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ABSTRACT

Investment Programming for

Interdependent Production Processes

by

Jaime Evaldo Fensterseifer
Doctor of Philosophy in Management
University of Califormnia, Los Angeles

Professor Elwood S. Buffa, Chair

In this study a solution procedure is developed for a
class of industrial investment planning models which incorporates the
following features: economies-of-scale in production, intermediate
input-cutput relationships among production activities, and joint
production of different products having common processing requirements
(capacity sharing). The model is formulated as a mixed integer
programming problem. It is single-period and disregards spatial
considerations. The choice is between domestic production and imports
(make-buy) to satisfy exogenously stated demands for a given set of
interrelated products.

A two-gstage solution procedure was developed and specialized to
various specifications of the planning model. At the first stage
simple sufficiency conditions for import and for domestic production

of a given product are syétematically applied in an attempt to reduce



the gize of the problem. At the second stage (solution stage) an
LP-based branch-and-bound (B-B) algoritim is used.

Data from the mechanical engineering (metal working) sector of
the Republic of Korea was used to implement the proposed two-stage
solution procedure. The results from 25 test problems generated from
the Korean data provide strong evidence of the efficiency of the
approach. Moreover, computational experience with the B-B stage alone
indicates that very large problems can be efficiently solved without

dependence on the success of any form of problem reduction attempt.
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CHAPTER 1

INTRODUCTION

The objective of this study is to amalyze an important class
of investment planning models and to develop efficient solution pro-
cedures that are applicable under a broad range of model specifica-
tions. We are specifically concerned with problems of industrial
investment analysis in the context of development planning, the aim
of the analysis being the identification of those projects whose
establishment is economically desirable.

The problems of industrial project selection are greatly compli-
cated by the complex interdependencies that exist among production
activities. The models of this study focus mainly on those inter-
dependencies among activities within an iIndustry, a subsector, or even
a whole sector of an economy, that stem largely from the strong
econonies of scale in processing activities entailed by joint produc-
tion using shared production facilifies (capacity sharing), and from
intermediate input-output technological relationships’ within the
sector.

The optimization problem can be posed as one of choosing invest-
ments In industrial processes so as to meet given demands or output
targets at minimum cost by taking account of intra~sectoral flows and
potential gains from capacity sharing. The models are of the make-buy
type, restricted to a single period and disregarding spatial consi-

derations. A solution to any of these models may provide decisions as



to which projects should be undertaken, or it may merely provide a
comparative-advantage ranking of production activitiés, depending
on the particular questions being addressed.

The present study was inspired by the work of Westphal and Rhee
[1978] on the mechanical engineering sector (also called metal working
industry) of the Republic of Korea;ij This type of investment analysis
falls under the general heading of process analysis. Other prominent
applications of this type of analysis include the work of Kendrick
(1967] for planning investments in the Brazilian steel industry,

Gately [1971] for the Indian electricity generating sector; de la
Garza and Manne [1973] for the Mexican energy sector, and the study
reported in Stoutjesdijk and Westphal [1978] for planning the East
African fertilizer industry.g/

Manne and Markowitz [1963] distinguish three areas of activity
involved in process analysis: model building, which begins with an
investigation of technology to obtain a mathematical description or
model; the development of computétionally efficient solution proce-
dures or algorithms through which these models may be used for pur-
poses of analysis; and, finally, the actual use of the models to
address practical issues of public policy. While Westphal and Rhee

in the Korea study were largely concerned with the first and third

L/ As this study is referred to numerous times throughout this disser-

tation, it is hereafter called simply the Korea study, and the
model used in the study is referred to interchangeably as the Korea
model or the Westphal and Rhee model.

2/ This study appears in the same volume as the Korea study.



areas in the context of project identification, this study concentrates
on the second. The emphasis here is on efficient computational ap-
proaches to this class of'problems.

Because interdependence among activities is the focus of concern
of the various models dealt with in this study, a brief discussion of
its implications for investment decisions is provided in Chapter 2.
The explicit recognition of interdependencies among interrelated pro-
duction activities is in fact what distinguishes process analysis,
in the context of project identification, from the traditional methods
of project appraisal. While process analysis can be viewed as a
systems analysis approach, project appraisal merely deduces the con-
sequences of undertaking a particular project by taking nearly every-
thing as given.

Chapter 2 then proceeds with the mathematical formulation of
the planning problem as a mixed integer programming (MIP) problem.

The model differs from Westphal and Rhee's formulation in only one
respect: while theirs allows for the simultaneous investment in more
than one processing unit (production facility, plant, etc.) of a
given kind, our formulation limits it to one.

