Modelling crop yield, soil organic C and P under various long-term fertilizer management in China

Jie Zhang¹,², Guang Xu, Minggang Xu, Juraj Balkovič, Ligia B. Azevedo, Rastislav Skalský, Jinzhou Wang, Chaoqing Yu
¹Tsinghua University, China; ²Utrecht University, Netherlands
zhangle544@gmail.com

Introduction
Phosphorus (P) is a major limiting nutrient for plant growth and thus essential for food security. P is a nonrenewable resource and it controls freshwater eutrophication.

It is thus essential to find an integrated and effective approach to optimize phosphorous fertilizer application in the agro-ecosystem while maintaining crop yield and minimizing environmental impacts.

Many models have been developed to simulate soil C and N, but few consider the long-term dynamics of soil P. Hitherto, calibration/validation of soil P models with long-term field experimental data to study the dynamics of soil P is rare and has not been reported in China.

Objective
The objectives of this study are to:
- calibrate and validate the Environmental Policy Integrated Climate (EPIC) model (crop yield, soil organic carbon and soil P dynamics)
- test the sensitivity of crop yield, soil organic carbon (SOC) and soil available P (SAP) to varying fertilizer P application rates and meteorological conditions.

Method
The Environmental Policy Integrated Climate (EPIC) process-based model was employed to simulate grain yield, SOC and SAP based on 8 field experiments in China with 11 years of data, for 4 treatments: control (CK), NPK fertilizer, NK fertilizer and NPK+manure (NPKM). The sensitivity of soil P to variation of fertilizer P application rates and climate (humid, dry) was also conducted.

Results

<table>
<thead>
<tr>
<th>Data set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Daily meteorological data</td>
</tr>
<tr>
<td>Soil</td>
<td>Soil physical and chemical data</td>
</tr>
<tr>
<td>Crop management</td>
<td>Crop rotation, planting/harvest, tillage, fertilization, irrigation etc.</td>
</tr>
<tr>
<td>Crop yield, SOC and SAP</td>
<td>Field observed yield, SOC and SAP</td>
</tr>
</tbody>
</table>

Fig 1. Phosphorus pools and flows of EPIC model

Fig 2. Sampling locations of the National Soil Fertility and Fertilizer Effects Long-term Monitoring Network and the P fertilizer application of every province in China in 2013

Table 1. Data used in this work

Fig 3. Temporal variation of grain yields: measure values and model simulation

Fig 4. Temporal variation of grain SOC: measure values and model simulation

Fig 5. The correlation of the simulated and measured SOC and grain yields of all treatments

Fig 6. Temporal variation of soil available P (mg/kg) - measurements and simulation for site Yangling (NPK) and Zhengzhou (NPK)

Fig 7. Sensitive of grain yield, annual average SOC and soil available P to sequential P fertilizer

Conclusion
- EPIC performed well in simulating grain yields, SOC and SAP of different crops under various long-term fertilizer management in China.
- Crop yields, SOC and SAP are sensitive to P fertilizer input and show linear increase followed by reaching plateau. Interestingly, SAP will accumulate in soil finally.
- EPIC has great potential to simulate crop growth, SOC and soil P dynamics in China.

Acknowledgements
We acknowledge the 2015 Young Scientists Summer Program of IIASA, Austria and Professor Lex Bouwman in Utrecht University for supporting.