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PREFACE

Irn recent years there has beenr a considerable interest in
the develcopmenrt of models for river and lake ecological sys-
tems. Much of this irterest has beer directed towards the
development of progressively larger and more complex simula-
tiorn models. Irn conrtrast, relatively little attention has beer
devoted to the problems of model urcertainrty ard errors ir the
field data, of iradequate rumbers of field data, of urcertainr-
ty ir the relationships betweer the importart system vari-
ables, and of uncertairty in the model parameter estimates.
IIASA's Resources anrd Ernvirormert Area's Task onr "models for
Ervirormertal Quality Cortrol and Maragement" addresses prob-
lems such as these. They are importanrt methodological problems
ir the modelling of poorly-defired envirormenrtal systems,
which is a principal theme of the Task. This paper examines
how the urcertairties of the model calibrationrn exercise affect
the confiderce that <c¢ar be placed in predictiors of future
behavior obtaired from the model (se also Working Papers WP-
79-27, Wp-79-63, WP-79-100, WP-80-87).

A second principal theme of the Task or Ervirormenrtal Quality
Cortrol anrd Manragemert 1is a case study of eutrophication
maragement ir two Austriar lake systems. This paper is also a
contributior to that case study.
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ABSTRACT

Ecosystems are, as a rule, characterised by a large
behavioral repertoire showirg a high degree of structural
variability ard complex cortrol mecharisms such as adaptation
and self-orgarisationr. Our quantitative understandinrg of
ecosystems behavior is gererally poor, ard field data are nro-
toriously scarce, scattered, ard roisy. This is most pro-
rourced or a high level of aggregatior where considerable sam-
plirg errors are irvolved. Also, nro well established anrd genr-
erally accepted ecological theory exists, so that an opera-
tioral ecosystem model corsists of mary more arbitrary, sim-
plifyirg assumptiors (more ofter thar rot implicitly hidder ir
process descriptiors) thanr properties measurable ir the field.-
Corsequenrtly, predictiors of future systems behavior urder
charged conrditiors -- a most desirable tool for envirormental
maragement -- carrot be precise ard urique in a determiristic
sense. Rather, it is essential to estimate the levels of model
reliability ard the effects of various sources of uncertairty
or model prediction accuracy. A concept of allowable rarges
for model data-irput anrd expected model response, explicitly
ircludirg uncertairty inr the rumerical methods, is proposed.
Straightforward Morte Carlo simulatior techriques are used,
and the approach is exemplified or a lake ecosystem eutrophi-
cation problem. The method attempts to predict future systems
states ir terms of probability distributiors, ard explores the
relatiorns of predictior accuracy to data urcertairty and sys-
tems variability, the time horizor of the predictionrn, ard fi-
rally the degree of extrapolatior ir state- anrnd irput-space
relative to the empirical rarge of systems behavior. The
aralysis of almost 100,000 model rurs also allows some conclu-
siors or model sersitivity, ard some desirable model proper-
ties ir light of predictior accuracy are idertified.
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1. INTRODUCTION

l.et me conrsider a mathematical model of ar ecological system
from a very pragmatic point of view, namely as a means to ar
end, which I will (rather rarrowly) take to be the predictior
of the system's resporse to charging conditionrs. "Conditions"
stanrds for everythirg which is outside the system as defired
by the model ard is gererally idertified with the imports (ma-
terial irputs) and forcirgs which drive ard cortrol the sys-
tems performarce. But it could also comprise ary factor likely
to alter the systems behavior, which ir a giver model might be
represented by a certair coefficient or parameter; from the
pragmatic poinrt of view I would like to adopt, there 1is nro
differerce betweenr an irput or a coefficiert: both are rumbers

ore has to specify to rur the rumerical model.

The model, which is the model structure (which qualitatively
describes the relatiors withir the system or betweer its ele-
merts, ard the relatiors of the system to its ervirormert, the
above "corditions") ard a set of coefficients which quantifies
the strﬁctural relations, is taker to represenrt the real world
system. That mears, that for a giver set of envirormental con-
ditions or irputs, the model should reproduce the behavior of
the system observed under these conditiors. These cornditionrs
ard the associated behavior of the system are the data we
have, available (if at all) in the form of samples ir time ard
space, of certair variables or properties of the system. The
separatior of the data irto irput corditiors anrd behavior is
of course orly mearinrgful ir terms of the model ore uses, anrd
deperds entirely or the defiritior of the (model) system.
Also, the selectior of +those properties ore samples, to
describe the system and its environment, depends basically on

some (irtuitive) conrcept of the system.