MIP is increasingly becoming a favorite tool of analysis for
planning problems because of the flexibility that it allows in
modeling techno-economic relationships. This flexibility, however,
is not without a price, for MIP problems are generally very difficult
to solve. Although simple and efficient branch-and-bound algorithms
have been devised for many different classes of problems, no efficient

general purpose computer software exists for large MIP problems.




Westphal and Rhee, for example, did not attempt to obtain a proven
globally optimal solution to the Korea model, as this would have been
"prohibitively expensive given the available computational software
for mixed integer programming.“il

If optimal solutions are to be obtained in any reasonable amount
of computational time for realistic size problems, the structure of
the problem must be exploited in order to reduce the computational
effort required to obtain the solution. This 1is essentially what was
done by Westphal and Rhee in their attempt to solve the Korea model,
and by Crémer [1976] to solve a similar version of the problem. It
is also the approach taken in this study. A common feature, in fact,
of the three approaches is that each has two distinct stages or phases:
the first exploits the structure of the model in an attempt to reduce
the size of the problem, and the second obtains a solution (not
necessarily globally optimal). Although the problem reduction stage
of these three approaches is essentially the same, completely different
directions are taken at the second stage.

Our approach, which yields the globally optimal solution, is
presented in Chapter 3. It exploits the input-output structure of
the problem in order to obtain bounds to be used in a branch-and-bound
Scheme. Computational experience is provided in Chapter 4 using
data from the Korea study. Chapter 4 also contains a brief review
of the approach taken by Westphal and Rhee in the estimation of the

Korea model; it serves to illustrate some of the issues and diffi-

1/ Westphal and Rhee [1978], Chapter 15.



culties that arise in model estimation.

In Chapter 5 we drop the capacity sharing feature of the model
and proceed to generalize it by incorporating such features as
alternative products, choice among alternative production techniques
for each product, piecewise-linear concave investment cost functions,
and finally, general concave cost functions. All of these versions of
the model can equally be viewed as generalizations of Leontief sub-
stitution systems or generalized versions of break-even analysis.

The models of Chapter 5 apply in situations in which capacity
sharing is not important. This may occur as the sector develops and
demands rise to a point that justifies a higher degree of specializa-
tion, that is, production activities become more end-product oriented
rather than process oriented. These models are also applicable in
situations in which the planning problem is specified at such a level
of aggregation -- say at the plant or even interindustry level --
that capacity sharing loses 1its meaningfulness.

The planning models of this study are discussed within the con-
text of development planning since the most likely beneficiaries of
this type of investment analysis are semi-industrial, developing
couﬁtries. Because of economies-of-scale characteristic of industrial
activities and the reduced size of their markets, investment in certain
production activities can be justified economically in such countries

only if full advantage is taken of capacity sharing and of the external



economiesl/ generated by the intermediate input-output relationships
within the sector. The models studied here, however, are not limited
to be used in studies conducted by planning agencies of developjng
countries. Investment analysis of the types discussed here could also
be performed by a group of major firms within a sector or subsector,
or even a single firm which occupies a position of importance within
the subsector it operates. The decision maker implied in these models
could thus equally well be the board of directors of a large, multi-
unit corporation, or the planning board of a developing country.

A summary of the study and suggestions for further research

are provided in Chapter 6.

—~'  We use Chenery's [1959] definition of external economies as applied
to the effects of investment: "... industries A, B, C, ...,
provide external economies to industries K, L, M, ..., if
investment in industries A, B, C, ..., causes a decrease in

the cost of supplying the demands for the products of K, L, M,
[4)




CHAPTER 2

THE INVESTMENT PLANNING PROBLEM

2.1 Introduction

It is possible to categorize investment projects by the degree
to which their evaluation requires the simultaneous evaluation of
other investment projects. At one extreme are those projects that
legitimately may be appraised in isolation since their impact on
the profitability of other projects is negligible or non-existent,
or, equivalently stated, no external economies are generated by
these projects. At the other extreme lie those investment projects
whose impact is sufficiently great that external effects reach across
the entire economy and must clearly be evaluated in an economy-wide
framework. Under this extreme would fall those projects that require
a large fraction of total planned investment over a medium term
planning horizon and could significantly alter the structure of
supply and demand for major commodities and resources. Somewhere
between these two extremes lie those cases for which it is necessary
to evaluate simultaneously all investment projects falling within a

given sector or subsector of the economy. These are the cases of

interest in this study.

