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PREFACE

A previous paper (IIASA Professional Paper PP-78-70) has
reported the preliminary results of a small collaborative
project investigating the modeling and control of the acti­
vated sludge process in wastewater treatment. This paper pro­
vides a more detailed description of the identification of a
dynamic model for nitrification. The results are also dis­
cussed from the perspective of on-line state estimation and
state reconstruction as features of operational control. The
identified model for nitrification has subsequently been in­
corporated in a simulation study of a fuzzy controller for the
activated sludge process.
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ABSTRACT

Results from a small collaborative project on modeling
and control of the activated sludge process are presented. The
identification of a dynamic model for nitrification is dis­
cussed using time-series field data from the Norwich Sewage
Works in eastern England. This analysis of the field data
is also used for examination of the feasibility and benefits
of on-line (or real-time) state estimation in the context of
activated sludge process control. A recursive estimation
algorithm -- the extended Kalman filter -- is applied both for
system identification and state estimation. The results illu­
strate an unstable nitrification condition associated with a
period in which new plant was being commissioned. It is
found that both oxygen limitation of nitrification and the
compaction of solids in the clarifier are important factors
affecting process dynamics. For real-time operation of the
process it is argued that models and forecasting algorithms
may be best utilized as a support service for the plant
management in their day-to-day decision-making role.
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On-Line Estimation of Nitrification Dynamics

1. Introduction

There is currently considerable interest in the automation

and control of wastewater treatment plant operations (2), (34),

(39). In particular, the activated sludge process is regularly

cited as the one unit process most amenable to operational con­

trol, for example (12), (15), (25), (26), (30), (37), (40).

Even though interest in such subjects is already well estab­

lished, it is still useful to question the objectives of waste­

water treatment plant automation and control. Indeed, one might

ask what is meant by the terms "automation" and "control". For

this paper we shall use the following definitions. Automation

is understood as the automation of information retrieval about

process conditions, e.g. on-line sensors, and the automation

of implementing control actions, e.g. turning on and off pumps,

blowers, and scrapers. Control is the activity that links to­

gether these two automated functions: it is the use of the in­

formation retrieved for determination of the control actions to

be implemented. As indicated in a recent appraisal by Hegg

et al (20), the incentive to automate and control wastewater

treatment facilities lies with the desire to achieve "design

performance", or better, through adequate day-to-day operation.

Water quality management does not consist only of building for

a better future; what has been built also has to be operated
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effectively. But such effective operation does not depend en­

tirely on "automation"; it depends also upon the application

of "control" as defined above.

Early work by Briggs (11) demonstrated the feasibility of

controlling dissolved oxygen (DO) concentration in the aerator

basin of an activated sludge unit. Closed-coop control of both

the DO profile and the volume of recycled sludge are now re­

latively commonplace. However, these individual control loops

by no means imply complete process control. In fact, it is de­

batable whether unit treatment processes can or should be placed

under totally closed-loop control. Suppose, as would be prag­

matic, that the human element -- the plant manager or operator

-- is retained in the control loop. How much more effective

would his control decisions be if the information retrieved

from the on-line sensors were restructured in useful ways?

For example, assuming the availability of a computing facility,

what is the potential for using on-line mathematical models and

information processing algorithms in:

(i) rapid evaluation of the short-term future conse­

quences of various control actions;

(ii) prediction of future events, typically the expected

variations in quality and flow-rate of the settled

sewage influent to the aerator;

(iii) statistical estimation of process performance from

error-corrupted measurements; and the reconstruct­

ion of information about process variables that may

be important for the control function but which are

not directly measured by instruments, e.g. the con­

centrations of nitrifying bacteria.
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These kinds of question provide the motivation for this paper.

In terms of Figure 1, therefore, we shall be concerned princi­

pally with the use of models as information processing mecha­

nisms. The use of models in evaluating and determining sui­

table control actions will be of lesser importance.

In 1977 a small collaborative project was initiated by the

Anglian Water Authority (U.K.) and the University of Cambridge.

The project was to undertake a study of dynamic modelling and

operational control of the activated sludge unit at the Norwich

8ewage Works in eastern England. Preliminary results of the

project are reported in Beck et al (8). The present paper gives

a more detailed discussion of the identification and verificat­

ion of a dynamic model for nitrification in the activated sludge

process. The presentation of these results, however, will em­

phasise aspects of (on-line, real-time) state estimation and

state reconstruction as they might relate to an operational con­

trol situation. The algorithm used for this purpose is the ex­

tended Kalman filter (EKF), see for example Jazwinski (21). The

modelling results are restricted to the process of nitrification

simply because the poor quality of the field data did not permit

any effective identification of models for the dynamics of bio­

chemical oxygen demand (BOD) and suspended solids (88) removal.

Further details of the historical operating records for the

Norwich plant are given in Beck et al (8). The identified ni­

trification model has subsequently been used in a simulation

study of a fuzzy control approach to day-to-day operation of

the activated sludge process (8), (9), (44).
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2. A Model for Nitrification Dynamics

One reason why models for the nitrification of waste mate-

rials are easier to verify than corresponding models for car-

bonaceolls BOD and 55 removal is that in nitrification fairly

specific substrates and equally specific groups of micro-

organisms can be identified. Moreover, observations of am-

monium-,nitrite, and nitrate-nitrogen concentrations are both

less ambiguous and much closer to the "microscopic" kinetic

behaviour of interest than are the somewhat "macroscopic" and

crude measurements of BOD and 55 concentrations. Thus several

models for nitrification have been proposed, all notably con-

structed around the assumption of Monod Kinetics (32), and have

been verified with considerable success against various types

of experimental observations.