Rarely will the data ore might have about a specific ecosys-
tem allow ore to derive the model structure, if ore has in
mird what is gererally called a physical or mechanistic model,
which also claims to have an explaratory value: each term in
the model should have some physical mearirg, and ir principle
should Dbe measurabie or experimentally accessible. However,
envirormental sciences provide us with a vast body of informa-
tiorn, which (although scattered and sometimes even conrtradic-
tory) allows the cornjecture of a model structure for a given
system, with onrly mirimal specific data. Usirg such a priori
information of course makes it recessary to test the conjec-
tured model structure; however, as this irvolves a high rumber
of additioral assumptiors which are all more or 1less inter-
dependenrt, this is very difficult to achieve ir a scientific
way. The basic problem might be that the field data ore gen-
erally has, do nrot directly represert the elements ard
processes conjectured ir the model, or, the other way rounrd,

that most models do rot describe what has beenr measured.

Typically, the data describing a certainr ecosystem anrd its
envirorment will consist of a time-series of point measure-
ments with a certair spatial distribution. However, the meas-
urements rarely have beer done or exactly the objects or pro-
perties which are represented ir the model, 1let alore their
time- and space-resolutior. Most of the measurements car onrly
be taker as ar approximationr of what is corceptually wused 1in
the model, as for example "available nutrients" approximated
by e.g. orthophosphate or nritrate. O0Ofter some (conrstant
stoichiometric) corversionr has to be made, e.g. if chlorophyll
measurements are to be used to estimate algae biomass inr terms
of say phosphorus, or if productivity (ir terms of rutrient
uptake) is measured by C14 techriques. Arother major contr-
oversial poirt 1is the problem of aggregatior and averagirg.
This applies to spatial distributiors as well as to variabili-
ty ir time (withir the model time step), ard also to functior-

al heterogereity withir lumped compartmert a as for example



"primary producers". Irn each case certainr assumptionrs have to
be made whenr model output is to be compared with field data:
geherally these are the assuhptions of homogenreity, ard
lirearity or additivity. Beirg aware of these problems, ore
would have to take a sufficient amount of measurements and
determinre their sample statistics (which, ir fact agair depend
or some conjectures of the system and the parent distributions
of the variables). Ideally, onre would have to directly measure
or the appropriate level of aggregatior. However, ary practi-
tiorer ir the field krows about the practical, logistic prob-
lems of a statistically sound measurement designr, especially
for large and diverse ecosystems. Arnd manry of the compartments
used ir ecosystems modeling are more easily drawr inr a flow

chart, thar measured.

In practice, strictly appropriate information does not ex-
ist, ard we are left with scarce and scattered urnsyroptic data
on the wrong variables. Gererally, the aralyst ignores that,
makes the above assumptions (more ofter thar rot urnconscious-
ly) anrd proceeds with some calibratior of the model, wusinrg
what data he has. The irput conditionrs (represerted by the ir-
puts and forcirgs) measured ir the same irsufficiert way as
the behavior of the system are assumed to be exactly krown,
and the estimated "best" parameter vector is ther wused for
predictions of the systems resporse to chanrges ir the irput
conditions. Admittedly, this critique is somewhat biased, and
without doubt there exist many approaches to accounrt for the
above problems (e.g. Lewis and Nir 1978, Di Toro and var Stra-

ter 1979, Fedra 1979b, Fedra inr press, Fedra et al. ir press).

If ore recognrises that the informatiorn we have about an
ecosystem 1is fuzzy, ther the model also has to be fuzzy. This
seems to be the case already for a descriptive use of a model,
ard obviously whenr we attempt to predict, a further element of
uncertainty is irtroduced, as our krowledge about the future

input corditionrs for the system can at best be of a statisti-




cal rature. Ever if some kird of cortrol and maragemenrt is to
be simulated, there is no such thirg as a complete control for
a nratural ecological system. The importance of the fuzzy nra-
ture of ecological processes for conrntrol ard maragement is in-
creasirgly emphasised onr differenrt levels of complexity (Clark
et al. 1979, Beck et al.1979).