A brief discussion of the various types of interdependencies
caused by the presence of economies of scale in production activities
is given in section 2.2. We are particularly concerned with the

effects of these interdependencies on production costs and the extent




to which they may affect investment decisions. The discussion of
section 2.2 disregards the effects of interdependencies between
sectors, the most important of which being the cbmpetition (between
the sectors) for a number of scarce resources.

The investment planning model that captures the effects of two
important types of interdependencies is presented in section 2.3.
Its formulation is adapted from Westphal and Rhee [1978], which

should be consulted for a detailed discussion of the model.

2.2 Interdependencies in Investment Decisions

The presence of economies-of-scale in production activities
gives rise to two important types of interdependencies which make it
necessary to evaluate simultaneously the investment projects within
a sector. The first one is due to intermediate product relationships,
which is referred to as input-output or material interdependence,
and stems from the use of intermediate inputs produced at decreasing
unit costs. Due to economies-of-scale, the unit cost of each product
depends on its output or demand level and on the unit cost of its
inputs, which in turn depend on their demand levels and on the costs
of their inputs, and so on. Clearly under this situation a group
of products that are considered profitable when analyzed jointly,
may separately appear unprofitable and would not be undertaken by
an individual investor who does not take into account the increase
in the profitability of investment in related projects. Chenery [1959]
provides a very illuminating analysis of the input-output type of

interdependence. He makes use of an interindustry model to study



the extent and the circumstances under which coordinated investment
decisions would lead to more efficient resource utilization than would
individual decisions based on existing market information. He con-
cludes that besides the fact that profitable projects may not be iden-
tified if input-output interdependence in production is not explicitly
taken into account, the lack of coordination of production decisiomns
may also lead to suboptimal timing of plant construction and suboptimal
scale of plants constructed to supply intermediate inputs. Westphall/
makes use of a simpler version of Chenery's model to illustrate this.

The second type of interdependency, process interdependence,
occurs when different products require processing in similar equipment
or processing facilities. The possibility of joint production, which
we refer to as capacity sharing, gives rise to an important inter-
dependency among all production activities. Because of economies-of-
scale there are large potential benefits to be derived by exploiting
process interdependence. It is the joint effects of input-output
interdependence and process interdependence that are captured in the
planning model formulated in the next section. These effects are
further discussed there.

Two other types of interdependencies that are also potentially
very important in the presence of economies-of-scale but which are
not incorporated in the models studied,ia_:hégiggéﬁﬁmzasien are tem-

poral and spatial interdependence. Failure in explicitly recognizing

the time element in investment analysis may lead to suboptimal

1/ In Stoutjesdijk and Westphal [1978], Chapter 5.
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decisions, since, in the presence of economies-of-scale, it may be
efficient to build capacity in anticipation of future growth in
demand, or it may pay to delay the construction of new capacity until
demand levels have increased sufficiently, with interim demands being
met by imports.l/ Temporal interdependence may thus alter the
structure of the optimal investment patterm.

It is important to note, however, that in the context of the
project identification model presented in the following section, the
consequence of disregarding temporal interdependence does not appear
to be a serious one. Since economies-~of-scale make desirable the
establishment of planté in advance of the growth in demand, the effect
of an analysis that takes the time element into account would thus be
to lower the demand level at which domestic production is justified,
that is, to lower the break-even point between domestic production and
imports. This has two important implications. First, the optimal
timing for the projects identified by the model must be now (time zero
of the planning period) and not at any later point in time; it could
have possibly been earlier, but the projects were not identified ear-
lier. Secondly, it is possible that some projects not identified by
the model should optimally be implemented in the current planning per-
iod, in advance of demand growth. It is unlikely, however, that the
benefits from undertaking any project that is not identified when the

external economies from input-output and process interdependence are

fully exploited would be very large. Moreover, under any form of

1/ See Erlenkotter [1967].
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binding budget constraint it is highly unlikely that these marginal
projects would be undertaken in the current planning period.

It remains to discuss the effects of temporal interdependence
on the scale (sizing) of the projects. If we accept the above argu-
ment that the projects not identified by our planning model, but
that would be by a dynamic model, are not important, then the optimal
timing for the identified projects is known. Consequently, the
sizing of the projects can be determined independently of the invest-
ment decision; that is, they need not be determined simultaneously
with the decision of which projects should be undertaken. Since the
projects are interdependent, however, the sizing decision must be
determined jointly for all the identified projects. With growing
demands, the scales obtained from our (static) model provide lower
bounds on the optimal scales of the projects.

