Systemic Risk Management in Financial Networks with Credit Default Swaps

Matt V. Leduc, Sebastian Poledna and Stefan Thurner

January 13, 2015
Systemic Risk (SR):

Property of systems of interconnected components:

Failure of a single entity (or small set of entities) can result in a cascade of failures jeopardizing the whole system.
Systemic Risk (SR):

- Property of systems of interconnected components:

 Failure of a single entity (or small set of entities) can result in a cascade of failures jeopardizing the whole system.

- This happens in financial (i.e. interbank) systems:

 ⇒ Failure to manage systemic risk (SR) can be extremely costly for society (e.g. financial crisis of 2007-2008)
Systemic Risk (SR):

- Property of systems of interconnected components:

 Failure of a single entity (or small set of entities) can result in a cascade of failures jeopardizing the whole system.

- This happens in financial (i.e. interbank) systems:
 \[\Rightarrow \] Failure to manage systemic risk (SR) can be extremely costly for society (e.g. financial crisis of 2007-2008)

- Regulations proposed fail to address the fact that SR is a network property (BASEL III. e.g. Tobin taxes, capital requirements)
A financial system is really a network of exposures.
A financial system is really a network of exposures.

where \(L_{ij} \) is exposure of bank \(j \) to bank \(i \).
A financial network is really a network of exposures. Where L_{ij} is exposure of bank j to bank i.
A financial network is really a network of exposures.

where L_{ij} is exposure of bank j to bank i.
A financial network is really a network of exposures. Where L_{ij} is exposure of bank j to bank i.
A financial network is really a network of exposures. Where L_{ij} is exposure of bank j to bank i.
A financial network is really a network of exposures.

where \(L_{ij} \) is exposure of bank \(j \) to bank \(i \).
A financial network is really a network of exposures.

where L_{ij} is exposure of bank j to bank i.
Different topologies have different effects on size of insolvency cascades (e.g. Boss et al. (2004), Gai & Kapadia (2010), Amini et al. (2013), Poledna et al. (2015))

Systemic risk can be quantified by DebtRank (Battiston et al. (2012))
Different topologies have different effects on size of insolvency cascades (e.g. Boss et al. (2004), Gai & Kapadia (2010), Amini et al. (2013), Poledna et al. (2015))

Systemic risk can be quantified by DebtRank (Battiston et al. (2012))

Similar to PageRank:

⇒ A page is important if many important pages point to it
DebtRank: An institution is *Systemically Risky* if many *Systemically Risky* institutions are exposed to it.
DebtRank: An institution is *Systemically Risky* if many *Systemically Risky* institutions are exposed to it.

DebtRank R_i of bank i: fraction of economic value in the financial network that is lost following i’s default.

DebtRank Austria Sept 2009
Systemic Risk: DebtRank

- A meaningful measure of a network’s systemic risk:

\[EL^{syst} = \sum_{i} p_{default}(i) \cdot R_i \]
Effect of a Particular Loan Exposure

- A meaningful measure of a network’s systemic risk:

\[EL^{\text{syst}} = \sum p_{\text{default}}(i) \cdot R_i \]
A meaningful measure of a network’s systemic risk:

$$EL^{syst} = \sum_{i} p_{default}(i) \cdot R_{i}$$
Effect of a Particular Loan Exposure

- A meaningful measure of a network’s systemic risk:

\[EL_{syst} = \sum_{i} p_{default}(i) \cdot R_i \]
Effect of a Particular Loan Exposure

- A meaningful measure of a network's systemic risk:

\[EL^{syst} = \sum_i p_{default}(i) \cdot R_i \]
Effect of a Particular Loan Exposure

- A meaningful measure of a network's systemic risk:

\[EL_{\text{syst}} = \sum_{i} p_{\text{default}}(i) \cdot R_i \]
Effect of a Particular Loan Exposure

- A meaningful measure of a network’s systemic risk:

\[EL^{syst} = \sum_i p_{default}(i) \cdot R_i \]
Effect of a Particular Loan Exposure

- **Observation**: different loans (directed edges) have different incremental effects on systemic risk
- **Question**: how can we reorganize the network of exposures?
Effect of a Particular Loan Exposure

- **Observation**: different loans have different effects on systemic risk
- **Question**: how can we reorganize the network of exposures?
- **Answer**: We can transfer an exposure from one bank to another using a Credit Default Swap (CDS)
A Credit Default Swap (CDS) is a form of insurance against default risk.
Controlling the Formation of Financial Networks: CDS’s

- A Credit Default Swap (CDS) is a form of insurance against default risk

CDS (without default of reference entity \(m \))

- Protection Seller \(j \)
- Protection Buyer \(i \)
- Payment of \(s_m \) basis points
- Reference loan \(l_m \)
A Credit Default Swap (CDS) is a form of insurance against default risk.