Qualitatively the basic biochemical model for nitrification

shows that ammonium-N is oxidised in two stages to nitrate-N,

Nitrosomonas Nitrobacter

ammonium-N.....------"~-- ......~ nitrite-N-..........i'----I~~ nitrate-N (1)

where Nitrosomonas and Nitrobacter are the mediating species of

micro-organism. under the assumption that the conversion step

from ammonium-N to nitrite-N occurs more slowly, and is there-

fore rate-limiting for the overall process, Downing et al (14)

obtained a simple model which they verified with daily obser-

vations from laboratory-scale activated sludge units treating

domestic sewage. More recently Gujer (17), (18) has presented
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equally good results for a similar model. He demonstrated the

ability of his model to simulate diurnal variations character­

ised by a sequence of 2-hourly measurements from a pilot plant

treating sewage from the city of Zftrich. Gujer's model, how­

ever, while it also assumes a single-step conversion from am­

monium-N to total oxidised nitrogen, contains a modified kinetic

expression. This modification permits the modulation of Nitro­

somonas activity according to: (i) the difference in growth­

rates of the Nitrosomonas and the sludge as a whole; and (ii)

the balance of the distribution of sludge between the aerator

and the rest of the unit (17). Lijklema (29) also bases his

model for nitrification on a single conversion stage, with

again amrnonium-N to nitrite-N being the rate-limiting step, but

he includes the possibility of predation of the nitrifiers by

populations of protozoa and rotifers. Harleman (19) and Leonov

(27) consider nitrification as only a part of the complete ae­

robic nitrogen cycle. They propose models that include in ad­

dition: particulate organic nitrogen, dissolved organic nitro­

gen, heterotrophic bacterial conversion of dissolved organic

nitrogen to ammonium-N, and uptake and release of nitrogen com­

pounds by phytoplankton and zooplankton. Both authors have

tested their various models with laboratory chemostat data.

The model used for this study is one of intermediate com­

plexity and is identical (in all but two minor respects) with

the model of Poduska and Andrews (38). Figure 2 gives a sche­

matic diagram of the activated sludge process together with a

definition of some of the notation. The major assumptions of

the model are listed as follows:
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(i) all biochemical reactions take place in the ae­

rator;

(ii) the aerator mixing regime is approximated by a

continuously stirred tank reactor (CSTR);

(iii) the species Nitrosomonas and Nitrobacter grow

according to a Monod function;

(iv) there is no generation of ammonium-N by hetero­

trophic bacteria acting upon organically bound

nitrogen in the aerator;

(v) no denitrification takes place;

(vi) the only component of interest entering the ae­

rator with the settled sewage is the ammonium-N

component;

(vii) the clarifier has no dynamic properties and thus

all components are returned instantaneously from

the aerator effluent to the aerator recycle in­

fluent;

(viii) only the Nitrosomonas and Nitrobacter concentra­

tions are increased by compaction in the settler;

(ix) the rate of nitrification is essentially inde-

pendent of ambient DO and temperature conditions.

Assumptions (vii) and (ix) are clearly strong assumptions.

They can only be reasonably justified first by pointing out

that any hydraulic transients associated with the clarifier

appear virtually as "instantaneous" dynamics when compared

with the low sampling frequency of the data (once per day) .

Second, no data were available regarding the daily averages

of the mixed liquor DO concentration and temperature.
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Given the above assumptions, component mass balances across

the aerator yield the following five nonlinear ordinary differ­

ential equations for the dynamic nitrification model,

Anunonium-N:

(2a)

Nitrite-N:

*2(t) = -Qr(t)x2 (t)/VA + ~1 (t)x4 (t)/Y1 - ~2(t)x5(t)/Y2

+ s2(t) (2b)

Nitrate-N:

Nitrosomonas:

x4 (t) = (QR(t)C(t) - Qr(t)-QR(t»)x4 (t)/V
A

+ ~1(t)x4(t)

- k 1x 4 (t) + s4(t)

Nitrobacter:

(2c)

(2d)

(2e)

where the dot notation refers to differentiation with respect
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to time t. In equation (2) the growth-rate expressions for

Nitrosomonas and Nitrobacter are given respectively by,

...
~1 (t) = ~1x1 (t) /(K 1 + x 1 (t)

...
~2(t) = ~2x2(t)/(K2 + x 2 (t)

and the other notation is defined by,

(3a)

(3b)

x. (t)
1

= component concentration in the aerator: i=1,

ammonium-N; i=2, nitrite-N; i=3, nitrate-N; i=4,

Nitrosomonas bacteria; i=5, Nitrobacter bacteria

-3(all in gm )

= concentration of ammonium-N in the settled sew-

-3age influent (gm )

QI(t) ,QR(t) = respectively the influent and recycle flow-rates

(m3day-1 )

VA = volume of sewage in the aerator (m3 )

~i (t)

= maximum specific growth-rate constants for Nitro­

somonas and Nitrobacter respectively (day-1)

= yield coefficients for Nitrosomonas and Nitro-

bacter respectively (g organism produced/g sub-

strate consumed)

= saturation concentrations for Nitrosomonas and

Nitrobacter respectively (gm- 3 )

= specific decay-rate constants for Nitrosomonas

and Nitrobacter respectively (day-1)

= random input unknown disturbance for each state

variable (gm-3 day-1).
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Finally, C(t) is defined as being the equivalent of a compaction

ratio for the Ni trosornonas and Nitrobact-er. C (t) can be obtain-

ed by taking a component mass balance across the clarifier for

either species, i.e.