Finally, spatial interdependence across all production decisions
is introduced by the existence of transportation costs. The inter-
dependence takes the form of a trade-off between the gains from
economies-of-scale attained in building larger plants or processing
facilities and the increased transportation costs of serving larger
market areas and/or spatially dispersed user plants, depending on
whether products are produced for final consumption or as inputs in
the production of other products. In the models studied in this
dissertation a pre-specified location for each production activity is
assumed. For the types of industry characterized by capacity sharing,
e.g., the mechanical engineering industry, transport costs of products

and raw materials would seem to be of much less relative significance
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than in heavy process industries such as cement or fertilizers.

2.3 Formulation of the Investment Planning Model

The planning problem can be simply stated as follows: select
investments in production activities so as to minimize the cost of
satisfying the exogenously stated demands for a given "bill of goods.”
The choice is between domestic production and imports, and the
model, formulated below, is thus of the make-buy type.

Four distinct sets of activities are specified in the model:

]
n

level of domestic production of product 1i;
y. = level of imports of product 1ij;
. th
z = new capacity in the k type of process element;

Ak = zero-one variable associated with the kth type of
process element; Ak = 1 1if investment is undertaken

in process element type k, O otherwise.

The term ''process element" is used to designate the individual elements
of production; it may represent a piece of equipment, a group of equip-
ment that jointly perform a certain processing function, or an entire
plant, depending on the specific questions being addressed by the
model. The index k is consisfently used to denote a process element,
and i or j to denote products. We use the symbols I and K to
denote the set of products and process elements respectively, as well
as the cardinalities of these sets.

The objective function is to minimize the total cost of meeting
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the final demands for the I products and can be stated as follows:

Min { ] (Fa, +Viz) + ] Gx, + [ Wy, (2.1)

kek iel iel
where
F = fixed charge portion of annual cost of capacity
for process element type k;
Vk = variable charge portion of annual cost of capacity

and operation for process element type k;

G, = exogenous cost of producing one unit of product i;
it includes labor, raw materials, and any other
intermediate inputs that are exogenous to the model;

W, = unit import price for product 1i.

All these parameters are nonnegative and the V, are strictly posi-

k

tive. Obviously G, < Wi, for otherwise product 1 should clearly

i
be imported.

A material balance constraint states that the sum of domestic

production and imports must be equal to the final demand plus the

endogenously generated demand for each product:

x, = Z a,.x, + vy = D, , iel, (2.2)
i je1 ii™] i i
where
aij = input-output requirement: one unit of product j
requires aij (> 0) wunits of product i;
D, = exogenous (final) demand for product 1i.
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The Di specify demand requirements from activities exogenous to the
model, and may be for final consumption or investment use, or even
for intermediate inputs to be used in production activities that are
exogenous to the model.

For each type of process element a capacity balance constraint

requires that capacity be at least as large as the total volume of

processing:

- ) b.x. > 0, kekK, (2.3)
k o kil

where
bki = amount of capacity of process element type k

required in the production of one unit of product 1.

Fixed cost counstraints require that the fixed cost associated

with a given process element be incurred if capacity in that process

element is required:

c -
kAk 2, 2 0, k€K, (2.4)
where C, is an upper bound on Z,-
Integrality constraints:
A, = 0 or 1, k €K (2.5)

k

Finally, nonnegativity constraints complete the mathematical

formulation of the planning model:

x, > 0, iel

i Z
y; 2 0, iel (2.6)
z o, keK
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It should be obvious that the input-output and process inter-
dependencies discussed in the previous section enter the model
through the material and capacity balance constraints. Production
decisions for activities i and j are interdependent whenever at

least one of the following two occurrences takes place:

(1) a >0 and amj >0 for one or more L €1 ;

(ii) bki >0 and bkd > 0 for one or more k € K .

In the first case activities i and j have at least one endogenous
intermediate input in common. The external economies created by

this type of interdependence take various forms. Assume, for example,
that the domestic production of product i 1s economically justified
but intermediate input ¢ is imported. The domestic production of
product j would have the effect of increasing the demand for inter-
mediate product #. Due to economies-of-scale this increase in

demand might warrant the domestic production of product &. Obviously
these effects may occur in either direction or jointly, that is,
product j may be produced only if the added demand that its domestic
production would genecate for product £ justifies the domestic
production of f. Assume next that both product i and the inter-
mediate product & are domestically produced. Because of economies-
of-scale the unit cost of producing the additional amount of input

2 (required by product j) decreases. This decrease might be
sufficient to justify the domestic production of product j. 1In this
case we can say that products i and j indirectly share capacity

through common inputs.
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In case (ii) there is direct capacity sharing between products i and
j in at least one process element. Again, under the economies-of-scale that
characterize these production acitivites, the domestic production of either
product might justify the production of the other, or domestic production may
only take place if both products contribute toward covering the fixed costs
of capacity in common process elements.

