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PREFACE

A frequently used approach to linear programming problems
with only vaguely known coefficients of the objective function
is to treat these coefficients as random variables; this means
that the lack of knawlecdge is described by a distribution func-
tion. For the case in which such a procedure cannot be justi-
fied, S.Ya. Chernavsky and A.D. Virtzer of the Working Consulta-
tive Group for the President of the Academy of Sciences of the
USSR developed a decision theoretical approach, some aspects cof
which are described here for pedagogical purposes.

In this paper first the problem of handling uncertainties
in linear programming models is outlined, and the decision
criteria to be used are explained. Thereafter, a method of
finding optimal strategies under uncertain values of the ob-
jective function ccefficients 1s described. Finally, the method
is applied to a simple uncertainty case of the MESSAGE model.
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HANDLING UNCERTAINTIES
IN LINEAR PROGRAMMING MODELS

Rudolf Avenhaus, Rainer Beedgen, Sergei
Chernavsky, and Leo Schrattenholzer
(with Annex A by Alois H81zl)

1. INTRODUCTION

Many authors have paid attention to the importance of con-
sidering the uncertainty problem in forecasting, e.g. in Ref.[1]

the problem of building up an energy supply system is described
as follows:

"A variety of energy supply and conversion technologies can
compete to meet demands. Here, it is assumed that technol-
ogies compete primarily on a cost basis, the cheapest tech-
nology available being used first. But there are constraints
on the rates at which new resources can be exploited, or new
facilities built, and on the total amount of any single
activity (such as cocal mining) that a society will tolerate.
And deliberate planning to maintain flexibility-~-for example,
to provide diversity of supply in order tc cope better with
unexpected changes in energy supply systems--can affect de-
cisions which would otherwise be dominated by cost considera-
tions alone."”

Deliberate planning, however, needs data. The problem of getting
these data 1s described in the same place:

"These data, while arrived at by averaging many sources, are
still highly judgmental. And while they will surely change
over time, perhaps dramatically, just one cost estimate for
each technology is used here for the entire planning horizon.
Sensitivity analyses can test alternative cost estimates.

Yet the possibility that the cost figures used here might be
greatly understated should not be overlooked. It can be ob-
served that the real costs of complex energy supply systems
today invariably exceed expectations, and this may not change
in the future. (The 1970 to 1977 costs of power plants in
the U.S., for example, rose much faster than the domestic
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consumer price index.) This possibility could well heighten
interest in the potential economic attractiveness of energy
efficiency improvements (or energy productivity increases)
as an alternative "supply" source. The cost estimates used
here are, for better or for worse, no more than a composite
of the presently best recognized estimates."

Because of these problems one has to try to take into account
these uncertainties in forecasting. Frequently one describes
them by considering all uncertain parameters as random variables
the distribution of which is known. Thus one is led to stochastic
programming problems. In fact, the real situation in forecasting
is uncertain. For handling uncertainty in these cases, S.Ya.
Chernavsky and A.D. Virtzer developed some methods [2, 3, 4, 5],
one of which is described in this paper.

While being Research Scholar at IIASA during the months of
September and October 1980, one of the authors (S.Ya. Chernavsky)
presented the results of the methods developed. He implemented
them by using one example of the MESSAGE model [1, 6] with the
help of another author of this paper (L. Schrattenholzer). Be-
cause of the great interest of energy modellers in these methods
two authors (R. Avenhaus and R. Beedgen), who were Research
Scholars at IIASA during the first months of 1980, made an at-
tempt to present one of these methods in a pedagogical way, be-
cause energy modellers are in general not specialists in decision
theory. Later, S.Ya. Chernavsky, during his stay at IIASA in
September and October 1980, continued his work [5], joined this
effort, and together with R. Avenhaus put the paper into its pres-
ent form. With the above-mentioned educational purposes in mind,
it appeared possible to the authors to present the proofs in a
form different from that originally given in [2-5].

2. FORMULATION OF THE PROBLEM

Let us consider the following problem:

minimize c¢'-x , 2.1
XEX ( )

where X = {x} = {(x1...xn)} is given by
X: = {x:A-x = b, x 2 0}, (2-2)

and where A is an mxn-matrix and b a vector with m elements.

In case the values of the elements of the matrix A and the
vectors b and ¢ are precisely known, this is the well-known
linear programming (LP) problem usually solved by way of the
simplex algorithm.
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Let us assume now that the values of the elements of the
vector ¢ are not precisely known, but that the vector is sup-
posed to be an element of an n-dimensional polyeder C. We will
also assume that the polyeder C is convex. 1In the simplest
case,in which all components of ¢ are independent of each
other,we have -

Cc = {c'= (c1---c ) : ¢y £c, £c, ,i=1...n}t . (2-3)

However, we also will consider more complicated sets.

The question arises as to the way in which to take into ac-
count the uncertainty of c€C in the optimization procedure.

It should be stressed here that we cannot express our lack
of knowledge by a distribution functien on C and thus obtain a

stochastic optimization problem.

For illustrative purposes, the following two examples will
be used throughout the paper:

First Example (see Figure 1)
Minimize
1% TSy %y

with respect to (x1,x2) subject to

K(x1,x2): = c

3-x1 + X, 2 3
X, + 3-x2 2 3
X, 20

X, 20

where c=(cq,c,) is element of C, which is a two-dimensional poly-
eder with corners (1,1); (1,4); (4,1), and (4,4).

Second Example (see Figure 2)
Minimize
K(x1,X2) = C, 7%y + Cy Xy
with respect to (x,X,) subject to
X, + 2%, ~ 2
X, Z 0
X5 20

where c is element of C, which is a two-dimensional simplex with
corners (1,1); (4,1): and (1,9). o)
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As one can see, there exists no uniquely defined solution
to our problem for all c€C. For instance, for points c¢' = (1,1)
and (4,4) in the first example, the optimal solution would be
point (3/4, 3/8) of X (see Figure 1), for point ¢' = (1,4) the
optimal solution would be point (3,0) of X and for point c¢' = (4,1)
the optimal solution would be point (0,3) of X. 1In order to se-
lect optimal solutions, we have to use another decision criterion

but not in the form (2-1).

3. MEANING OF DECISION CRITERIA [7,8]

In this chapter we will explain the meaning of four decision
criteria to be usedin the following. Only for this purpose we
assume finite numbers of states of nature and strategies avail-
able to decision makers, but, as mentioned above, these criteria
will be applied to a more general case.