(4 )

in which p is defined as a coefficient of solids-liquids se­

paration efficiency, Qw(t) is the sludge wastage rate (m3day-'),

and x 4R (t) is the concentration of Nitrosomonas in the recycle

sludge stream -3(gm ). Rearranging equation (4) gives the re-

cycle Nitrosomonas concentration in terms of the aerator Nitro-

somonas concentration,

{

Q
R

(t)
x4R (t) =

from which we define

(S)

C (t) (6)

The above balance for compaction of bacterial species in the

clarifier is accounted for respectively by the terms

[QR(t)C(t)X4 (t)/VA] and [QR(t)C(t)xS(t)/VA] in equations (2d)

and (2e).

Further qualification of the model of equation (2) may be

provided by noting that the argument t is retained for all va-

riables that are not assumed to be invariant with time. The
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two major differences between the present model and the model

of Poduska and Andrews are that here the sludge wastage rate

(Ow) is not zero and that we have accounted for unknown dis­

turbances (~.) of the process dynamics (this latter therefore
~

places our model in a probabilistic setting).

If we make the following vector definitions,

the model of equation (2) can be rewritten concisely, and in

general terms, as

(7a)

The superscript T denotes the transpose of a vector or matrix.

We shall refer to x as the state vector, to ~ as the unmea-

sured system disturbance vector, to x as the (time-invariant)

model parameter vector, and to ~ as a vector of known "internal"

variables. A distinction is drawn between e and u 1 so that we

can refer to u 1 ' the influent arnrnonium-N concentration, as the

measured input disturbance. The vector function f{'} has ele-

Iments that represent each of the expressions on the RHS of

(eqUation (2).
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For state estimation purposes the system description is

completed by noting that discretely-sampled,error-corrupted

measurements Y1(tk ), Y2(tk ), Y3(tk ) are available at the kth

day for the ammonium-N, nitrite-N, and nitrate-N concentrations

of the aerator (i.e. clarifier) effluent,

(7b)

The additional vector and matrix definitions are given by

H ~

[

1 0 0 0 0]
o 1 000

00100

~(tk) is referred to as the measured output vector, and n(tk ) is

a vector of random measurement errors.

3. On-Line Estimation

We have said that the key feature of the current study is

concerned with restructuring measured information. Moreover,

if this information processing is to be carried out in an on-

line (real-time) fashion the basis of the processing mechanism

will most probably be a recursive estimation algorithm (see,

for example, (16), (46». The linear Kalman filter (22), (23)
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and the extended Kalman filter (21), which is of particular in-

terest here, are two examples of recursive estimators. The re-

cent literature indicates that applications of recursive esti-

mation in water-related fields are becoming increasingly wide-

spread, for example: in water resources, hydrology, and hydrau-

lic systems, (13), (43); in stream quality modelling, (10), (45),

(47); in lake water quality modelling, (42); in water quality

monitoring network design, (28), (33); in sewage flow predic-

tion (3); and in fermentation and biological waste treatment

processes, ( 1), (41).

A simplified conceptual picture of the EKF is shown in Fig-

ure 3. Inspection of the information flows into and out of the

block labelled "Extended Kalman Filter" reveals that the measured

input/output information ~ and ~ is translated into statistically

based estimates of the measurable state variables (~), of the

state variables that are not easily measured (x ), and of the-u
model parameters .(~). A number of problems of potential inter­

est, and potentially capable of solution with an EKF algorithm,

can now be listed as follows:

(i) determination of the structure of the dynamic re-

lationships between inputs ~' state variables x,

and outputs ~ (model structure identification);

(ii) computation of values for the parameters a that

appear in the identified model structure (para-

meter estimation);

(iii) determination of the current and future values of

the state variables (state estimation and predic-

tion) ;
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(iv) estimation of the inaccessible state variables

that are not measured (state reconstruction);

(v) simultaneous determination of the values of x and

£ (combined state and parameter estimation, or

adaptive estimation and prediction) .

Problems (i) and (ii) are clearly directed towards system identi­

fication, model calibration, and model varification. Problems

(iii) and (v) are identical when, as here, the state vector dy­

namics are nonlinear; both problems can be solved using an EKF

algorithm in the sense that the EKF is a first-order linear ap­

proximation to the ideal nonlinear filtering algorithms that

such situations require. With respect to (v) it is worth noting

that for adaptive control part of the function of the controller

might be to choose values for the controlling inputs, ~(t), that

enhance the possibilities for system identification and parame­

ter value updating, i.e. on-line experimentation with the plant.

A derivation of the EKF algorithms will not concern us here.

Sufficient details of this derivation are given elsewhere, for

example (6), (16), (21), (46). It is important, however, to dis­

cuss why the present application of the EKF is different from its

earlier application in stream quality modelling (5), (7). The

previous study addressed the problem of model structure identi­

fication. The solution of that problem depended strongly upon

the proposition that any mismatch between the true structure of

the system's dynamics and the structure of the model results in

time-varying estimates for parameters that are assumed to be~

variant. It is not possible to rely upon this proposition for

identifying the structure of the nitrification model because the
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T
model contains unobserved state variables, ~u = [x4 ,xS]' i.e.

the concentrations of Nitrosomonas and Nitrobacter bacteria.