It is the joint or combined effect of these interdependencies across all
production activities that are of interest for investment decisions. The
programming model formulated above provides the tool to explore the effects
of these interdependencies.

An implicit assumption of the model is that the demands for the I
products are such that the upper bound on the capacity of any process element

that may be built will not be exceeded. That is,

) b, Y a,.D, +D,|< C_, kKEK , (2.7)
ier ¥ [jGI 133 "‘} k

where Bj is the production level of product j if all I products are
domestically produced, that is, a bound on xj. This restriction is essentially
what distinguishes the above model from the one used by Westphal and Rhee
[1978] to study the mechanical engineering sector of Korea. As it was
discussed in Chapter 1, restriction (2.7) was not imposed on the Korea model.
As a consequence, the Ak were not binary variables in that éase, but were
only required to be nonnegative integers. Upper bounds on the Ak could be
easily obtained, however, from (2.7) for those k for which it was not
satisfied. It is easy to see that this type of formulation implies a

capacity cost function with jump-type discontinuities C 2C

kl kl--ol

the jumps being equal to the fixed costs F This type of cost function

X"
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not only undermines the effects of economies—of—scale,l/ but it also assumes
that the capacity of a process element is a "hard" number that can be
precisely and unambiguously determined. While there are situations under
which this type of cost function may be appropriate, in this study we are
interested in those cases where the simple fixed charge cost function is
the appropriate one to specify. It is assumed that it is valid over the
relevant range of expected output if domestic production is to take place.
The upper limit of this range is obviously given by the left-hand-side of
inequality (2.7). Although alternative production techniques are not
explicitly incorporated in the model, the cost function specified may
reflect the fact that different techniques that perform the same processing
function may be employed at different output levels.

Next, the planning model given by (2.1) - (2.6) is put in a
slightly different form. The new parameters that will appear in the
objective function contain more meaningful economic information than in
the form given previously. It is in this form that the model will be
studied in the next chapter.

Since there is a positive cost associated with each unit of
capacity built, in any optimal solution to the problem constraints

(2.3) will be satisfied as strict equality. We can thus replace

174

- As it implies that process elements of larger capacity do not cost
proportionately less over a wide range of output levels.
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(2.3) by

z. - ) b.x, = 0, k €K . (2.3a)
{€1 ki™i

If we use (2.3a) to eliminate the variables =z the following

k’

equivalent programming problem is obtained:

wing | F A, + L (Db +6lx + LWy, 2.8

k€K iel (keK iel
X, - jglaijxj + y; = Di , iel (2.9)
Ch, - -Z:Ibkixi > 0, k € K (2.10)
&, = 0 or 1, k € K (2.11)
Xy > 0, i€z . (2.12)

The model in this form corresponds to a fixed charge version
of the one studied by Crémer [1976], who specified a general concave
investment cost function. The two previously treated versions of
this problem and the one studied here thus differ only in the form
of the cost function for capacity that is specified.

If we now use constraints (2.9) to eliminate the import variables
Yy from (2.8), the objective function takes the following form:

W. - W.,|[x

Min ZFkAk + I | Ivpb,te + Zajij NN

KEK i€T |kEK eI
(2.8a)

+ ] W.D,
jer **
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Constraints (2.9) become:

x, - ) a,.x, < D, ierl. (2.9a)
i jer 1373 i

If we drop the constant term z W.D, from (2.8a), change the

jer +1

objective to maximization and define

H, = W, - ) a, W, - JLVb. - G ,
jer I+ Keg © Kt *

we obtain the following problem:

Max Z Hixi - z FkA

iel kek k

subject to (2.9a), (2.10), (2.11) and (2.12) .

The Hi can be interpreted as the unit savings of domestic production
over import cost for product 1 when only variable production and
capacity costs are considered and all endogenous intermediate inputs
are imported.

As we shall be referring to the planning model in this form
throughout this study, we call it problem (P). We refer to the
problem in the form given by (2.8) - (2.12) as (P'). Obviously

(P) and (P') have the same optimal solution and

v(p') = 7§ WD, - v(P), where v(:) 1is the optimal value of
i€

problem (-).