The idea of these decision criteria is to minimize somehow
the loss one suffers if a specific strategy is taken and one
specific, a priori unknown state of nature is true. It is how-
ever important to realize that these criteria are constructed in
order to determine the strategy to be used rather than the losses
to be expected.

Let us assume that the set of the states of nature is dis-
crete and that there are S states of nature c€C. When the deci-
sion maker has to select the optimal strategy from the domain X
he does not yet know which of the states of nature will be true.
The loss to the decision maker will be Kj4 if he selects the i-th
strategy and if the j-th state of nature is true. The decision
matrix is called matrix K.

The following illustrates the four criteria by way of the
numerical example given below:

4 9 8 8 10 9

10 0 5 13 14 12

K = 11 7 0 13 15 4
= 17 14 15 7 8 20
6 3 8 14 9 5

As one can see, strategy 1 would be the best strategy if
state 1 of nature were true, strategy 2 if state 2 of nature
were true, strategy 3 if states 3 or 6 were true, strategy 4 if
states 4 or 5 were true, but strategy 5 has bigger losses in
comparison to some other strategy for all the states of nature.
Thus, in our numerical example, there is no such strategy which
minimizes the loss for all states of nature.



Minimax (Wald) Criterion

According to this criterion the decision maker has to
select that strategy which minimizes the maximum of the losses
corresponding to each strategy with respect to all states of
nature.

In our numerical example, the following maximum losses re-
sult:

10 for strategy
14 for strategy
15 for strategy
17 for strategy
14 for strategy

NEWh =

Therefore the selection of strategy 1 leads to the minimum of
the maximum losses. Having decided in favor of strategy 1
corresponding to the Wald criterion, the decision maker need
not be afraid that his maximum loss by any state of nature will
pe larger than that determined by the Wald criterion, i.e. 10
in our example.

Laplace Criterion

According to this criterion, the decision maker has to select
that strategy which minimizes his arithmetic mean losses, cal-
culated for each strategy, with respect to all states of nature.

In our example, the arithmetic mean losses are given by

for strategy 1
.8 for strategy
.3 for strategy
.5 for strategy
.5 for strategy

~] W0 wWw
[S2 B =Ry VS 38\

Therefore strategy 5 is optimal according to this criterion.
It is interesting that strategy 5 does not minimize the loss
for any state of nature.

Hurwitz Criterion

According to this criterion, the decision maker has to
select that strategy which minimizes a linear combination of
the maximum and the minimum of the losses, calculated for each
strategy, with respect to all states of nature.

In our example, the linear combinations of the maximum and
the minimum of the losses with pessimism parameter A are given
by
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A<10+(1-2) -4 = 4+61 for strategy 1
A<14+(1=-2)°0 = 14 for strategy 2
A-15+(1-1) -0 = 152A for strategy 3
A+20+(1=2) -7 = 7+13Xx for strategy 4
A<14+(1-2)+3 = 3+11% for strategy 5

N

Therefore strategy is the optimal strategy for values of X with
0<X%0,5,and strategy 1 is the optimal strategy for values of A
with 0,5sX£1. For A=1 the Hurwitz criterion is equal to the Wald
criterion.

A difficulty of this criterion is the appropriate selection
of A between 0 and 1.

Savage-Niehans {(Minimax-Regret) Criterion

According to this criterion, the decision maker determines
first for each state of nature the minimum loss and subtracts it
from the losses related to this state and all the possible strate-
gies. In other words, he determines for each strateqgy the differ-
ence of the actual loss and the minimum loss under the fixed
state of nature. This difference is named regret. Each strategy
is characterized by its own maximum regret. So the decision maker
determines a strategy that has a minimum of maximum regret.

In our example the matrix of regrets R looks as follows

~NJO OO —
= O~ N
O,

and each strategy has the following maximum regrets

for strategy 1
for strategy 2
for strategy 3
for strategy 4
for strategy 5

Q0 Oy ~J 0 WO

Therefore strategy 3 is the optimal strategy according to this
criterion.

One should notice that in our numerical example the decision
maker using the set of the fourth criteria does not have an oppor-
tunity to select one strategy which minimizes values of all of
these criteria at the same time.

Nevertheless,even in such a difficult case of selecting
the optimal strategy the decision maker has an opportunity to get
important results if he uses the set of these criteria. Thus,
in our example such a result is the condition of the optimality
for strategy 5 obtained by using the Laplace criterion.
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4. A METHOD OF FINDING OPTIMAL STRATEGIES UNDER UNCERTAINTY

Let us come back to the problem formulated in the second
chapter: if the decision maker knew vector c' exactly,
he would then determine the optimal strategy x€X, where X is
given by (2-1), with the help of the criterion

min c'-x

XEX

However, as he knows only that c'€C he does not have to apply
this criterion.

Wald (Minimax) Criterion

According to this criterion, the decision maker determines
one of the optimal strategies under uncertainty by solving the
following optimization problem:

e n v,
minlimlize ax C X (4-1)

EEX E'EC_

For the simple above-mentioned case of independent coordinates
of vector c'

C:={E:ci§c.ﬁc

i , i=1,...,n}

we have, because of the assumption x20,

. u
max c'*x = ¢ -x ,
c&C
u' _, u u .
where ¢~ :=(c ,...,cn). Thus, 1n order to solve the problem

(4-1) In this simple case it is enough to solve the normal LP
problem
— . e u'
minimize ¢ -x .
wex - (4-2)

Let us consider a more complicated case, in which the coordinates
of vector c¢' depend on each other. 1In accordance with our assump-

tion C is a convex polyeder. Then we have

Theorem 1: Let Co5 be the set of extreme points of the set C.
Then we have

min max c¢'-x = min max c'-x . (4-3)
X€X ceC X€X c&Co

Proof: C 1s a convex and compact subset of a local convex set,
Gy (c'):=c'-x for any x is a continuous convex function of c.
IT is known that the maximum of the convex function lies at an
extreme point (a convex function has the form as given in Figure
3); there exists a cb&Co with G, (cp) = max Gyl(c').

= dec = a



In accordance with this theorem it is sufficient to only
consider the extreme points of C. It is not enough, however,
to consider the extreme points of space X only, as the second
example will show.