Returrirg to the pragmatic poirt of view suggested above,
the problems raised can 6bviously rot be solved by assuminrg
them away; urcritical cornfiderce ir numerical methods based on
unprover (anrnd ofter urprovable) assumptionrs car hardly result
ir reliable predictiors. Obviously, all ¢the limitatiorns and
insufficiercies have to be corsidered, and urcertairty, fuzzi-
ress, and unkrown variability have to be explicit parts of a
forecastinrg exercise. As uncertainty seems to be ar irevitable
integrated elemenrt of predictior (arnd this holds true rot orly
for ecosystems modelinrg), it has to be accourted for. Esti-
mates of predictionr accuracy or error propagationr ir a model
based forecast should be ar esserntial part of the prediction
itself, if orly to make obvious the limits of predictability.

2. THE APPROACH

The basic attempt ir the proposed approach is to avoid arbi-
trariress ard urwarranrted assumptiors as much as possible, ard
wherever this seems to be impossible, at least ¢to make them
explicit and explore their effects or predictior. The approach
tries to explicitly include data uncertainty as well as sys-
tems variability. It does not attempt to estimate a urique
best set of model parameters (assumirg the irput conrnditionrs
ard the reference behavior for the calibratior procedure to be
exactly krown), but looks for ar ersemble of acceptable solu-

tiorns to the calibrationr problem, explicitly allowirg for the



uncertainty ir irput cornditiors and observed behavior. This
ernsemble of model irputs (comprisirg parameters as well as ir-
put corditiors anrd iritial states) is wused for predictiors,
where ornly ore or a few conditiors are charged. This of course
results ir anr ersemble of arswers, which allows a probabilis-
tic (ir a somewhat subjective senrse) interpretatior of the

forecasts.

2.1 The corcept of allowable rarges

Reconrsidering the meanrinrg of field data ir terms of the sys-
tems elemerts and properties cornjectured ir the model, we ob-
viously have orly some rather unrcertair estimates of the
values we are 1lookirg for, nramely the nrumerical values
describinrg the irput corditiors, the model parameters, and fi-
rally the expected ("observed" ir the field) behavior of the
model. Clearly, forcirg the model output trajectories through
the measurement poinrts by mears of a highly sophisticated
calibratior scheme might produce quite mearirgless answers,
especially as the data for the irput corditiors will have to
be assumed as beirg krown exactly. Rather, ore might ¢try to
deduce, from the available 1irformatior, plausible ranges
withir which each of the rumbers we have to specify has to be.
The specificatior of these allowable rarges car of course take
advantage of data from the literature, and certairly all the
available data might be appropriately lumped or pooled. Being
aware of the fact that ecosystems might have a rather 1large
behavioral repertoire, it 1s very important, for the explicit
purpose of predictior, to capture all of that repertoire 1in
estimatinrg the model parameters., Since we carnrot exclude the
possibility of ary of the systems behavioral features occur-
rirg 1ir the future, we have to account for them ir the way we

predict.



Allowable rarges are specified for the model parameters as
well as for the irput describirg data, which together form the
model irput data (the set of rumbers one has to put 1irto the
model to rur it). The more data there are available, the rar-
rower the rarges car be - if there are almost ro data avail-
able, onre car at least defire some limits of physical or bio-
logical plausibility (e.g. ar extirnctionr coefficiert carrot be
smaller thar that of clear water, or a daily growth rate for
phytoplanktonr should hardly exceed a value of ter). Gererally,
the wider a rarge is specified, the more likely the true value
(whatever that may be) will lie withir it, but the less use-
ful this irnformatior will be. Ore obviously has to compromise
between arbitrariress ard mearirglessress inr manrny cases, which
should throw some light on the usefulress of a formal model or

aralysis ir such a case.