CHAPTER 3

A SOLUTION APPROACH TO THE INVESTMENT PLANNING MODEL

3.1 Introduction

In this chapter we study the planning model (P) formulated in
Chapter 2. The aim is the development of an efficient solution ap-
proach to this class of problems. For ease of reference (P) is

rewritten in full below:

(P) Max { Y Hx, - ) F.A }
fer Tt kek K
X, - ) a,x, < D,, i e I (3.1)
i jel ij 3 i
b - .Z bX; 2 0, k € K (3.2)
iel
Ak = 0 or 1, k € K (3.3)
x; 2 o, i e I. (3.4)

There are two distinct stages to the approach taken here to
solve (P). At the first stage an attempt is made to reduce the size
of the problem by exploiting some properties that its optimal solu-
tion must satisfy. These properties, which were developed by
Westphal and Rhee for the Korea model and extended by Crémer [1976]
to the general concave cost version, take the form of very simple

sufficiency conditions for import and for domestic production of a

20
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given product. They allow for the identification of activities
that are not competitive with imports when maximum advantage is taken
of interdependence, on the one hand, and of activities that should

clearly be undertaken even if no advantage is taken of interdependence,

on the other.

At the second stage a branch-and-bound (B-B) scheme based on
the linear programming (LP) relaxation of the planning problem is
used. We show that the problem obtained when the integrality con-
straints of (P) are relaxed is a simple maximization of a linear ob-
jective function over a Leontief substitution structure, for which
a very efficient solution approach exists.

Our approach at the second stage is in sharp contrast to the
approach taken by Westphal and Rhee to solve the Korea model, and
by Crémer to solve his version of the problem. Westphal and Rhee
developed an approximate solution method based on the solution to
single~-product models, while Crémer developed a condition similar to
the sufficient condition for domestic production used in the first
stage that applies to combinations of two activities at a time,
then three, four, etc. Once a combination of products satisfying
the condition is identified, the first stage condition for domestic
production is re-applied and the process is repeated. Crémer's approach
at the second stage 1s basically an extension of the first stage.

While the computational effort required by both Crémer's and
Wesﬁphal and Rhee's approach seems to depend heavily on the degree to
which the first stage succeeds in reducing the size of the problem,

the computational experience provided in Chapter 4 indicates that
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the approach developed here does not depend in any significant way
on the outcome of the first stage.

We assume initially that the input-output matrix A = (aij} is
upper triangular, with zeros in the main diagonal. 1In other words,
we are assuming that the products can be numbered in such a way that
aij = 0 whenever i > j. Although this assumption may appear somewhat
limiting, for models specified at the product level it is not very
restrictive. In the Korea study, for example, the input-output
matrix is in fact upper triangular. We do nevertheless generalize
our analysis to the case where A 1s not triangular.

The organization of this chapter is as follows. Section 3.2
deals with the relaxation of (P); the solution to the relaxed problem
is discussed and a two-step algorithm is developed. 1In section 3.3
the structure of (P) is thoroughly analyzed. Based on the theoretical
results of sections 3.2 and 3.3, the solution approach to the planning
model is formalized in section 3.4, Finally, in section 3.5 it is

shown that a very efficient solution also exists for the relaxed

problem when the input-output matrix A 1is not triangular.

3.2 Relaxation of the Planning Model

In this section we give the linear programming relaxation of

(P), on which the branch-and-bound approach is based, and describe

a very simple and efficient solution technique for the relaxed problem.
If the integrality constraints (3.3) in (P) are relaxed, the

following LP problem is obtained:
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Max Z H X, - Z FkAk

¥, - ) a.,x, < D,, i e I
jer M3 *
by - _X byX; = 0, k € K
iel
0 < & < 1, k £ K
>
X, Z o, i e I

With the Ak being continuous variables and having objective function

coefficients > 0, clearly an optimal solution to the relaxed

Fk
problem exists with the capacity constraints (3.2) satisfied as
strict equalities. Also, the constraints O g_Ak <1, k € K may be
dropped from the relaxed model since the Ak can never be greater
than one (by the implicit assumption (2.7) of Chapter 2), nor can
they be less than zero, as can be seen by examining the capacity con-

straints (because b, ., >0, x, >0 and C

ki { > 0). We can therefore

k

use the capacity constraints to substitute for the A in the objec-

k

tive function to obtain the following equivalent formulation for the

LP relaxation, which we call (P):