Second Example

According to the formulation of the second example in the
second chapter we have

. . > .
' _ {4 x1+x2 4 x1+x2_x1+9 XZ}
max c'-x = for
1 o . < -
c x1+9 X5 4 x1+x2_x1+9 X,
The border line is given by
u-x1+x2=x1+9-x2
which is equivalent to
X =§.X
2 8 ™M1
Therefore we get
min(4-x.+x,) X <§-x
< 172 278 M1
min max c¢'-x = = for
x ¢ ; . >3
m1n(x1+9 x2) X258 % ’
X
which leads to the solution
min max c'-x = 5
x ¢
at the point (x1,x2) = (g,%) which 1is not an extreme point of X.

O

This example shows that in general, after the usual simplex
algorithm has been applied by solving the LP-program (2-1), it is
impossible to solve the problem (4-1). The following theorem
shows that we can solve the entire problem by solving a single
LP-problem of a higher dimension:



Theorem 2: The solution to the problem

minimize max c'-x ,
x€x  deC

where X is given by (2-1), and Co is the set of extreme points
of C, is equivalent to the solution of the problem

minimize y , _
(x,y)EX' (4-4)
where X' is given by
LI : XE _>_!.’Z LI . -
X' = {{x,y):x8X, y2ei-x, y20, c';€c ] (4-5)

Proof: 1If y is greater or equal to all gi-ﬁ, then it is also
greater or equal to the maximum of E!‘E' Therefore, the mini-
mization of y on the space X' just leads to the solution of the

original problem.
O

First Example
According to the formulation of the first example in the

second chapter and according to Theorem 2, we have to solve the
problem

minimize vy

(x,y)€EX'
where X' is given by
3-x1+x223 (1 y—x1-x120 (5)
x1+3-x223 (2) y—x1—u-x220 (6)
X, 20 (3) y—u-x1—x220 (7)
XZZO (4) y—4~x1—4-x220 . (8)

As conditions (5) to (7) are dominated by (8), we have to
look for the corners of the simplex in the (x1,x5,y)-space deter-

mined by (1) to (4) and (8). There are only three corners, deter-
mined by
1) 3-x1+x2=3 11) x1+3-x2=3 iii) 3-x1+x2=3
X, =0 x2=0 x1+3-x2=3
y—u-x1—U-x2=0 y-u-x1—u-x2=0 y—u~x1—u-x2=0
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which leads to

(0,3,12) i)
(x1,x2,y) = (3,0,12) for ii)

3 3 .

(5,3,6) iii)

We get min Y=6, that is, the solution is given at a corner of X.
(x,y) &X'

Second example
According to the formulation of the second example in the
second chapter and according to Theorem 2, we have to solve the

problem

minimize ¥ ,

(x,y) €X'
where X' is given by
ex.2 —_— =
x1+2 x2-2 (1) Y=X,=X,-0 (4)
> -] e -
X, 20 (2) y=-4u X4 x2_0 (5)
> - =G.
xz_O Y=x4-9 x2_0 . (6)

As condition (4) is dominated by (5) and (6), the corners are
determined by

i) x1+2-x2=2 ii) x1+2-x2=2 iii) x1+2-x2=2
X4 =0 X,= y-u-x1—x2=0
y—x1-9~x2=0 y—u-x1—x2=0 y-x1-9-x2=0_

which leads to

(0,1,9) i)
(X1,X2,Y) = (2,0,8) for ii)
2.2,5) iii)
and min y = 5. O

(x,y)EX'
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Laplace Criterion
According to this criterion the decision maker determines

one of the optimal strategies under uncertainty by solving the
following optimization problem

. 1 .
minimize c -§-dg (4-6a)
= 710 /

where V(C) is the volume of the n-dimensional convex polyeder C,
V(C):= J[dg
C

It is obvious that

. 1 .
min —— " c'-ﬁ-dg = min C___-X {(4-6Db)
<EX vV (C) = <EX av =
- C
N N ' - i
where Eav‘_V(C J[ c'-dc 1is the centre of the weight of
domain C. C

The different methods for the determination of the centre of
the weight of convex polyeder are known. One of them is suggested
by A. H81zl who proved the following theorem which could be used
for the general case.

Theorem 3: Let Ch be an n-dimensional simplex, defined by

n

n
c{ e e e - < - . <
Cn.—{5:_._'-90+i51ti(_c__i c ), 05t for i 1,...,n,i£ t. 21},

where c_20, c.>0 and {c.-c_,i=1,...,n} are linearly independent.
—_ -1 —O R
Then we have

where V(Cn) is the volume of the simplex Cn’

Proof: Given in Annex A to this paper. a
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Second Example

We have
8 35
4 “3Cqty
vV(C) = /dc1 . /dc2 = 12
1 1
and
8 35
4 “3"cqt 3
./;g-g -x = [dc, o }{dcz'(c1'x1+c2-x2) = 204-x, +4b-x,
C 1 1
Therefore the problem is to
minimize (2-x1+%%-x2)
x€X
which leads to
opt _ . ol _ 22
(X1IX2) = (0,2), P 0+3 2 = T .
According to Theorem 3, with
- "= -
g_o—(1l1)r 91 (4,1), _C_2 (1,9)

this is equivalent to

"‘l.lll,
minimize 3 (Eo+91+92) X

x€X

which, in fact, again leads to

minimize (2-x1+%%wx2)
Eex O




-13-

It should be noted that for practical calculations in which
the coordinates of vector ¢ are usually independent, the La-
place criterion is written in the form

S
L 1 '
minimize g ° I ci-x
XEX i=1
where S is the number of corners of polyeder C. For the more
general case one should use the Laplace criterion in the form
(4-6Db) .

Hurwitz Criterion

According to this criterion, the decision maker determines
the optimal strategy by solving the following optimization prob-
lem:

minimize [A-max c¢'-x+(1-A)-min ¢'-x] ,
XEX c=C

where the value of the pessimism parameters A€[0,1] has to be
chosen appropriately.

As in the case of the minimax criterion, we can restrict our
considerations to the extreme points of the set C:

Theorem 4: Let Co, be the set of extreme points of the set C,
defined by (4-2). Then we have

min[A*max c¢'-x+(1-1) ‘min c'-x]=min[A-max ¢'-x+(1-1) min c'-x]

x€EX ceC cec X€X  ¢eC, dec

< ==%o
(4=7)

Proof: For MaxXx c'-x see Proof of Theorem 1 and for min c'-x see
cEC c&C

the properties of the solution of an LP problem. O

In a way similar to that one given by Theorem 2 for the mini-
max-criterion, we can simplify the computational procedure:

Theorem 5: The solution to the problem

minimize [A-max ¢'*x+(1-}) - min c''x] ,
XEX c€Cq c&Co
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where X is given by (2-1), and C5 is the set of extreme points of
C as given by (4-2), is equivalent to the solution of the problem

minimize Kj ,

i=1,...,8 (4-8a)

where

K.:= min [)\°y+(1—>\)'gi'§] (4-8b)
(§,y)€Xi

and where
Xi:={(§,y):EGX,yZEQ-E,k=1...S, v20, Si'isgj'ﬁ' j=1,2,...1i-1,i+1...8}.