Any discrepancy between model and reality in this case would
~

result in adaptation of the estimates x in preference to-u
adaptation of the parameters a. To put this in straightforward

curve-fitting terms, one may make the following remark. If the

number of model parameters is equivalent to the degrees of free-

dom available for fitting the curve to the data, then inacces-

sible state variables add proportionately many more degrees of

freedom. In fact there are other features of the nitrification

model that make parameter estimation technically very difficult.

We shall return to them later.

For the results of the analysis in the next section it is

more appropriate to consider the following. Let us assume in

equation (7) that u 1 (t) and ~(t) are known functions of time -­

in practice measurements are sUbstituted -- and that estimates

a can be substituted for a. Hence, given y(tk ) we shall deter-
~

mine estimates for both the measured states ~(tkltk) and the
~

inaccessible states ~u(tkltk). In other words, we imagine the

situation in which (from Figure 1) the measured information is

being processed in real-time for operational control purposes;

further, the provision of information about the status of the

nitrifying bacteria is assumed to be of special importance.
~

The notation x(tkltk) signifies estimates at time t k based upon

all the information available up to and including the measure-

ments at time t k . As a diagnostic check on the performance of

the algorithm and on the approximate accuracy of the parameter

estimates a, it is helpful to compute the innovations process
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residual errors of the filter, i.e.

"
~(tkltk_1) = ~(tk) - ~m(tkltk-1) (8 )

"
where ~(tkltk-1) are the one-step ahead predictions of the mea-

surable state variables.

4. Results for the Norwich Sewage Works

Daily measurements have been taken from the activated sludge

plant at the Norwich Sewage Works for the period January 1st to

April 30th, 1976, a possible total of 121 sampled values for

each variable. The salient operating conditions reflected

by these data are discussed fully in (8). This period was chosen

particularly for the reason that it was a time of commissioning

new plant, during which the plant manager was assessing alterna-

tive strategies for recycle control. Consequently, longer-term

"steady" operation had not been achieved and, in the absence of

suitably planned experimentation (such as that reported by Olsson

and Hansson (37», the expectation was that these historical re-

cords wonld contain significant perturbations in process perform-

ance. In fact there was a gradual increase of aeration rate over

these winter months, yet for a substantial portion of the time

maximum aeration maintained only low DO concentrations. Some of

these problems of commissioning undoubtedly relate to the phases

in gain and loss of nitrification that are evident in the follow-

ing results.
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4.1 State Estimation and State Reconstruction

Figures 4(a), 4(b), and 4(c) respectively show the obser-
A

vations l(tk ) and state estimates ~(tkltk) for the aerator con-

centrations of ammonium-N, nitrite-N, and nitrate-No Figures

'"
4(d) and 4(e) show the reconstructed state estimates ~u(tkltk)

for the Nitrosomonas and Nitrobacter the dashed lines indi-

cate corresponding estimates when C(t), the clarifier compact-

ion ratio, is assumed to be constant, say C(t) = C*. Based on

the details of these last two diagrams the total period of ob-

servation can be divided approximately into three distinct in-

tervals of interest, i.e. the periods t 4 + t 33 , t 36 + t 58 , and

t 67 + t 111 . First, however, let us discuss the initial condi­

tions of the plant. During the Christmas holiday period, i.e.

just prior to day to' an underloaded plant condition allowed a

high level of nitrification to become established, which led

sUbsequently to problems of denitrification and rising sludge

in the clarifier. At the beginning of the year, therefore, the

plant was deliberately being overloaded (the plant manager's

response to the denitrification situation, whereby he hoped to

suppress nitrification) and was again receiving normal strength

sewage. The ammonium-N concentration of the settled sewage in-

fluent is given in Figure 5. The sudden drop in nitrification

at day t 4 actually resulted from a faulty recycle pump that was

operating at less than half its desired capacity.

Between t 4 and t 33 both groups of nitrifying organisms are

able to recover from the upset caused by the loss of recycled

sludge; their population concentrations increase at virtually

identical rates. For the same period Figure 4(b) shows the
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model (in the filter) to be estimating a consistently higher

level of aerator effluent nitrite-N concentration than was ob­

served in practice. If anything, this suggests that the model's

estimated rate of nitrite-N production is here relatively too

high in comparison with the corresponding estimated rate of con­

sumption of nitrite-No

At about t 34 the process of re-estab1ishing nitrification

is temporarily halted, with an accompanying drop in the levels

of Nitrosomonas and Nitrobacter. It is possible to attribute

this effect to the following cause. Towards the end of January

(t30 ) the aeration rate had reached its maximum allowable limit.

Since at the Norwich plant aeration rate is operated under closed

loop control in re1ati.on to DO levels, this suggests that for some

unknown reason aeration was not meeting the true oxygen demand.

Consequently, from t 34 onwards an increasing loss of fine solids

over the clarifier weir was observed, which was probably due to

the dispersion of the biological floc by excessive aeration, and

by t
39

a DO level of 19m-3 could not be maintained in the aerator.