2.2 The concept of resporse-space

The kird of informatior ore reeds for the specificatiorn of
the iﬁput data (parameters and input conditiorns) is largely
determired by the structure of the model. The comparisor of
model output with the observationrs on the system behavior are
much more flexible. Agair rarges are used, but these ranges
car be defired for various measures of differert kinds: be-
sides the more straightforward range withir a given variable
has to be at a giver poirt ir the period simulated, relationral
and integrated measures might be used as well. Total yearly
primary productior, or the mirimum relative ircrease of phyto-
plarkton biomass, the maximum allowable peak value, average
trophic efficienrcy of a biological compartmert anrd mary more
similar conrnditionrns car be specified ir terms of rarges. Gen-
erally, rot orly state values but also process rates and flows
as well as their sums or irtegrals over certair periods anrd




various relations betweer such measures car be used to defire
the expected model reporse; the selectior of appropriate meas-
ures depends largely or the kird of irformation available
about the system. Conrsidering each of these measures as onre
dimersior of a hyperspace, the model resporse clearly has to
be within the region defired by the rarges (Fig.1). The
description of the systems behavior is thus corceptualized as
a regior ir rn-dimersioral hyperspace, where -- giver a high
number of observations onrn the systems behavior over a compara-
tively lorg period of time -- probability dersity might be ar

additioral dimenrsiorn.

Ecological systems, most pronrounced ir temperate zonres, per-
form periodié fluctuatiors within a seasonral cycle. For manry
systems, cyclic stability with regard to certair features can
therefore be anr importart corditior to meet, urless an obvious
trernd was observed. Ir the absenrce of such a trenrd, however,
the 1irput conrditions canr be assumed to be of a cyclic stable
rature, anrd pooled to derive the estimates for the above en-
semble. Corsequenrtly, observatiors or systems properties in
comparable periods of differert years car also be pooled, and
the resulting behavior defiritior ervelops the systems
behavior in:a certair period. This envelope irncludes rot orly
the wvariability due to measuremert or sampling errors, but
also the variability of the system ircludirg the ‘irput condi-
tiors 1ir this period, as the assumed cyclic stability is of
course ro perfect onre. Agair, if the resultirg defiritior 1is
broad to the extert of meanrirglessrnress, this would suggest
that ar important determiring elemert which was nrot constant
or cyclicallly stable durirg the period of observationrs failed
to be recognrised, or simply, that the available data are ir-
sufficiert to describe the system precisely erough for a for-

mal aralysis,.



2.3 The conrcept of probabilistic behavior

Giver the allowable rarges for the irput data (agair a re-
gior ir a hyperspace) anrd the behavior defiritior, the ersem-
ble of irput data combiratiors or models (model structure plus
irput data) is sought, which produces the expected responrse ir
accordance with the behavior defiritior. The rumerical method
to do so is a straightforward applicatior of Monte Carlo tech-
riques. A rardom sample from the irput data space 1is takern,
used for a rur of the simulatior model, ard the resultinrg
model response is ther classified accordirg to the behavior
defiritiors., If all the defiritior constraints are fulfilled,
the irput data set is saved, ard the process repeated until a
sufficiert nrumber of data sets has beer found. This carn, for
example, be tested by some appropriate statistics of the data
sets themselves, and the search is stopped, wherever the dis-
tributiors anrnd correlatior structure of the  behavior giving
data sets are more or less uncharged by additionral data sets.

The resulting ersemble of data sets and model responses
represents (for a givenrn system ir a certainr period, conceptu-
alized ir a giver model, described by a giver data set, and
all the additioral a priori irformatior one might have) the
"best available krowledge". Each of the single "answers to the
calibration problem”"™ 1is anr equally valid descriptior of the
system. The variability ir the ensemble of data sets anrd model
responses reflects the uncértainty associated with the concep-
tualizatior, the observatiors, arnd firally the variability of
the system 1itself. As stated above, too large a variability
should make onre cautious to proceed with a formal aralysis;
rather, more information about the system should be sought.