(4-8c)

Proof: Obvious. 0]

First Example

Let us consider first g1=(1,1). We have to determine

min [A-y+(1=2)  (x4+x5) ]
(x,¥)EX,

subject to (§,y)€x1, where X1 is determined by the following set
of inequalities:

3°x1+x223 (1) A=X1=%,20 (5) x1+x25x1+u-x2 (9)

x1+3-x223 (2) A—x1—ﬁ°x220 (6) x1+x25ﬂ-x1+x2 (10)

X, 20 (3) A-ﬂ-x1-x220 (7) x1+x25u-x1+u°x2 (11) ,
x220 (4) A=l4ox -4 x220 (8)

which reduces to (1) through (4) ané (8).
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The corners of X1 are
3-x1+x2=3 3'x1+x2=3 x1+3-x2=3
x1+3°x2=3 X =0 x2=0
y—u-x1—4'x2=0 y—u-x1—u-x2=0 y—u-x1-U°x2=0
which leads to
33
(EIEI6) (013112) (3'0112)
Thus we get
K1 = min [A-y+(1—k)-(x1+x2)]
(x,¥)EX,
= min [A'y+(1-k)-(x1+xz)] =
= min [4.5-A+1.5, 9-A+3]

4.5-2x+1.5 for 02x21 ,

. . . _ ,3 3
which is given at (x1,x2) = (ﬁ’ﬁ)'

As for Ei’ i=2,3,4, we get Xi=¢, and therefore

min K. = K
) i
i

1

Second Example

With c1=(1,1), c2=(U,1), c3=(1,9) we get the set X, as follows

(X5=0, X,=0): - -

2 71 23 ’

. vy > ey —x > <y
X1. x1+2 x2_2 (1) yv-4 X, x2_0 (4) x1+x2_u X tx%, (5)

> —w —Qex > & .
X, 20 (2) y-%4 9 x2_0 (5) x1+x2_x1+9 X5 (6)
x220 (3)

As (5) and (6) are identical to (2) and (3), we get the following
corners for X1



x1+2-x2=2 x1+2'x2=2 x1+2-x =2 x1+2-x2=2
X, =0 x2=0 X, =0 x.=0
y—u°x1—x2=0 y=4"X,=xX,=0 y—x1—9-x2=0 y—x1—9-x2=0

which leads to
(0,1,1) (2,0,8) (0,1,9) (2,0,2),
Thus we get

Ky = min [A-cy-x+(1-A) -yl=
(x,y)€X,
= min [A(x1+x2)+(1—x).y] =
= min [A-1+(1=X) «T,A24(1=X) =3, A1+ (1=2) <9, A2+ (1=-2) -

= min [1,8-6-1,9=-8+2,2]

1 for 0 £ X £ 1;

(0,1) for 0 £ X £ 1.

it is given at (x1,x7)

Savage-Niehans (Minimax-Regret) Criterion
According to this criterion, the decision maker determines the

optimal strategy by solving the following optimization problem:

minimize max [c'-x-min c'-x]
X€X ceC X€X

As in the case of the minimax criterion, we can restrict our con-
siderations to the extreme points of set C.

Theorem 6: Let C, be the set of extreme points of set C,

defined by (4-2). Then we have
min max [c'-x-min c¢'-x] = min max [c¢'-x-min ¢'-x]
X€X c&C x€X XEX c&Cq X€X

Procof: It is well kxnown that the function

z(g):=min c'-x
iEX
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is a concave function in c, i.e., that the relation

min(A-g%+(1—X).gé).§ 2 min k-g'-§+min(1—X)-Sé.§
x€X x€X x€X

holds. An illustration is given in Figure 3a.
Now, as z(c') is a concave function,
c'-x-z(c')

is a convex function. It is known that the maximum of the con-
vex function lies at one of the extreme points of C. An illus-
tration of that is given in Figure 3b.

a

In a way similar to that one given by Theorem 2 for the
minimax criterion, we can simplify the computational procedure:

Theorem 7: The solution to the problem

minimize max [c'*x-min ¢'-x] ,
X€X  c&Cq X€X

where X is given by (2-1), and C, is the set of extreme points
of C as given by (4-2), is equivalent to the solution of the
problem

minimize y ,
(x,y) €X'

where X' is given by
X'={(§,y):§EX,ngi-§-zi, i=1...s5,y20}
and wnere Zs is defined by

Z.:=min ci-§, i=1...s .
x&X

Proof: Obvious. O
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First Example

Let us determine first the Zis i=1...4:

— s _ 3

z, = min (x1+x2) =3
X

z, = min (u'x1+x2) = 3
X

z3 = min (x1+u-x2) = 3
X

z, = min (U-x1+u-x2) = 6

According to Theorem 7 we have to solve the problem

minimize y

(x,y)EX'
where X' is given by
3
3 x1+x223 (1) y—x1—x2+220 (5)
. > —x . =l 2
x1+3 x2_3 (2) y-X =l -x,+320 (6)
X 20 (3) y—u-x1-x2+320 (7)
X520  (4) y—u~x1-u-x2+620 (8)

There are 3 corners, given by

i) 3-x1+x2=3 ii) x1+3-x2=3 iii) 3-x1+x2=3 iv)
X4 =0 x2=0 x1+3-x2=3
y-x1—x2=—% y—u-x1—x2=-3 y-x1—4-x2=—3
which lead to
. 3 .. . 333
i) (o,3,§) ii) (3,0,9) iii) (E'E’E) iv)

Thus, we get min y=§, the solution is given at (x1,x2)=(

Flw
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Second Example

Let us determine first the z i=1,2,3:

1!

z, = min (x1+x2) = 1
X

z2 = min (U-x1+x2) = 1
X

24 = min (x1+9-x2) = 2

According to Theorem 7 we have to solve the problem

minimize y

(x,y) &X'
where X'is given by
ey > —_— -
x1+2 x2_2 (1) y-X, x2+120 (4)
> ey - >
X4 20 (2) y=4 X, x2+1_0 {5)
> -x . ~Q. >
X520 (3) y=X4=9°%X,+220 . (6)
There are 3 corners, given by
i) x1+2'x2=2 ii) x1+2'x2=2 iii) x1+2'x2=2
x2=0 x2=0 y—u-x1-x2+1=0
y—U-x1—x2+1=0 y-x1-9-x2+2=0 y—x1-9°x2+2=0
which leads to
. .. e 1 7
l) (27017) ll) (01117) lll) (11515)

Thus, we get min y=%, the solution is given at (x1,x2)=(1,%).
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5. APPLICATION TO MESSAGE [1], (6]

A number of primary energy sources and their associated con-
version technologies are considered. These include resources and
technologies that could permit an essentially unlimited supply of
energy--the fundamental point of the exercise being to ex-
plore possible transitions to energy systems states based on more
or less unlimited resources such as 232Th, 238U, and solar energy.