Both the loss of solids and the insufficient oxygen conditions

are reasonable "causes" for the unstable nitrification conditions

estimated over the period t 34 ~ t S8 • Moreover, given the higher

residual levels of nitrite-N over this period, it appears that

the Nitrosomonas are relatively better at surviving under these

unstable conditions -- compare the "slopes" in the curves of Fig-

ures 4 (d) and 4 (e) •

The rapid loss of nitrification between t S8 (about 97% ni­

trification) and t 67 (about 30% nitrification) is not easily un­

derstood. Most probably it results from a combination of a high
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carbonaceous oxygen demand, which was particularly high over

this interval, and an under-aeration of the mixed liquors --

the aeration rate was inexplicably low on day t 63 . The ap­

parent change of recycle control policy from a fixed recycle

rate to a fixed ratio control which was effected at about day

t 56 , could be an additional coincidental factor of significance.

Nevertheless, once again the nitrifying organisms slowly re-

establish themselves from t 67 onwards to t 111 . Although it

is only a marginal difference, the Nitrobacter population main-

tains a more stable growth pattern during this period.

By t 112 , however, conditions have been reversed such that

at the end of the experimental period both species of organism

have been reduced to very low concentrations and nitrification

has more or less ceased (approximately 20% nitrification). It

is possible to speculate, with some accuracy, on the causes un-

derlying this loss of nitrification. The dominant operating

conditions over the interval prior to t 112 were a combination

of: unsatisfactory DO levels (less than 19m-3, with maximum

aeration); a poor sludge condition with the absence of ciliates;

a steadily decreasing mixed liquor 55 concentration, with a loss

of solids over the clarifier weir; and hence the decision of the

plant manager to reduce recycle sludge rate and to stop sludge

wastage altogether. The Easter holiday period -- with missing

observations for t 105 + t 108 (incl.) -- is marked by a drop in

the influent ammonium-N concentration (see Figure 5). Then, with

a higher recycle rate resumed on t 106 , 350m3 sludge was wasted on

day t 112 . The error of this action, which probably precipitated

the collapse of the nitrifier populations, is substantiated by
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the fact that on day t 113 no sludge was wasted. This situation

certainly could not have been improved by a suspected spillage

of toxic material into the sewer network on the same day.

4.2 Parameter Estimates and Residual 'Errors

It would be unjustified to claim that the results of Fig-

ure 4 are an unqualified success in model verification. And in

any case these results are intended to illustrate the potential

of state estimation and state reconstruction in the context of

on-line operational management. Nevertheless, it is important

to give an approximate check on the performance of the model by

assessing its parameter estimates and the residual error se-

quences. Indeed, in this particular modelling exercise the

level of accuracy is such that a judgement like "the model did

not give demonstrably unreasonable results" is more appropriate

than saying that "the model performed well with only small re-

sidual errors". We can apply the former judgement, for example,

to the period t 69 + tao (see Figure 4) when the model manages to

predict effluent ammonium-N, nitrite-N, and nitrate-N concentra-

tions across an interval of missing observations without exces-

sive deviations from "reasonable" values (-a subjective judge-

-ment) .

Table 1 gives the set of parameter values used for the re-

suIts of Figure 4. The manner in which these estimates were ob-

tained is not at all sophisticated. As we have said in section

3, because there is a need to reconstruct state estimates for

the unobserved state variables, x , the effectiveness of combined-u
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Table 1 Parameter estimates for the model of equation (2)
and parameter estimates from two sources in the
literature

1.08 1.20

Estimate Estimate

POdUSka and Aridtews (38) .Harleman (19) 3

1.80

1.7

0.05

0.02

0.6

0.2

0.2

0.93 1.03 1. 44

0.041 0.044 0.05

0.033 0.034 0.02

2.5 2.5 0.063

1.2 1.2 0.160

0.2 0.2 o. 12

0.17 O. 17 O. 12

88 - 94

Estimate

C(t) 1 C*2

0.72 0.82

Parameter
~--....,.....--:------=---i

A -1
lJ1(day )
A -1
lJ2(day )

Y1

Y2
-3

K
1

(gm )

K
2

(gm- 3 )

-1k 1 (day )

-1k 2 (day )

p (%)

C* - 1.81 - -

1Time-varying compaction ratio C(t) assumed

2Time-invariant compaction ratio C* assumed (value quoted is
a mean value computed from the ratio of mixed liquor to re­
cycle sludge SS concentrations.)

3These estimates obtained using the data of Knowles et al(24)

3Volume of aerator at Norwich sewage 4Works =18320m ; mean
settled sewage influent flow = 2x10 rn 3day-

Table 2 Statistics of the residual error sequences of Fig.6

.- "-

Time-vazying C(t) Tilre-invariant C*
rriable Standard de\,1.ation Standard deviation

(aVa2j> % Standard deviation
(0'2/0'2 ) %of output ti.rre- of residual error& of residual errors e:: y

series,cy (gnC3) O'e (gm-3) ae: (gm-3)

:i4-N 8.3 5.2 39 7.8 88

) -N 1.8 2. 1 >100 2.0 912

) -N 10.8 7.5 48 9.5 783
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state-parameter estimation as in (5) becomes particularly

problematic. In terms of information restructuring it is

highly likely that the useful information content of the

measured input/output sequences (refer to Figure 3) is being

'""translated" into information about x and not into efficient-u
It is doubtful, therefore,

whether one could carry out meaningful checks on the model and

its parameters in any way other than by hypothesising estimates

'"~, processing the field data to obtain ~, and thence computing

the residual errors £(tkltk_1) of equation (8). Following such

a procedure, the three sequences E(tkltk_1) for ammonium-N,

nitrite-N, and nitrate-N in Figure 6 thus correspond to the

results of Figure 4 given the parameter estimates of Table 1.