7 ) ok
(P) Max H - —-— b, .| x,
iel 1 kek Ck ki 1
X, - Z a.,.x < D, , i e I
i ij7y — i
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It is easy to see that (ib has the structure of a general
input-output model, distinguished from a simple input-output model
by the presence of alternative production techniques for each
product. The slack variables of (?5 are in effect the alternative
"techniques”" for supplying each product; they are the import variables
vy which in our formulation of the model have zero coefficients in the

objective function. Since (P) is also "productive" (as x, = 0,

i
and thus v; = D, for each i e I 1s a feasible solutiom that

i

satisfies all the final demands), all the conditions of the
substitution theorem of general input-output theory are satisfied.
Such systems are sald to possess Leontief substitution structure.
See Gale [1960] for a statement and proof of the substitution theorem,
or, for a more extensive treatment of this subject, the chapters by
Samuelson, Koopmans and Arrow in Koopmans [1951]. The substitution
theorem states the conditions under which the technique used to
satisfy each product's demand is unique, irrespective of the
exogenous demand levels Di (Di > 0). Applied to (P) this says that
-each product will be entirely imported or domestically produced to
satisfy all its exogenous plus endogenous demands, since its optimal
basis is independent of the right-hand-side quantities Di' This is
discussed in more detail in section 3.5 where the analysis of this
section is extended to the case where A is not triangular.

For LP problems with upper triangular input-output matrix,

Dantzig [1955] has shown that the optimization can be carried out
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sequentially, as the solution to the ith activity depends only on
the solution to the first i -1 activities.l/ This result can

also be very easily established by the use of sequential projection
following Geoffrion 970]. To develop the computational approach to
(5) we make use of this result, as well as of the substitution
theorem, in obvious ways. There are two steps to the approach: the

first step simply determines which products should be produced, and,

at the second step it is determined at what level they should be

produced.
Py
We first define S, =H, ~ )} = b . . S, is thus the
i i C ki i
keK 'k

coefficient of X, in the objective function of ®).

Step I: Identification of activities at positive level in the

optimal solution

1. 1Initialize 1 =1
i-1

2. Compute Si = Si + L Sjajiaj

If.§. > 0 set
i a

8§, = 1, otherwise set 6, = 0.
i i

3. If 1 =1 go to Step ITI. Otherwise i « i+l and

go to 2.

Actually Dantzig showed this result for a block-triangular
input-output matrix, of which A 1s a special case,
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Step II: Determination of the optimal production levels

1. 1If 5i = 0 set ;; = 0 and go to 3.

I
2. Compute X, = Di + Z
=i+l

a, . .x,
1373
3. If 1 =1, STOP. Otherwise i + i-1 and go to 1.

The Si computed at Step I are the coefficients of X in the

sequential optimization process. Si gives the savings of domestic
production over imports for product i given optimal decisions with
respect to products 1, 2, ..., i-1, that is, with minimum-cost
input source;l/ Therefore, if the savings are positive product i
should be produced in the solution to (f) and we set 51 = 1.
Knowing then from Step I which products should be domestically pro-

duced, at Step II we obtain recursively the production levels. A bar

over the Xy is used to designate the optimal solution to (®).

We can see from the results of this section that the solution
to the LP relaxation of (P) 1is an extreme point of the material
balance constraints (3.1), i.e., of the Leontief substitution system.

Veinott [1969] has shown that also for the case of minimization of

1t ve let v, be the dual variable associated with the 1th

constraint of (P), and .;i its optimal value, then it is easy
to see that

T, = max {0, S.} = S, &, .
i i i1
Step I thus consists of sequentially obtaining the dual solution
of (P) . T > 0 implies that product i should be
domestically produced.
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a concave objective function (equivalently, the maximization of a
convex function) an optimal solution exists which is an extreme
point of the Leontief system. Because any extreme point of
constraints (3.1) satisfies the capacity balance constraints (3,2)11

of (P) with the appropriate A, set to one, an optimal solution to

k

(P) also exists which is an extreme point of the Leontief system.

This is in fact also true for the version of the planning problem

studied by Crémer, but not for the Westphal and Rhee model, as the

investment cost function they specified in the Korea study is not
2/

concave.—

3.3 Further Theoretical Development

In this section we derive conditions under which domestic pro-
duction is optimal and under which imports are optimal, based on the
relaxed problem (P). Some of these results are useful for problem
gize reduction, or fathoming in the B-B approach to be described
in the next section, and still others merely provide some insight on
the problem.

If we set all fixed cosus Fk to zero in (f), then Si = Hi

for each 1 € I. We define for this caseiﬁi, similarly tolgi, so

that a distinction can be made between a problem that only considers

1/

= Since the capacity bounds C, satisfy condition (2.7).

k

See section 2.3, Chapter 2.
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variable costs from one in which fixed costs allocation is also

included. Obviously if all Fk = 0 then gi ='§i. The Hi can
thus be interpreted as the sa&ings per unit of domestic production
over imports for product 1 when minimum-cost input sources are
used and only variable costs of domestic production are considered.
We use comnsistently throughout this paper a bar over a variable
to designate its optimal value in Gﬁ, and an asterisk to designate
its optimal value in (P), that is, its global optimum. We also make

use later of the following additional notation:

{k e K

Ky | by

> 0} ,
and

{i eI | b, >0}

I ki

k

Theorem 3.1 1If Si < 0 for each i e I, then all I products
should be imported in the optimal solution of (P), that is, for each

iel xi = 0 and y* = D,.