Each primary energy source (except solar and hydroelectric
power) 1is subdivided into an optional number of classes in MESSAGE,
taking account of the price of extraction, quality of resources,
and location of deposit. These primary sources are then converted
directly (e.g., by crude o0il refining) or indirectly (e.g., electro-
lytic hydrogen) into secondary energy. Secondary energy 1is exo-
genous to MESSAGE and is provided by the MEDEE-2 model as time
series data for electricity, soft solar, solid, liquid, and gaseous
fuels.

The variables of the model are expressed in period-averages
of annual quantities.

The objective function is the sum of discounted costs for
fuels (primary energy)--operation/maintenance and capital costs
for providing the energy demand over the planning horizon (1980-
2030) .

In the equations of the models--given roughly below--indices
are sometimes omitted if it seems to facilitate understanding.

Objective Function

The objective function of the MESSAGE model is the sum ©f
discounted costs of capital, operating-maintenance, and fuels
(primary energy):

I
L B(t)-5-{b'r(t) + c'-x(t) +a'-yt)} ,

where

t is current index of time period

n is number of time periods

B(t) is discount factor

is number of years per period

is vector of energy resources costs

is vector of resource activities (LP variables)

is vector of operation/maintenance costs

is vector of energy conversion activities (LP variables)
is vector of capital (investment) costs

is vector of capacity increments (LP variables)

lalkialRios un
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The discount factor is calculated from an annual discount
rate of 6%, applied to a constant dollar investment stream. As
MESSAGE is intended to minimize societal costs this discount rate
is to be understood as a pre-tax one.¥

The cost of increments to capacity still operating at the
end of the planning horizon is corrected by a "terminal valuation
factor", tv:

tv(t) = (1-g>" (AT1=t),

~e

for example, the terminal valuation factor for the last time
period is

tvin) = 1 - g°

Constraints

The following resource constraint is defined for each re-
source and for each category:

o3

5'r(t) £ Av

o
Il

1
where

r(t) is annual extraction in period t
Av is availability of resource

The following resource requirement is specified for each
time period for each resource:

ity

1 rj(t) Z % (Vyex, (8) + 5w,y (t) - 5w,y (t-6))

-
li

where

j is index of resource category

J is number of resource categories

vq 1is specific consumption by production activity x4
wq is inventory requirement for capacity increment Y1

*In these analyses, taxes are taken as part of the difference between prices
and costs and sc are not included in these cost-minimization calculations.
Because of this fact, the discount factor here may be thought of as a "social"
discount factor, applied equally to all world regions.
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The following capacity constraint is specified for each
technology and for each load region supplied by this technology:

t
x. £ Cap-h.-pf . Cap(t) = I 5-y (1)
J J T=t-5

where

j is index of load region

Cap is capacity

hy is load duration of load region j
p% is plant factor

The following demand constraint is specified for each time
period, for each demand sector, and for each load region:

™

3
e
Iv

DM.
J
where

j is index of demand sector

nij 1s conversion efficiency (or equal to 0 if xj doces
not supply demand sector j)

DMy is annual secondary energy demand

The following build-up constraint is specified for some
(primarily new) technologies and for each time period:

y(t) < yy(t=1) + g
where

Y 1s growth parameter
g is constant, allowing for start-up.

Numerical Illustration

In the following we illustrate the methodology discussed
so far with the help of this MESSAGE model. As a reference case
we consider the low scenario for World Region I (North America)
as described in [1].* We assume only two parameters of the ob-
jective function to be uncertain, namely capital costs for Fast
Breeder Reactors (FBR) and for Solar Thermal Electric Conversion
(STEC) .

*In [1] only those data are given which are necessary for the understanding
of the procedure and of the results. A documentation of all input data of
MESSAGE is being prepared by one of the authors (Leo Schrattenholzer).
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In Table 1a reference values as well as ranged of uncer-
tainties for those two parameters are given. This leads to the
set of extreme points C,, defined by (4-2), the elements of which
are listed in Table 1b.

In Table 2 the results of MESSAGE runs with the data given
in Table 1 are represented. Overall costs, and electricity pro-
duction by FBR's and STEC in 2030. First the results for the
reference data of Table la are given, thereafter the results for
the four extreme points, i.e., the elements of C,, and finally
the results of the application of the decision criteria as dis-
cussed in Chapter 4. As we have chosen independent intervals
for the two cost parameters, the minimax criterion simply means
to take ¢y, the Laplace criterion means to take the mid-values
of the intervals, and the Hurwitz criterion means to take the
weighted mean of c¢q and ¢y.

In Figures 4 and 5 the electricity production by means of
the various technologies are given as functions of time: 1In
Figure #4a to 4d the electricity production is given for the four
extreme points according to Table 1b. In Figures 5a and 5b the
electricity production according to the Minimax (Wald) criterion
and according to the Laplace criterion are given. 1In Figures 5c
and 5e the electricity production according to the intermediate
steps of the Hurwitz criterion as formulated by Theorem 4 are
given (the fourth case is dominated as can be concluded from
Table 2). 1In Figure 5f finally the electricity production ac-
cording to the Savage-Niehaus criterion is given.

It should be emphasized that it was only for illustrative
purposes that we considered the FBR and STEC capital costs to be
uncertain and all other parameters as precisely known. Never-
theless, one may draw some general conclusions from these results.

One realizes that the application of different decision
criteria leads to extremely different strategies, even though
the resulting overall costs vary by less than 1 percent.
This can be explained by the fact that both alternatives will
play a role only after the year 2000 and therefore the discounting
factor decreases the influence on the overall costs.