Some statistics of the residual sequences are provided by Table

2.

What arguments can be advanced to justify the model and

its parameter estimates? First, we may note from Figure 6 that

again -- as in Figure 4 -- the total interval of observation

divides into three qualitatively distinct phases, i.e. appro-

ximately t 1 + t 30 , t 31 + t 68 , and t 81 + t 104 . In the first

and last of these phases all three residual sequences display

significantly smaller amplitudes of variation than the errors

of prediction over the second period. On the basis of the ear-

lier discussion this probably reflects the model's ability to

perform better under conditions of steady growth in the nitri-

fier populations than under unstable growth/collapse situations.

This is consistent with the fact that the model contains no

account of oxygen limitation of growth-rates.
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Second, merely by inspection the residual error sequences

are seen not to exhibit any strong tendency to be significantly

biased. That is to say, if the model persistently underesti-

mates, or overestimates, the observed substance concentrations,

one would suspect that the model is substantially in error.

The relatively unbiased performance of the model and filtering

algorithms is also reflected in the step-by-step corrections

applied to the reconstructed state estimates x , where the cor­-u

rections v(tkltk_1) are defined form the relationship,

A A

= ~(tkltk_1) + K(tk){~(tk)-~(tkltk_1)} (9 )

in which K(tk ) is (here) a 5 x 3 matrix, known as the Kalman

gain matrix, so that,

( 10)

The method of computing K(tk ) will not concern us further, ex­

cept to note that it acts as an error-weighting factor in the

procedure of updating the one-step ahead predictions as new

measurements X(tk ) are received, i.e. equation (9). K(tk ) is

in fact derived from algorithms in the filter that provide the

ti~e-evolution of the state estimation error covariance matrix

in parallel with the state estimates themselves. It is in this

latter context that the filtering algorithms (Figure 3) require

specification of the relative levels of uncertainty in the model,

the process disturbances, and the measurements (see, for example,

(6». Figure 7 shows thus the corrections vu(tkltk_1) for the
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estimates of Nitrosomonas and Nitrobacter concentrations.

In general, these corrections oscillate randomly about the

zero level with no predominant, or persistent tendency to be

positive of negative. There is little in these results to sug-

gest how the model is inadequate, if indeed it is inadequate,

although that is not a positive statement of the model's ade-

quacy.

Third, the observation that the model's performance re-

mains stable is a point in favour of the model. To see why

this is so, let us rewrite either of equations (2d) or (2e)

in an alternative form, i.e.

X4 (t) = a 1 (t) X 4 (t) ( 11 )

where now a' is a time-variable parameter dependent upon the

relevant elements from the previously defined vectors a(t),

x(t), and ~ (stating equation (11) in deterministic form, i.e.

s4(t) = 0, does not alter the substance of the following).

For any X4 (t+T) > X4 (t),T >0, that is Nitrosomonas population

growth, it is required that equation (11) exhibits temporary,

marginal instability -- exponential growth instead of exponen-

tial decay. Consequently, a small inaccuracy in the substituted
"'-

values for ~, or errors in the state estimates ~, may lead to

significant instability in the model. Such instability occured

frequently, even for small changes in the estimated parameter

values of Table 1. The model assuming a constant compaction

ratio, C*, was more sensitive to the problem of instability

than the model with a time-varying compaction ratio C(t). The

high level of Nitrobacter concentration just after day t 30
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(the dashed line in Figure 2(e») is evidence of a potential

gross instability. A model assuming C(t) computed from mea-

sured ~~SS and recycle sludge SS concentrations proved to be

a completely unworkable hypothesis because of instability

problems. So by our criterion of "not unreasonable" behaviour

the performance of the model given in Figures 4,6, and 7 is

perhaps the best that could be expected.

Set against the three arguments supporting the adequacy

of the model, Table 2 indicates that the model accounts for
I

between 50% and 60% of the variance of the original time-

series for two of the variables. In other comparable studies

it has been possible to approach a figure of 60-70% for this

statistic (4). Furthermore, the sampling frequency of the

data (once per day) precludes identification of any fast tran-

sient effects that may be significant for the nitrifier popu-

lation dynamics, for example, hydraulic variations, and in-

termittent oxygen limitation of growth. The model can there-

fore be expected to be seriously deficient in these latter res-

peets.

From Table 2 one would conclude that the performance of

the model when the compaction ratio is assumed to be constant

(C*=1.81) is inferior to that of the model with a time-varying

compaction ratio, C(t). An average value for C(t), where C(t}

is computed according to equation (6), is given as 1.98, i.e.

a value approximately 10% higher than C*. The effect of assum-

ing C* constant is clearly one of reduced levels of nitrifying

organisms in the aerator -- See Figures 4(d} and 4(e}. This

is consistent with the implication that on average for C*=1.81

fewer organisms are recycled to the aerator. However, during
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periods of relatively stable growth in the nitrifier populations,

the effect appears to be particularly pronounced. The sugges­

tion that the higher estimated concentrations of organisms are

II more correct II is supported by the sequence of corrections

v(tkltk_1) for the Nitrosomonas population in Figure 8.