The available irformationr, however, is of a statistic or
probabilistic nrature (although ir a rather subjective senrse).
Each of the model resporses ir the behavior class might be un-



derstood as a sample from the overall resporse space of the
model, which is taker to represent the behavior space of the
system. From the frequercy distributions of the variables cor-
sidered, some conrclusionr or the probability dersity distribu-
tion of the behavior space could be drawrn. The behavior space
is characterised by the probability distributions alorg the
irndividual axes as well as by the cross-correlatior structure.
The conrcept of the behavior space is readily extendable for
the predictiors. Charging ary of the input data to represent
some charge ir exterral or interral conrnditiorns, will result ir
ar ensemble of predictiors which could be irterpreted inr the
same probabilistic way. The probability denrsity of the
predicted resporse will agair allow ar estimationr of the rela-
tive accuracy of the forecasts, especially if they are extend-
ed for a 1lorg time relative to the observatior period (Fig.
2). Trivial projectionrs ir terms of the questiors posed might
mairly be taker as a warnring that the limits of predictability

(or the basis of the informatior utilised) are reached.

3. AN EXAMPLE OF APPLICATION

The approach outlinred above has beer applied to the test
case (amorg others) of a lake ecosystem. Recenrt corcernr about
the eutrophicatior of the lake as well as the inrstallatior of
sewage diversior and treatmenrt plarts suggested a formal
aralysis of the relatior of the lake's water quality to the
rutriert 1loadirg. The basic problem was the predictior of fu-
ture water quality (ir terms of several variables such as pri-
mary production, algae biomass, or rutrient concentrationrs) as
related to different phosphorus 1loadirg, resultirg from dif-
ferent potential control optiors. Characteristically, the data
set available was rot sufficiert for a detailed, spatially
disaggregated descriptior of the system.
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3.1 Ecosystem ard simulatior model

The lake system used for this aralysis is the Attersee, a
deep (171m, average depth 84 m), large (3.9 109 m3, 46 km2
surface area), oligotrophic lake ir Austria, with ar average
theoretical retertior time of seven to eight years. A de-
tailed descriptior of the physical ard 1limrological features
of the 1lake car be fourd ir the "Attersee"-reports of the
former OECD lake eutrophicatior project arnd the orngoirg Aus-
triar Eutrophication Program, Projekt Salzkammergutseern
(Attersee 1976, 1977, Mllller 1979). The available data made it
possible to estimate rarges for the phosphorus loadirgs, the
in-lake corcertrations of phosphorus, algae biomass dyramics,
primary production,'and firally phosphorus export. Average hy-
draulic loadirg, light/temperature patterns over the year ard
thermoclire depths could also be estimated from a four year
data set. The resultirg estimates ir terms of model irput data
for the model described below are giver ir Fedra (1979b). Gen-
erally, the rarges for most of the estimates were ir the order

of +/- 50% of the mear values.

Rather thar developinrg ore more simulatior model for the
above purpose, anr available model which ircluded the mair
features under study (Imboder anrd GHchter 1978) was modified
for the approach described. The model, which dyrmically simu-
lates particulate phosphorus (algae) anrd dissolved phosphorus
(limitirg nutrient) for a stratified lake with variable ther-
moclinre depth, uses Morod kiretics, self-shadirg of algae, a
first order 1loss term directly coupled to remireralizatior,
ard sedimertatiorn. The model ircludes hydraulic 1loadirg, ir-
flow ard outflow of phosphorus, ard estimates primary produc-
tior per urit lake area, usirg a time varyinrg productior rate
coefficiert (integratirg the effects of light ard tempera-
ture). A completely mixed epilimrior is assumed, whereas hy-

polimnrior corcertrationrs are computed as furctiors of depth,
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usirg eddy diffusivity, which is also used to describe ex-
charge processes through the thermoclire. To facilitate the
use of the model ir +the Morte Carlo framework, auxiliary
parameters had to be defired to describe the time varyinrg pro-
ductior rate coefficiert (by meanrs of a sire furctionr, speci-
fyirg mirimum, maximum, ard the time of the maximum) as well
as the depth of the thermoclire, usirg a linear inrterpolationr
betweer starting-time/depth anrd ernd-time/depth. Altogether,
22 irput-data, ircludirg the auxiliary coefficients and the

iritial corditiors have to be specified for the model.

The behavior defiritior uses tenr corstraint conrditions
describirg a regior ir a 7T-dimersioral resporse space for the
model: the conrstraints are defired for yearly primary produc-
tiorn, algae biomass peak (maximum ard timirg), relative in-
crease of algae, orthophosphate maximum during the mixed
period, yearly phosphorus output, anrd firally cyclic stability
of total phosphorus (maximum relative difference betweer be-
girrirg and erd of the simulatior year).