Thus, if we use relative estimates for decision making
we will come to the conclusion that the relative difference does
not matter for us in this example. But if we consider absolute
differences between total costs for different strategies we will
notice that in comparison with today's costs for development
these differences are rather large and so we can use these ab-
solute estimates for decision making.

This conclusion does not mean that in estimating strategies
one should not consider other important criteria, for example
environmental burdens and gualitative criteria, such as public
opinion and so on.
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In such cases one should come back to the reformulation of
the original problem on the basis of the multiobjective optimi-
zation approach. An outline of such an approach with different
but definite objective functions is given in Annex B.

Of course, it is not certain that the differences between
the values of the total costs of the different strategies appear
only in the fourth decimal as in the numerical example given.

In [4] another numerical example is given in which the differ-
ences appear already in the second decimal.

6. CONCLUDING REMARKS

There are many theoretical and practical aspects of the
methods for handling uncertainties in LP-problems discussed here
which were not described in the paper. Some of them will be
mentioned in the following, additional ones see in [5].

Use of Decision Criteria

First of all one should apply not only one criterion for
the determination of optimal strategies under uncertainty but all
four criteria mentioned above together. However, what should
the decision maker do if the different criteria lead to differ-
ent optimal strategies?

In [5] is is shown that the further analysis can be con-
tinued with the help of the multi-objective optimization ap-
proach. 1In general having in mind only pedagogical aspect it
is not reasonable to give some further recommendations without
considering the specific features of the concrete problem.

An example for such a procedure in the case of nuclear energy
systems is given in [4].

Uncertainties in Further Coefficients

In this paper the description was limited to the treatment
of uncertainties of coefficients of the objective function.
It is clear that in a real situation in forecasting & and b can
be uncertain as well. 1In [2,5] the case with A and b being
certain for the near future in a forecasting problem, but with
A and b being uncertain for the distant future, has been treated.
It should be remarked that the solution of such problems leads
to higher-dimensional LP-problems.

Computational Effort

For practical applications it is highly interesting to
estimate the number of additional constraints in the new LP-
problems arising by the use of the procedures described. If
we have in our original model (without taking into account un-
certainties) m constraints, then using

- the Wald criterion, we have to solve one LP-problem with
(m+S) constraints where S is the number of extreme points
of the convex polveder C;
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the Laplace criterion,we have to solve as well one LP-

problem with m constraints;

the Hurwitz criterion, we have to solve S LP-problems each
of which has (m+2S-1) constraints;

the Savage-Niehans criterion, we have to solve S LP-problems
each of which has m constraints plus one LP problem with
(m+S) constraints.
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ATTMEX A
Proof of Theorem 3
by

Alois Hblzl

Theorem Z: Let C, be an n-dimensional simplex, defined by

n
. C . <
57C5) OSti for i=1,...n; E t. 21},

n
C_:={cic=cy+ L t - (c.-

where EOZO, c;>0 and {gi—go,i=1,...n} are linearly independent.

Then we have for x>0

n
' - T . ' )
)[9 xede = (G I ogitx) - V(G

where V(Cn) is the volume of the simplex Cn.

Proof: Because of the conditions cg20, cij”0 for i=1,...,n and
x>0, the expression c'-x is non-negative for every c€C,. The
Integral can therefore be considered as the volume of the domain

={(Cy. . 0<d<ct.
Dn+1' {(d).gecn, 0<d<c"'-x}

It will be shown that the domain Dn,¢ can be split into n+1 dis-
i i

jolint simplices Cn+1 with volume V(Cn+1)=(HIT-gi-§)-V(Cn) for
i=0,1,...,n, so that
n ; 1 n
¢l x-de=V(Dy )= L VIC )= (g T efrx) V(e
i=0 1=0

For notational convenience, a simplex will be defined by listing
its corners, i.e.,

n n
t={c:c= T .. .- . 0%t i = - T .=
Cn’ tc:c ot L tl (gl EO), 0 tl for i=1,...,n; oz tl 1}
1=1 1=1
. : . . ‘ cm<o s,
will be written in abbreviated form as Cn So’ 91, Sn
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Step 4: The (n+1)-dimensional simplices C;+1, i=0,1,...,n, which

are defined as
c c c
(—n-1>’ (—)' (—o> >
0 0 0
< () E ) Q) ) () (55
n+1 cl'_}i C"_’E 0 o 0 0 0

(@)
:j_s
+

|

A
NN
Q 1Q
~—
TN
o {0
~——
Pt
o |0

N
~—
TN
o |0
-

£ S
20 () EIEHD () ()- (9>
n+1 gi-x gf2~x 95'5 0 0 0 0

2o (3 HEVEIE - G () ()
n 1 . 1, 1, !
c'y'¥ N\eyx/ \cyex/ gtk Sn.x 0 0

<0 ._<(E1 ) <Ez)(£3>(£u) (Sn )(go )(go)>

- = 4 4 ¥i 7 *» o g
ot ciox/ \ehex/ \ebex/ \ciex ca'x/ \elox/ o
form a partitioning of the domain Dn+1'
Proof of Step 4: The simplices C ne1r C2+1 are well-defined
due to the conditions that (1)<co, Clse--s Cn~> is an n- -dimensional

simplex, so that the vectors cq1-Co,..., Cn-Co are llnearly in-
dependent, and (2) c¢ij>0 for i= 1,...,n and x>0, so that cl -x>0 for
i=1,...,n. If co>0, then C9 ., is also well- deflned if cy=0, then

n+1
C c
=0 ) . .
( ) = ( ) , and the simplex Cg+1 vanishes. In order to prove
c'.x 0
_o—

that the simplices C i=0,1,...,n defined above form a parti-

n+1’
tioning of the domain Dn+1’ one must show that
; c J S e .
(1) (3) €Cl = (3) €D 4
{4 < e () ]
(ii) (3) € D4y =dj€{0,1,...,n}: (3) € Chyg
(1ii) (9) € Ck a Cl with k#l=(g) is a point on the surface
d n+1 n+1 d
k 1
of both C 1 and Cn+1.
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j n j n
< . '. e~ - - ent
_'Z u; ¢y _+'Z v,'¢c x+ (1 .Z u Z_vl) o' X
i=1 i=j i=1 i=j
e
20
j n
=lcg* I u;-(gj=col+ I vis(c;-c )]’ X
i=1 i=j
=c'-x,
. c
i.e., (d) EDn+1