These corrections are, on balance, positive corrections, which

would indicate that the model persistently under-estimates the

size of the population. The same is true with respect to the

estimated Nitrobacter concentrations.

Lastly, a comparison of the parameter estimates obtained

from this analysis with the parameter estimates quoted from

Poduska and Andrews (38) in Table 1 shows one dominant feature.

The slower specific growth-rates, higher decay-rates, and high­

er saturation concentrations in the present study all imply a

smaller capability for growing the nitrifying organisms. This

could result from the fact that no sludge was wasted in the

Poduska-Andrews system. The lower separation efficiency (here)

associated with the clarifier performance is not unreasonable

because Poduska and Andrews deliberately over-designed the

clarifier in their laboratory experiment in order to avoid

the potentially complex features of a description of the cla­

rifier dynamics. Our results tend to confirm, through the li­

mited comparative analysis of the effects of C(t) and C*, that

any model of activated sludge dynamics would be improved by a

better knowledge of the behaviour of the clarifier.
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5. Further Considerations

Let us recall Figure 1. Section 4.1. has assessed the per­

formance of an EKF algorithm in the context of on-line informa­

tion processing for operational control purposes. There are at

least four factors that would determine the usefulness of ap­

plying such ideas in practice:

(i) the ability to make on-line measurements of pro­

cess performance;

(ii) the requirements of the plant manager for addi­

tional and restructured operating information;

(iii) the accuracy of the process dynamic model used

in the algorithm (see also Figure 3);

(iv) the computational requirements of the algorithm.

We shall deal with each of these factors in turn.

The availability of reliable, but not necessarily highly

accurate, instrumentation is a key assumption underlying this

study. Why should that be so? First, reliable instrumentation

suggests that reliable control can be effected, whereas accurate

instrumentation would be consistent with accurate control. The

fact that for wastewater treatment processes the capacity to act,

i.e. the capacity to implement control actions, is clearly quite

restricted leads one to view the costs and high sensitivity of

accurate instruments as arguably unjustified at present. Second,

it is thus more appropriate to establish which measurements can

be made reliably, examine the kind of information that can be

reconstructed from these measurements, and then to account (and

compensate) for both random and systematic measurement errors

as part of the information processing function. The results
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presented here for on-line estimation of nitrification dynamics

are one example of restructuring operating information. The

information that can be derived from dissolved oxygen profile

measurements is another example (35), (36), and one which might

usefully be combined with the first example in order to achieve

nitrification and denitrification in biological treatment.

The requirements of the plant manager for pertinent informa-

tion about operating performance is possibly an area in which

more questions need to be asked. For instance, is it necessary

to know the biological activity of the sludge, or its suscepti-

bility to bulking, or the amount of unmetabolized substrate at-

tached to the biological floc? And what would the plant manager

do with this information if it were available? A useful com-

parison can be drawn between the pilot of an aircraft and the

manager of a wastewater treatment plant. A large volume of in-

formation on performance indicators is accessible by the air-

craft pilot. What is in short supply is the pilot's ability

to attend to this vast array of information; he requires there-

fore an information processing system that calls his attention

only to the abnormal events in the behaviour of the aircraft.

While the same might be true of the wastewater treatment plant

manager, it is more probable that he would appreciate increased

amounts of (pertinent) information on plant behaviour.

Just as the performance of the EKF algorithms is limited

by the quality of the available measurements, so too is this

performance limited by the quality of the model embedded in the

filter. That is partly the reason why the discussion of the mo-

del in section 4.2 has been so detailed. There is nothing unique

"or absolute about the reconstructed state estimates (x ) of-u
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Figures 4(d) and 4(e). They reflect the results of processing

the field data with the given model and would be different had

a different model been assumed. Since the model, or equation

(2),has only been verified for slow, low-frequency variations

there is clearly scope for further application of recursive

estimation techniques in model identification studies.

The size of the model determines. the computational effect

required for executing the EKF algorithms. Since this compu­

tational effort, which in the EKF is essentially the effort of

matrix addition, exponentiation, multiplication, and inversion,

is particularly sensitive to the size of the model, there may

well be good reasons for seeking compact model forms. The ob­

jective of obtaining micro-processor realisations of similar

algorithms has recently led Marsili-Libelli (31) to propose a

reduced-order dynamic model for carbonaceous BOD removal in an

activated sludge unit. Indeed, it is the advent of relative-

ly cheap, small-scale, and personalised computing services that

makes the application of recursive, on-line estimation techniques

substanitally more realistic and attractive.

6. Conclusions

The results presented in this paper are part of a larger

study on modelling and operational control of the activated

sludge process (8). An on-line, or recursive, estimation al­

gorithm, the extended Kalman filter, has been applied to the

two problems of: (i) identifying a dynamic model for nitrifi­

cation; and (ii) examining the feasibility of state estimation
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and state reconstruction as features of operational control.

For the first problem the analysis shows that a model proposed

by Poduska and Andrews (38) can be approximately verified

against time-series data from the Norwich Sewage Works in

England. The most serious constraints on the model are its

lack of characterisation of oxygen limitation of nitrifier

growth, and its inadequate description of the clarifier dyna­

mics. The analysis also emphasises the intractable difficul­

ties of model identification in the presence of unobserved state

variables, i.e. the concentrations of Nitrosomonas and Nitro­

bacter bacteria. For real-time control purposes it may be ar­

gued that less computationally expensive algorithms than the

EKF would be desirable. Nevertheless, the EKF serves well the

purpose of illustrating the range of possibilites for on-line

estimation algorithms.