3.2 Explorirg the model respornse

From 22-dimensioral regionrs ir irput-data space (each de-
fired by a set of ranrges) altogether 23000 samples were drawn
and used for model runrs. The model response space correspond-
irg to the gross (urstructured, disregarding ary correlatiors
betweer the irput-data) irput-data space was plotted onr planes
of two resporse variables wused ir the behavior defiritionr
(Fig. 1). The figure conrtrasts the resporse from a rather
broad defiritor with a (a2lthough quite arbitrary) rarrow ore,
which could simulate "ircreasinrg krowledge" about the system.
In ary case, the irdeperndert selectior of irput values from

ranges with ar assumed rectargular probability dersity furc-
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tior, resulted 1ir orly a small percertage of "successful"
behavior-rurs (betweer 0.5% to about 10%, dependirg or the de-
finitiors used). As expected, the set of irput-data for the
behavior group shows a marked correlatior structure. Rather
thar the irdividual absolute value for a single coefficient,
the combiratior of values determined the model behavior. Ex-
treme values for a giver coefficient car well be balanced by
smaller changes in several other coefficients to result ir the
same response-regionr. These firndirgs should throw some light
or attempts at rigid determiristic calibratiors with reference
data anrd irput conditiors assumed to be certain.

Figure 3 shows ar enrsemble of behavior-rurs ("stochastic
mean" with a mirimum/maximum envelope) resultirg from the
starndard defiritior set; the plots for the state variables
particulate phosphorus and phosphate are fourd to envelope the
comparable 5-year data set from the lake. However, it should
be stressed agair that the comparisor of field data with the
model output 1s somewhat dubious: whereas "particulate phos-
phorus" ir the model ircludes orly livirg algae's phosphorus
(actually assuminrg a constart proportion of phosphorus ir the
photosyrthesizirg biomass), the field measuremenrts do nrot
discrimirate livirg algae ard everything else conrtairirg phos-
phorus that would be retaired or the filters used ir the chem-
ical aralysis (e.g. zooplarktor and all kind of organric de-
tritus). The same is true for the "phosphate", which ir terms
of the model represents all "directly utilizable for photosyn-
thesis" phosphorus, which is clearly reither P-PO

4 ror soluble
phosphorus.

3.3 Extrapolatirg irto the future

Predictionrs of future systems resporse to charges in the
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phosphorus 1loadirg conditions were made by subsets of the
behavior-givirg irput-data ensemble, where the loadinrg deter-
mirirg coefficierts were charged by a certain factor. This
"relative" chanrge rot orly accounts for the uncertainrty ir the
irputs, but also preserves the correlation structure of the
behavior generatirg ersemble of irput-data sets. Irnput charges
represerting irncreases of 50% and 100% (to simulate the effect
of no cortrol actiors but increasinrg rutriert release ir the
catchmenrt area) and reductions to 75%, 50% and 25% of the
currenrt (1975-1978) empirical ranrge of loadirg were simulated
for a ter year period. Some examples of these scenrnarios, again
showirg the stochastic mear with a mirimum/maximum enrvelope

are givenr in Figure 4.

To estimate predictionr accuracy as related to the chahges in
the phosphorus 1loadirg (the degree of extrapolatior ir irput
space), arnd as related to simulatior time (the extrapolation
ir time), the coefficiert of variation vs extrapolatior was
plotted. Figure 5 shows onre example for the model output vari-
able yearly primary productior. The plot shows anr ircrease of
predictior uncertairty with time, stabilizirg wher a nrew
equilibrium 1is reached after a transient period followirg the
change ir the phosphorus loadirg. The plot also inrndicates an
ircrease of urcertairty with the amourt of charge ir the irput
conditiors, showirg a mirimum of the coefficiernrt of variation
ir  the empirical rarge. Summarizing, predictior urcertainrty
(measured as the coefficient of variatior of the Morte Carlo
ensembles) irncreases with the extrapolatior ir time as well as
ir irput space. Beirg related to the 1iritial wvariability inr
the descriptive empirical case, there is anr obvious (anrd ir-
tuitively to be expected) relatior of predictior reliability
or ron-triviality to these three magritudes: irput variability
(ircorporating data urcertainty anrd systems variability ir
time), degree of extrapolatior ir the controllirg irputs, and
the degree of extrapolatior ir time. Obviously, the more pre-

cise the origiral krowledge about the system 1s, the larger
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the extrapolatior ir the controllirg corditiors ard ir time
car be, Dbefore the limits of predictability are reached; or,
the larger a charge 1s to be simulated, the better the

krowledge about the system has to be.