(b) Let (g) €C2+1, i.e., (g) has the representation (2b). If one
defines ti:=ui for i=1,...,n, the representations (1) and (2b)

are idential with respect to c. Furthermore,

- .X
i=1 * © ==
n n
< v 1, - .
= Z ug c X+ (1 'Z ui) S5 X
i=1 i=1
n
— . - ]
=logh T ougt(ggmeg)]x
i=1
=c''x ,
c
ten () SPny
ad (ii):
Let (g) GDn+1, i.e., (g) has the representation (1). 1If one
defines for 15£j2n in the representation (2a)
ui:=ti for i=1,...,3-1
vi:=ti for i=j+1,...,n

u1:=0, v1:=t. and u%:=t., V%:=0

J J ] ] J J
and for j=0 in the representation (2b)

ui:=ti for i=1£...,n
1 2

u :=0,u :=(1_ Z t'),
° © i=1 *t
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the representation of ¢ is identical in (1) and (2a) for 15j<n
and in (1) and (2b) for j=0. Furthermore,

1377 2_ 3 .
d.= L t,*cl-x, di= I t,*c!*x for 15jsn
SR . R j -1 =1 =
i=1 i=1
= 0 for j=1
and
1B 2 D n
- LB = ' -— . LI
do—.Z tl Cit Xy dO .Z ti cl-x+(1 'Z tl) Eo X
i=1 i=1 i=1
=0 for c_=
n 1
legt T otitlegmeg)l ok
i=1
=E'._}E.

Thus, the intervals I.:=[d),d%]1, j=1,...,n and I,:=[d',d%] form a
J 373 o' o

partitioning of the interval [0,c'-x]. (If c,=0 and the simplex
Cg+1 vanishes, the interval IO vanishes.) Therefore, d=a*c'-x

with 0Zalimust be an element of some interval Ij, 0£jsn. If one

defines
d-d;
u. = t., v.:=t.-u. for 1%£j%n
37 42-4] SRS I B ?
J ]
d—d; n
u_ = (1- L t;) for 3=0
o} d2_d1 i=1 1
o 0o

the representations (1) and (2a) or (2b) are also identical with
. c j . .

respect to 4, i.e., (E)Ecg+1 for some j, 05<j<n.

ad (iii):

As shown in (ii) above, the intervals Ij(g):={d:(g)ecg+1} form

a partitioning of the interval [0,c'-x]. Therefore, any element

c k 1 . 1
Sye N m
(d) Che1"Cran for k¥l must be a point on the surface of both Chit

1
and Cpyq- Step &
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Step B: An n-dimensional simplex

Cpi=LrCy1Care-erSy”

has the volume

= - -
V(Cn)_n_!-|det(_c5.]—_go,g2 Coree+1Sy go)l

Proof of Step B: The simplex <, is obtained by applying to the
canonical simplex

C;:=<§,g1,g2,...,gn>
the transformation

g:zj*g:=go _1-90,...,gn—go)'l.

C

The canonical simplex Cg has the volume V(C;)=%|, as can be

shown by induction using the principle of Cavalieri. According
to the substitution theorem for integrals, the integral of a
function f:8">® over the domain g(C*) can be expressed as an
integral over the domain C; as follows:

dg (y)
f(g)-dg=ﬁ(g(x))-|det Iy |-dy.
* *
g(Cn) “a
dg(y)
In this special case with f=1 and Iy = C one obtains

V(Cn)=V(g(C;))=fdg=ﬂdet Cl-dy=|det c]-fif]det c|-v(C#)

* *
g(Cn) C; Cn

v(c )=|det c|-V(C Sten B

Step C: The simplices Cg+ 0<jsn as defined in Step A have the

1’

volume
j S
VI(Co 1) = (557 93 x)-V(C ) for 15j2n
V(cO . )=(——-c'-x)-V(C_) for =0
n+1 n+l =o = n =0
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Proof of Step C: 1If one chooses the corner (%O) as the basic

corner in each simplex cJ then the n+1 vectors, the convex

n+1’ .
closure of which renresents the simplex Cg+1, are given by

. c.-C C.=C
c3:=( <"l “0) for i=1,...,3; (‘l ‘{j for i=j,...,n| for 1%jsn

cix 0

o Ci-% 2
C = for i=1,...,n; for j=0.
cytx (S

]

If one expands the determinant of the matrix cl for 1£j<n by the
minors of the elements of the last row, the minors of the elements

cg+1 ; for i*j vanish since for i<j the vector (gj—go) appears
7
twice and for i>j the last column in the corresponding minor is
the null vector. Therefore, one obtains for 1<jsn
Ji2er . xe - -
|det C l—gj x-|det(c =c r-vuigy So)l
—~Teywsn! -
cl-x-n! V(Cn)
so that
Iy 1. Nl icrox) -
V(e ) =iyt | det Ol = (5 cl-x)vic).

If one expands the determinant of the matrix C© by the minors of

the elements of the last row, the minors of the elements.cg+1 i
7

for 1£ifn wvanish since the last column is the null vector.
Therefore one obtains

|det c®|=c'-x- |det (Cq=Cqre+-1C.~C ) |
P =2 a5
=c'+x+nl!l*V(C_)
o = n
so that
O —_-_————1 . O — 1 - '. .
V(C )_(I'H‘T)! \det C ]_(HTTC Z(_) V(Cn).

Step C

Since the simplices C3+1, 0212j form a partitioning of the domain

D one obtains

n+1'
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Concluding Remark: We will demonstrate with an example for n=2
that the Theorem does not hold for an arbitrary polyeder. Let
us consider a polyeder given by the following figure

(2,3) (7,3)
-
F
1
Fy
(0,0) (9,0)
We have
1 2.7 15 .o _] 7, .9 27

F1=§-|det((3)(3))l=7TrF2—§|det ((3)(0))|—7r

and therefore,
F=F1+F2=21.
Now, because of the Theorem we have
.= . . cde=d . . P o=(3- . A5
I1.—~/&H X1+c2 x2) dg-3((0+7+2) x1+(0+3+3) xz) F1—(3 x1+2 x2) 5
F
Ioi= (o XbCn %,) ~do=a ((049+7) - X, + (04+043) + X)) *Fo= (20 x 4x..) - 22
277 T2 2l R=T3 1 27 27V 3 12 T2
Fy
and therefore
_ . . PP ~189, 57,
I:= ﬁcw XprC g Xy) tdeS I+, =5 Xt Xy

F
This, however, is different from

21[((0+9+7+2)'X1+(0+0+3+3)‘X,))'F=—-x +T.x . 0
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ANNEX B

MULTIOBJECTIVE OPTIMIZATION APPROACH

It is possible to use the procedures which have been de-
scribed in the main part of this paper for finding optimal
strategies in those cases where principally different objectives
(e.g., costs, environmental pollution, etc.) exist. This prob-
lem was considered and solved in [9] and the results are given
below. For the sake of simplicity we assume in this Annex that
the values of all exogenous parameters of our model are certain.

