures requires global CO2 

emissions to be reduced to close to net zero. Such very low CO2 emissions are achieved through a 

fundamental transformation of the global energy-economy-land system35, which in turn leads to 

changes in non-CO2 emissions because of the phase-out of common sources of CO2 and non-CO2 

emissions14,48. This can lead to important differences in non-CO2 forcing as a function of total 

cumulative CO2 emissions (Figure 3a). Figure 3b shows that median non-CO2 forcing at the time 

which is of importance for deriving the carbon budget (i.e., the time of exceedance for TEBs, and 

peak warming for TABs) is about 0.2 W/m2 higher in the subset of scenarios used for TEBs compared 

to the subset used for TABs.  

However, the non-CO2 forcing at either peak warming or the time of exceeding a given temperature 

threshold does not tell the entire story. When estimating the actual non-CO2-induced warming at 

these time points of interest (see Box 1 on ‘Non-CO2 temperature contributions’), very little 

difference can be found between the TEB and TAB scenario subsets (Figure 3c). This thus suggests 

that, when a sufficiently large scenario sample is available, variations in non-CO2 forcing cannot be 

used to explain the variations between TEB and TAB estimates for limiting warming to below 2°C. The 

precise influence of this difference on the carbon budgets has not been quantified. 
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Incidentally, this feature is not obviously visible when looking at the four RCPs only, because both the 

lowest, RCP2.6, and the highest, RCP8.5, are outliers in terms of non-CO2 warming, at opposite sides 

of the scenario distribution (Figures 3b-c).  

Finally, while non-CO2 forcing does not provide a strong explanation for the variations between TEB 

and TAB estimates, it plays an important role for the variation within the TEB and TAB subsets. Figure 

3d shows that respectively 70% and 50% of the variance within the TEB and TAB subsets can be 

explained by non-CO2 warming at the time of determining the carbon budget.  

Future non-CO2 warming under stringent mitigation remains nonetheless very uncertain at present. 

Its magnitude will depend on the extent to which society will be successful in bringing about 

assumed future improvements in agricultural yields and practices or dietary changes49, amongst 

many other factors. These are very uncertain. Furthermore, how much non-CO2 forcing is reduced 

compared to CO2 depends on the relative weight that is given to CO2 and non-CO2 emissions in 

mitigation scenarios, and also on other mitigation choices50. These weights are mostly constant in 

IAMs (for example, by using global warming potentials as a fixed exchange rate), but can also change 

over time and depend on the question posed.   

Air pollution controls can influence the rate of near-term warming and, depending on the precise mix 

of air pollutants that is reduced by air pollution controls, non-CO2 warming can be increased, 

decreased or stay constant14. The estimated effect of air pollution controls on carbon budgets, in 

particular on TABs, is very small51. This is important information for policy-making, as it can be used 

to consider trade-offs between the uncertainty in non-CO2 mitigation, possibly larger CO2 budgets, 

and a larger amount of committed warming at the multi-century scale due to larger cumulative CO2 

emissions.  

Applicability 

Earlier we indicated that budgets that only take into account CO2-induced warming are scientifically 

best understood as – per definition – they do not depend on additional uncertainties associated with 

other forcings. However, at the same they are impractical and largely irrelevant for use in the real 

world, because of their obvious limitation of neglecting any contribution that is different from CO2. 

The other approaches that go beyond this CO2-only approach, might therefore be more practical. 

Using a CO2-only approach estimate for real-word decision-making would lead to an overestimation 

of the allowable carbon budget, i.e. a very high risk of exceeding a given climate target when 

emitting that particular carbon budget.  

The strength of TEBs is that they are easily comparable to TCRE-based budgets for CO2-induced 

warming only. Hence the influence of non-CO2 forcing on the size of carbon budgets can be assessed. 
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However, because of the limitations related to scenario selection (TEBs are derived from scenarios 

that fail in limiting warming to the temperature level of interest) and the timescales of the 

temperature response, TABs are preferred over TEBs. The strength of TABs lies exactly in their use of 

scenarios that represent our best understanding of how CO2 and other radiatively active species 

would evolve over time when CO2 emissions are stringently reduced.  

Conclusions  

Several possibilities are available to compute cumulative carbon budgets consistent with a particular 

temperature limit. We have shown that each of the CO2 budget approaches has strengths but also 

comes with important limitations. The devil is in the detail here. The most scientifically robust 

number – the budget for CO2-induced warming – is also the least practical in the real world. Selecting 

budgets based on multi-gas emission scenarios that actually restrict warming to below a given 

temperature threshold, results in the lowest, but most relevant CO2 emission budgets in a real-world 

multi-gas setting. Any practical implementation of a carbon budget mitigation strategy would require 

parallel mitigation efforts for non-CO2 agents.  