A differenrt represertationr of predictior accuracy was shownr
ir figure 2 (where predictior refers to the mear estimate, ard
accuracy is measured ir terms of corfiderce irtervals). The
probability distributiors fitted for the resporse variable
frequercy distributiors can be read in the above terms. These
probability distributiors are rot primarily to be urderstood
as the probabilities of certair systems states ir the future
-- they are rather representations of prediction urcertairty,
or the propagatior of the iritial uncertairty arnd variability
ir the available irformatior. However, beirg aware that the
predictiors are biased by the (urrepresented) model-error
(e.g. O'Neill ard Gardrer 1979), the probability distributiors

for future states might also be interpreted ir the usual way.

4. DISSCUSION

The above aralysis ard the gereralizirg corclusiors to be
drawr are certainrly biased with regard to the model used ard,
to a lesser extert, with regard to the data set used. The ar-
bitrary selectior of ary model for a giver system seems to be
uravoidable ir light of the meager data available; the model
order anrd structure carrot be derived from the available data,
ard ore has to use a priori irnformatior about the system to be
described. However, the thus doﬁjectured model might well turn
out to be iradequate, ard chanrges ir the model structure will
become recessary. Ore irdicatior of iradequate model structure
-- ir terms of the above approach -- would be, 1if ro

behavior-givirg combirations of irput-data car be fourd ir the
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specified regior; or if the distributions of the sirgle irput
data withir the ranges sampled suggest a high nrumber of possi-
ble solutions outside the specified "plausible" bounds. If a
combirationr of urrealistic inputs still results ir a realistic
behavior of the model, ore might also questionr the validity of
the model structure. This of course requires that the expect-

ed behavior is defired ir a sufficiently detailed way.

The variability ih the prediction results directly from the
variability ir the ersemble of input-data used. And the varia-
bility of the irput-data stems from two basic sources, both
reflected 1ir the ranges used for the initial input-data space
to be sampled, ard ir the ranges describirg the empirical sys-
tems behavior: data (measuremenrt) uncertainty and systems
variability. By ircludinrg systems variability (through the
use of several year's data), future variability ir the cordi-
tiors driving and cortrollinrg the system are somewhat account-
ed for (under the assumptionr that a representative part of the
systems behavioral repertoire has been captured ir the obser-
vation period). This should also accourt for arother basic
problem of the "nraive extrapolationr" approach: systems con-
tairirg biotic elements are known to adapt to charges ir their
drivirg conrditiors, their structure and parameters (ir terms
of a model description) are state- and irput- deperdenrt (cf.
Fedra 1979a, Straskraba 1976, 1979).

The above aralysis irdicated, that for a model with 22
irput-data (which, at least for ecological models is a rather
low figure) or "degrees of freedom" ir the estimatior pro-
cedure, behavior-givirg values c¢anr be fourd all over the
rarges (indepenrdenrtly) sampled. Orn the other hanrnd, onrly a
small percertage of the possible combirations resulted ir a
satisfactory model responrse. As a conrsequerce, the ranges for
the search should be corstraired as much as possible, for rea-
sors of effiercy as well as to avoid "urrealistic" 1irput-data