- Protection Seller j receives a payment of s_m basis points.
- Protection Buyer i is paid the par value of loan l_m.

CDS (without default of reference entity m):
- Protection Seller j to Protection Buyer i.

CDS (with default of reference entity m):
- Protection Seller j to Protection Buyer i.

Reference loan l_m.

A Credit Default Swap (CDS) is a form of insurance against default risk.

- A CDS transfers an exposure from one bank to another ⇒ it effectively rewire the network.
We need a multi-layer representation of interbank system

- First layer represents net loan exposures
- Second layer represents net CDS contracts between buyers and sellers

⇒ interplay between different layers non-trivial.
Multilayer Network Mapped into a Single Layer

We can map the two layers into a single layer of *effective* exposures.

Layer 1 (loans)

Layer 2 (CDS’s)

Effective exposures
Question: Can a regulator use CDS market to rewire the financial network and reduce systemic risk?

Answer: Yes, by penalizing CDS transactions that increase SR and encouraging those that decrease it.
Question: Can a regulator use CDS market to rewire the financial network and reduce systemic risk?

Answer: Yes, by penalizing CDS transactions that increase SR and encouraging those that decrease it.

A bank normally pays an insurance premium (a ‘spread’) s_m to buy protection against default of bank m. Now it pays $s_{ij} = s_m + \tau_{ij}$, where τ_{ij} is a systemic surcharge (i.e. a tax): $\tau_{ij} = \zeta \cdot \max\left[0, \Delta \text{EL}_{syst}\right]$. "$ \Delta \text{EL}_{syst} = \max\left[0, \Delta \text{EL}_{syst}\right] $
Question: Can a regulator use CDS market to rewire the financial network and reduce systemic risk?

Answer: Yes, by penalizing CDS transactions that increase SR and encouraging those that decrease it.

A bank normally pays an insurance premium (a ‘spread’) \(s_m \) to buy protection against default of bank \(m \).

Now it pays \(s_{ij} = s_m + \tau_{ij} \)

\(\tau_{ij} \) is a systemic surcharge (i.e. a tax):

\[
\tau_{ij} = \zeta \cdot \max \left[0, \Delta EL^{syst} \right]
\]
Simulation with an ABM

We study a simple model:

- Banks extend interbank loans to each other
- They insure these loans with CDSs sold by other banks
- Regulator imposes a surcharge τ_{ij} on CDSs
Simulation with ABM

CRISIS agent-based model.

Modified with an interbank system for loans and derivatives

[Diagram showing interactions between Banks, Firms, and Households]
Results

without a CDS market

with a regulated CDS market

R_i < 1
R_i < 0.75
R_i < 0.5
R_i < 0.25
Results

without a CDS market with a regulated CDS market

with a Tobin tax

Legend:
$R_i < 1$
$R_i < 0.75$
$R_i < 0.5$
$R_i < 0.25$
Results

- Without a CDS market
- With a regulated CDS market
- With a Tobin tax
- With an unregulated CDS market

Legend:
- $R_i < 1$
- $R_i < 0.75$
- $R_i < 0.5$
- $R_i < 0.25$
Results

(d) Results showing the distribution of regulatory elements in three categories: no CDS, unregulated CDS, and regulated CDS. The x-axis represents the index 'i', and the y-axis represents the normalized ratio R_i. The graph visually compares the distribution patterns across these categories.
Results

(a)
Paper:

Systemic Risk Management in Financial Networks with Credit Default Swaps. Leduc, M.V., S. Poledna and S. Thurner. (2016)

Available online on SSRN and ArXiV.

Thank you