At the time of the IPCC AR5, no established methodologies were available to ensure easy 

comparability of carbon budget estimates across working groups. In hindsight and anticipating future 

assessments, three recommendations can be formulated. First, insofar important topics can already 

be identified, coordinated model simulations, intercomparisons, and methods could be initiated at 

an early stage to ensure consistency and traceability. Second, consistency across – and collaboration 

and integration between – the IPCC working groups could be improved by setting up stronger ties 

between them. And third, IPCC reports should be clearer about the policy-applicability of the 

numbers they provide, without being policy prescriptive. 

For limiting warming to below 2°C relative to preindustrial levels with greater than 66% probability, 

the remaining CO2 budget from 2015 onwards for CO2-induced warming only is 1620 GtCO2. The 

corresponding TAB budget would be 590-1240 GtCO2. The latter is equivalent to about 15 to 30 years 

of CO2 emission at current (2014) levels (about 40 GtCO2/yr, Ref. 52). No matter which approach is 

taken, the CO2 budget for keeping warming to below 2°C always implies stringent emission 

reductions over the coming decades and net zero CO2 emissions in the long term. For policymaking in 

the context of the UNFCCC, we suggest using the 590-1240 GtCO2 estimate from 2015 onward, as 

this is derived from an assessment of scenarios that effectively limit warming to below the 2°C limit. 



Page 14/22 

BOX 1: Non-CO2 temperature contributions 

The estimated temperature contributions of non-CO2 forcing, shown in Figure 3c, are derived by the 

following equation, as described in the Supplementary Material to the IPCC AR5 Working Group I 

Chapter on ‘Anthropogenic and Natural Radiative Forcing’53 (equation 8.SM.13).  

( ) = −  

Where RT is the climate response to a unit of forcing, cj the component of the climate sensitivity, dj 

the response times, and t the time. For the two-term approximation (M=2) presented by Ref. 54, 

values of c1, c2, d1, and d2 are taken from Table 8.SM.9 in Ref. 53. This estimate is to be considered an 

illustrative approximation of the non-CO2 forcing’s temperature effect.  

END BOX 1 
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Figure captions: 

 

Figure 1 | Proportionality of global-mean temperature increase to cumulative emissions of CO2. 

Four CO2 emission pathways with identical cumulative carbon emissions over the 21st century (panel 

a) and their corresponding temperature projections (panel b). The grey area in panel b shows the 

central 66 percent uncertainty range of temperature projections around the thick purple line. Panels 

are adapted from Figure 12.46 in Ref. 15. 

 

Figure 2 | Illustration of the approach to compute threshold exceedance budgets (TEB) versus 

threshold avoidance budgets (TAB). In a first step (arrows labelled “1”), temperature outcomes are 

computed from multi-gas emission scenarios which either exceed (orange) or avoid (yellow) a given 

temperature threshold. Based on either the timing of exceeding the chosen threshold or the timing 

of peak warming, carbon budgets compatible with the chosen temperature threshold are computed 

in a second step (arrow labelled “2”) by summing the carbon emissions of the underlying scenarios 

until the timing of exceeding the threshold or peak warming for TEB or TAB (arrow labelled “3”), 

respectively.  

 

Figure 3 | Non-CO2 forcing and cumulative CO2 emissions. a, Non-CO2 forcing as a function of 

cumulative CO2 emissions from 2015 onwards for scenarios of the IPCC AR5 Scenario Database. 

Scenarios are split up into two subsets: (1) scenarios that limit warming to below 2°C relative to 

preindustrial with at least 66% probability (yellow-mustard, used for TAB) and (2) scenarios that lead 

to global-mean temperatures exceeding the 2°C relative to preindustrial limit with at least 34% 

(orange, used for TEB). b, Distribution of non-CO2 forcing at the time point critical for deriving TEB 

(orange) and TAB (yellow-mustard) budgets, i.e., the moment the 2°C limit is exceeded for TEBs and 

peak warming for TABs. c, Distribution of the estimated temperature contribution from non-CO2 

forcing at the same time point as in panel b (see Box 1 on ‘Non-CO2 temperature contributions’). The 

four RCPs are also included for comparison. d, Variation within the TEB and TAB budget subsets as a 

function of the estimated temperature contribution from non-CO2 forcing as in panel c. Numerical 

values in panel d are R2 values for the two linear fits.  