A major point is that this study views models and informa­

tion processing algorithms as a support service in the day-to­

day decision-making of operational management of wastewater

treatment plants. Plant automation and computerisation should

neither merely assume the passive role of recording plant per­

formance, nor aim for elimination of the human element from the

control function. Rather, these technological innovations

should be designed to meet and encourage an active interaction

of man and computer in operational management.
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APPENDIX II - Notation

The following symbols are used in this paper:

C(t) =

c* =

f =

H =

k 1 ' k 2 =

K1 ,K2 =

P =

QI,QR,QW =

t =

u 1 =

VA =

x. =
1

X =

x 4R ,x5R =

y l'Y2 =

Y.. =

C4 =-
£ =-

5. =

n =

\.l =

e =
A

111' 1J 2 =

time-variable compaction ratio for solids passing
through clarifier;

time-invariant compaction ratio for solids passing
through clarifier;

nonlinear vector function;

matrix relating state variables to output observations;

specific decay-rate constants for Nitrosomonas and
Nitrobacter respectively (day-1);

saturation concentrations for Nitrosomonas and Nitro­
bacter respectively (gm- 3);

coefficient of solids-liquids separation efficiency in
clarifier (%);

influent settled sewage, recycle sludge, and waste
sludge flow-rates, respectively (m3day-1);

time (days);

concentration of ammonium-N in influent settled sewage
(gm- 3 ) ;

volume of aerator (m3);

component concentration in the aerator: i=1, ammonium-N;
i=2, nitrite-N; i=3, nitrate-N; i=4, Nitrosomonas bac­
teria; i=5, Nitrobacter bacteria (all in gm-3) ;

vector of state variables;

concentrations of Nitrosomonas and Nitrobacter bacteria
in recycle sludge, respectively (gm 3);

yield coefficients for Nitrosomonas and Nitrobacter res­
pectively (g organism produced!g substrate consumed);

vector of measured output variables;

vector of model parameters;

vector of innovations process residual errors (one-step
ahead prediction errors) from the EKF;

vector of unknown (stochastic) disturbances of process
dynamics;

vector of random measurement errors associated with out­
put measurements;

vector of state estimate corrections generated by the EKF;

vector of known "internal" variables used in the model;

maximum specific growth-rate constants for Nitrosomonas
and Nitrobacter respectively (day-1).
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Subscripts

k = kth sampling instant of time;

m = measured state variables;

u = unmeasured state variables;

Superscripts

A = estimated variable or parameter.
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LIST OF FIGURE CAPTIONS

Figure 1: The basic features of process control; on-line

measurements are available for some of the input

disturbances and for some of the output responses.

Figure 2: Schematic diagram of the activated sludge process;

all notation is defined in the text and in Appendix

II.

Conceptual picture of the (extended) Kalman filter.

Observations y(tk ) and state estimates ~(tkltk)

for the aerator concentrations of (a) ammonium-N,

(b) nitrite-N, and (c) nitrate-N; reconstructed

state estimates ~u(tkltk) for (d) aerator

Nitrosomonas concentration and (e) aerator

Ni trobacter concentration. 'fhe dashed lines in

(d) and (e) denote corresponding results when a

time-invariant compaction ratio C* is used in the

model.

Figure 5: Concentration of ammonium-N in influent settled

sewage.

Figure 6: One-day ahead prediction errors (residual errors)

for the model when a time-varying compaction ratio

C(t) is assumed, and given the associated parameter

estimates of Table 1.

Figure 7: Corrections (as defined in equation (10» obtained

from the filter when a time-varying compaction ratio

C(t) is assumed, and given the associated parameter

estimates of Table 1.
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Figure 8: Corrections obtained from the filter (for

Nitrosomonas concentration) when a time-invariant

compaction ratio C* is assumed, and given the

associated parameter estimates of Table 1.
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MEASUREMENT
ERRORS

+
MEASURED OUTPUTS y

(EXTENDED) KALMAN FILTER RESPECTIVE LEVELS OF
UNCERTAINTY (ERROR)

IN THE MODEL. THE
DISTURBANCES. AND
THE MEASUREMENTS
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PREDICTIONS
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y
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AND
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Figure 3.
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CONCENTRATION
(gm-3 )

(a) AERATOR AMMONIUM·N CONCENTRATION, x, (t k Itk ) .. OBSERVATIONS V, (tk )
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Figure 4.
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CONCENTRATION (d) AERATOR NITROSOMONAS CONCENTRATION, x4 (tk i tk)
(gm-3 )
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CONCENTRATION OF AMMONIUM·N (u,) IN INFLUENT SETILED SEWAGE
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Figure 6.

CONCENTRATION (a) FILTER RESIDUAL ERRORS €, (tk ltk _1 ) FOR AMMONIUM-N CONCENTRATION
(gm-3 )
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CONCENTRATION (a) FILTER CORRECTIONS v4 (tk Itk • t ) FOR NITROSOMONAS CONCENTRATION
(gm-3 )
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Figure 7.
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FILTER CORRECTIONS v4(tk Itk _1 ) FOR NITROSOMONAS CONCENTRATION
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