Let us assume that one set of strategies X is described by
the set

of linear constraints, and that we have s different objective
functions

The problem is to determine that strategy which somehow minimizes
all these objective functions. Let us suppose that there is no
strateqgy which minimizes all S objective functions simultaneous-
ly, then any optimal strategy reflects one compromise or another
between different objectives. The set of such optimal strategies
is defined as the Pareto set: Strategy x does not belong to the
Pareto set if there exists one strategy g?x for which there

exists at least one value c‘-x<c]-x, j=1...5. The gquestion remains
how one should select a reaSonable compromise among different
objective functions considering Pareto set strategies.

Again we can use the decision criteria described in Chapter
3. In the following, we will only give the formal representation
of this criteria as applied to our problem.

Wald (Minimax) Criterion

« . - 1
milnimlze max E X
®xEX i=1,...8

In order to sclve this problem one has to solve the LP-problem

minimize y ,
(_}_{_IY)

where (x,y)€{Ax=b, x20, y29i§, i=1,...8}

Laplace Criterion

... 1
minimize g -
XEX i

c.X
l——

il W0

1

This is a conventional form of an LP-problem.
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Hurwitz Criterion

minimize (A-.max c;-x+(1-}) min c!-x)

x€X i=1,77.58 i=1,77.%

In order to solve this problem one has to solve S LP-problems,
each of which has the form

minimize (k-y+(1—x)-gi-§), i=1,...,8
(x,y)

where (§,y)€{é-5=b,§20, ngé-ﬁ; giﬁZciﬁ ,

j=1,...,S, k=1,...,1i-1,i+1,...,S}
and furthermore,

minimize min (A-.y+1-X)-c.-
i=1,...8 (x-y)

1%

Savage-Niehans Criterion

minimize max (gi-ﬁ-min C. "X)
XEX i=1,...5 Xx&X

In order to solve this problem one has to first solve S LP-problems

. . . i N
minimize Eili’ i=1,...,5,
x€X

and further one LP-problem

minimize y
(EIY)

where (x,y)€{A-x=b, x20, yZ(cfx—min'c:x), i=1,...,s}

It is reasonable to use in this case such a criterion which
provides a finding of such a strategy belonging to the Pareto
set for which relative differences between the values of the
objective functions and their minima are equal. This criterion
is described by the following constraints

9_;-3{_— min g;-ﬁ g_é'ﬁ— min gé-& c! X~ min EE';-E
x€X _ x€X _ xE€X
min C%'i B min c3.x = s T min cl.x
z(_EX l{_eX XEX

This criterion represents a special form of the so-called bliss
point criterion [10].
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Table la. Reference Values and Ranges for Capital Costs of Fast
Breeder Reactors (FBR) and of Solar Thermal Electric
Conversion (STEC).

Reference Value Ranges
[$/kWe] [$/kWe]

FBR 920 850-1275
STEC 1900 - 1000~2500

Table 1b. Elements of the Set Cy of Extreme Points According

to (4-2).
FBR STEC
c, 850 1000
c, 1275 1000
c, 850 2500
cy 1275 2500
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Table 2. Results of MESSAGE-runs for the Low Scenario and
World Region I With Data Given by Table 1.
Decision Value of FBR Electricity STEC Electricity
Criterion Criterion Production in 2030, production in 2030
[G$] [GWyr] [GWyr]
Reference Case 2988.05 330 0
min cq-x 2085.92 283 62.6
min €y X 2988.97 0 150
m}i{n c3°X 2986. 38 367 0
m}i{n Cy % 2989.26 0 0
Minimax (Wald)
(Theorems 1 and 2) 2989.26 0 0
Laplace
(as given by (4-6)) 2989.24 28 0
Hurwitz 1 2989.26 0 0
(1=0.8) 2 2989.26 0 0
3 2988.30 255 0
Y* 2589.2 0 0
(Theorems 4 and 5)
Savage-Niehans
(Theorems 6 and 7) 2.23 148 3

*As according to Table 1b already c) leads to a zero installed
STEC capacity, Cy does so, too.
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cq Acq +{1 = Alcy cy
min ¢’ * x lies on the line abcd.
xeX

(k-)r(r;ig cq X+ (1 =2) )r(\'él)rz cz'x) is the line ef

Any point of ef is below or equal to any point of ebcf.

Figure 3a. Illustration of the concavity of the function
z(c'):=min c¢'-x

XE€X

»
L

Figure 3b. Illustrating the position of the maximum of the

convex function as lying at one of the extreme
points.
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Figure 4a. Results of MESSAGE-runs for world region 1:
electricity production for extreme point C1 (see
Table 1b) as @ function of time.
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Results of MESSAGE-runs for world region 1:
electricity production for extreme point c, (see
Table 1b) as a function of time.
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Results of MESSAGE-runs for world region 1:
electricity production for extreme point c3
Table 1c)
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as a function of time.



~45~

—~1l cost 4

electricity generation
by technology

800

200 T

6500 -+

500 T+

400 o

300 -

200 .

100 -

gwCel> gwlel>

OIL/GAS

4+ 250 .

- 500
ADV COAL

- 250

1880

Figure 4d.

1830 2000 2010 2020 2030

Results of MESSAGE-runs for world region 1:
electricity production for extreme point Cy (see
Table 1d) as a function of time.
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Figure 5a. Results of MESSAGE-runs for world region 1:
electricity production according to the Minimax-
(Wald) criterion as a function of time.
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Figure 5b. Results of MESSAGE-runs for world region 1:

electricity production according to the Laplace
criterion as a function of time.
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Figure 5c.

Results of MESSAGE-runs for world region 1:
electricity production according to the Hurwitz
criterion, intermediate step 1 of Theorem 4, as
a function of time.
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Results of MESSAGE-runs for world region 1:
electricity production according to the Hurwitz
criterion, intermediate step 2 of Theorem 4, as
a function of time.
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Results of MESSAGE-runs for world region 1:
electricity production according to the Hurwitz
criterion, intermediate step 3 of Theorem 4, as
a function of time.
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Results of MESSAGE-runs for world region 1:
electricity production according to the Savage
criterion, as a function of time.