Page 16/22 

Tables: 
 

Table 1 | Three different types of carbon budgets and their definition 
 

Carbon budget type Abbreviation Definition and description
Budget for CO2-
induced warming 

CO2-only 
budget 

Amount of cumulative carbon emissions that are compatible with 
limiting warming to below a specific temperature threshold with a 
given probability in the hypothetical case that CO2 is the only source 
of anthropogenic radiative forcing. This budget can be inferred from 
the assessed range of TCRE.  

Threshold 
Exceedance Budget 

TEB Amount of cumulative carbon emissions at the time a specific 
temperature threshold is exceeded with a given probability in a 
particular multi-gas emission scenarios. This budget thus takes into 
account the impact of non-CO2 warming at the time of exceeding the 
threshold of interest.  

Threshold  
Avoidance Budget 

TAB Amount of cumulative carbon emissions over a given time period of a 
multi-gas emission scenario that limits global-mean temperature 
increase to below a specific threshold with a given probability. This 
budget thus takes into account the impact of non-CO2 warming at 
peak global-mean warming, which is approximately the time global 
CO2 emissions become zero and global-mean temperature is 
stabilized. 
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Table 2 |Selection of carbon emission budgets related to a global temperature limit of 2°C relative 

to preindustrial levels from various sources. 1890 GtCO2 were already emitted by 2011, and about 

2050 GtCO2 by 2015. All values are in GtCO2, reported from 2011 and 2015 onwards, and rounded to 

the nearest 10. Budget types are defined in Table 1. 

 
Source Type Specification Value since 

2011 
Value since 
2015 

IPCC AR5 
WGI  

CO2-
only 
budget 

To limit warming to less than 2°C since the 
period 1861-1880 with greater than 66% (or 
50%) probability 

1780
(or 2550) 

1620 
(or 2390) 

IPCC AR5 
WGI 

TEB To limit warming to less than 2°C since the 
period 1861-1880 in more than 66% (or 50%) of 
the model runs when accounting for the non-CO2 
forcing as in the RCP scenarios 

1010
(or 1120) 

850 
(or 960) 

IPCC AR5 
WGIII 

TAB To limit warming in 2100 to below 2°C since 
1850-1900 with a ‘likely’ (>66%) probability, 
accounting for the non-CO2 forcing as spanned 
by the subset of stringent mitigation scenarios in 
the IPCC AR5 Scenario Database*. (10%-90% 
range over scenarios in IPCC WGIII scenario 
category 1) 

630 to 
1180 

470 to 
1020 

IPCC AR5 
WGIII 

TAB To limit warming in 2100 to below 2°C since 
1850-1900 with a ‘more likely than not’ (>50%) 
probability, accounting for the non-CO2 forcing 
as spanned by the subset of stringent mitigation 
scenarios in the IPCC AR5 Scenario Database*. 
(10%-90% range over scenarios in IPCC AR5 
scenario category II without overshoot) 

960 to
1430 

800 to 
1270 

IPCC AR5 SYR TEB To limit warming to less than 2°C since the 
period 1861-1880 in more than 66% (or 50% or 
33%) of the model runs of the CMIP5 RCP8.5 
ESM and EMIC simulations. (These correspond to 
the IPCC AR5 WGI TEB budgets reported above) 

1010 
(1110 or 
1410) 

850 
(960 or 
1250) 

IPCC AR5 SYR TAB To limit warming to below 2°C since 1861-1880 
with 66-100% probability, accounting for the 
non-CO2 forcing as spanned by the subset of 
stringent mitigation scenarios in the IPCC AR5 
Scenario Database. (10%-90% range) 

750 to
1400 

590 to 
1240 

IPCC AR5 SYR TAB To limit warming to below 2°C since 1861-1880 
with 50-66% probability, accounting for the non-
CO2 forcing as spanned by the subset of stringent 
mitigation scenarios in the IPCC AR5 Scenario 
Database. (10%-90% range) 

1150 to 
1400 

990 to 
1240 

Friedlingstein 
et al. (2014) 

TEB To limit warming to less than 2°C since 1850-
1900 with a 66% probability, accounting for the 
non-CO2 forcing as spanned by the subset of 
baseline and weak mitigation scenarios in the 
IPCC AR5 Scenario Database*. (5%-95% range) 

1310 
(1010 to 
1710) 

1150 
(850 to 
1550) 

Friedlingstein 
et al. (2014) 

TEB To limit warming to less than 2°C since 1850-
1900 with a 50% probability, accounting for the 
non-CO2 forcing as spanned by the subset of 
baseline and weak mitigation scenarios in the 
IPCC AR5 Scenario Database*. (5%-95% range) 

1610
(1210 to 
2010) 

1450 
(1050 to 
1850) 

*: The temperature difference between the 1861-1880 and 1850-1900 is 0.02°C, based on Ref. 55 
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