combirations (where the urrealistic value ir ary of the param-
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eters or irputs will be "balarced" by some charges ir all the
other values) 1ir the behavior ersemble. This of course re-
quires, that.all the parameters used ir the model are physi-
cally irterpretable ard car be measured or at least estimated
from field measurements or experimenrts. The same holds true
for the state variables of the model ard measures derived:
orly if they are measured (or are at least measurable), can
their allowable values be reasorably corstraired ir the defir-
itior of the systems' behavior. Ircludirg urmeasured (ard unr-
constrained) state variables will result ir behavior rurns (ir
terms of the constrained measures), where the urcertainty 1is
all tranrnsferred to this uncorstraired "leak™ ir the behavior
defiritior. The ability of ever a simple model to balarce 1its
(cornstraired) resporse ir terms of some variables by (urncon-
strainred) charges ir others, requires that all model behavior
(and, of course, output), should be irterpretable ir physical
(measurable ir the field) terms. Also, the above approach
raises some doubt whether models by ircludirg more anrd more
detail (requirirg more ard more state variables and parame-
ters, ard consequenrtly more data for the "calibratior") become
more realistic. Obviously, ircreasirg model complexity
without 1ircreasing the available data for constrairing irput-
data rarges as well as allowable respornse ranges, Jjust adds
degrees of freedom for the calibratior or estimatior pro-
cedure. Unrdoubtedly such models car be very useful, especial-
ly ir more qualitative "hypothesis testing™ approaches. But
their value for predictior might well be questionred.

Uncertainrty in ecological modeling seems to be ar irevitable
elemert ir the method as well as ir the object of study, which
is most obvious whenr onre tries to predict the future. The
aralysis of model uncertairty ard its "inverse", prediction
accuracy, is certairly at anr early stage of developmert (cf.
O'Neill anrd Gardrer 1979). However, beinrg aware of model, anrd
especially predictior urcertairty ard the thus obvious 1limits

of predictability, might well help to avoid a raive trust in
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rumerical models. Aralysis of the various sources of model un-
certairty ard their relatiors anrd interdepenrdencies will be
recessary to improve model applicability. Ard the least im-
pact from model error aralysis onr model applicatior should be
a critical re-evaluatior of the questiors that car reasonrably

be answered by meanrs of numerical models.
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Figure 1a.

MODEL RESPONSE-SPACE PROJECTION
ATTERSEE PHOSPHORUS MODEL: STANDARD INPUT RANGE
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Response-space projections on output-variable planes,

indicating the expected (empirical) ranges of behavior;

standard input-data space definition.



MODEL RESPONSE-SPACE PROJECTION
REDUCED INPUT RANGE

ATTERSEE PHOSPHORUS MOODEL®

RELATIVE FREQUENCY PERCENTAGE
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Figure 1b.

X Fi{nen 161
n.n, Ao

Response-space projections on output-variable planes,

indicating the expected (empirical)
symmetrically reduced sub-region.

ranges of behavior;
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ATTERSEE PHOSPHORUS BUDGET MODEL

ESTIMATES OF PRIMARY PRODUCTION VS NUTRIENT LOADING
SIMULATION YEAR: 10

PROBRBILITY DENSITY

UN1TS ON X-RxIS* G C/501 AND YERR
UNITS ON Z-AXIS+ HG P/S0H AND DRY

Figure 2.

Probability distributions for yearly primary production
at various levels of phosphorus loading. Equilibrium
values after 10 simulation years. Note the large ranges

in the high loading classes; empirical loading is estimated
around 1 mg P m~2 day-1.
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ATTERSEE LAKE CHEMISTRY: RAW DATAH

PARTICULATE PHOSPHORUS FOR THE YEARS 1975 TO 1979
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Figure 3b.

Field data set averaged for a five-year period (raw
courtesy of F. Neuhuber).
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MONTE CHFLO SIMULATION: PARTICULATE PHOSPHORUS
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Figure #a Monte Carlo ensembles (arithmetic mean with minimum/maximum
envelope) for phosphorus loading conditions changed to 50%.




MONTE CARLO SIMULATION: PARTICULATE PHOSPHORUS
LORDING CHANGED TO 2007 - SIMULATION YERR 10
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Figure 4b. Monte Carlo ensembles (arithmetic mean with

minimum/maximum envelope) for phosphorus loading
conditions changed to 200% of the empirical loading.



PREDICTION UNCERTAINTY FOR A MONTE CARLU ENSEMBLE

ATTERSEE: PRIMARY PRODUCTION VS PHOSPHORUS LORDING

COEFFICIENT OF VARIATION

Figure 5. Coefficient of variation for selected response variables
vs. simulation time and input extrapolation.