Proof. Assume we are solving (®) by the simplex method. We add slack
variables ¥4 to the constraints of (P) and use an all-import
solution (yi = Di’ i € I) as the initial basic feasible solution. The
simplex multipliers associated with this basis are all zero and thus
the relative cost factors for the activities not in the basis are
identically equal to the Si' Since all Si < 0, by the theory of the
simplex method the current basis must be optimal. This establishes
that ;i=0 for all i € I. Since this solution implies that'K£=O for
all k € K (since A, = J bkjE. / €), and it is feasible in (P), it

k iEIk i i

must then be optimal in (P), and thus xg = 0 for all i e I.
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Although this result is very simple and straightforward, it is
somewhat counterintuitive as it implies that if we analyze each

product individually (a pricing-out operation) with all endogenous

inputs to its production imported and fixed costs charged propor-
tionately to its capacity requirements, and it is cheaper to Iimport
than to produce each product, then all products should optimally be
imported. That is, no benefits from coordination of investments can

possibly justify any domestic productiomn. Thus, at least one Si

must be positive if any domestic production is to take place.
Obviously Theorem 3.1 is valid even when A 1s not triangular, as

no triangularity assumption is needed for its proof.

Theorem 3.2 x; =0 for all 1 €I such that ﬁi < 0.

This result, due to Westphal and Rhee [1978], although obvious, is a
very important one. It says that any product that is imported in

the solution of (P) with all F, = 0, should optimally be imported

k

in the solution of (P). .ﬁi < 0 implies that the minimal variable

cost of domestic production for produect 1 1is at least as large as

the import price Wi. Thus it should be obvious that ﬁi <0 is a

sufficient condition for it not to be optimal to produce product 1.
Theorem 3.2 can thus be used to eliminate from our model all

products for which H j_O,lthereby reducing the size of the problem.

i

Another important implication of Theorem 3.2 is that the solution to

(P) with all F, = 0 gives upper bounds on the optimal levels of

k

domestic production. These upper bounds can be used to compute

upper bounds on the effective capacity requirements for each process
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element, which in turn can be used in place of the Ck’ thereby
rendering (P) a tighter LP relaxation of (P).
Fact 3.1 If H,D, > Z F then product i alone pays for the
—_— i1 k
keK,
i
fixed costs associated with all the process elements k in Ki’
Fact 3.2 If Z H,D, > Z F, then it is better to produce all
- : 1] i 1] k
iel kekK
I' products than to import them all, where I' c {ie I I Hi > 0}
and

K' = {keK| bki >0 for some ie I'} .

Fact 3.1 provides a sufficient condition for domestic production
of a given product, whereas Fact 3.2 gives a sufficient condition
for domestic production of at least some of the products in the set
I'. The condition of Fact 3.2 can, of course, be strengthened by

defining the set I' as follows:

I' ¢ {1e1 | H; > 0 and the condition of Fact 3.1 is

not satisfied} ,

where the set K' in thiswcase excludes the process elements
identified by Fact 3.1.

It is also important to observe that the condition of Fact 3.1
can only be satisfied for those products i with S, > 0. Products

i

with Si < 0 but ﬁ; > 0 will be domestically produced only if

some of the fixed costs are ''paid for" by other products which share

capacity with product 1 1in one or more process elements. That is,
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without coordination of investments their domestic production could
not possibly be economically justified. Finally, if the conditiom
of Fact 3.1 is satisfied for at least one product 1, then we can
set Fk =0 for all k ¢ K, (i.e., fix open the process elements
included in Ki) and re-apply the condition once again to all those
products that are process interdependent with product 1. This can
be repeated until no new product satisfies the condition.

Similarly to Fact 3.2, the following fact provides an alternative
sufficient condition for some domestic production.
Fact 3.3 If ) } E;Di ) . F) then it is better to produce all

iel kekK

I" products than to import them all, where I" = {i ¢ I ‘ﬁi > 0}

and K" 'is the set of all process elements needed in the production

of all I" products.

The condition of Fact 3.3 can be similarly strengthened as that of
Fact 3.2. We note that while here the set I" is uniquely defined,
the set I' in Fact 3.2 could be any subset of {i e I |.§i > 0} .

Of course if I' 1is a singleton Fact 3.2 degenerates into Fact 3.1.

3.4 The Solution Approach to the Planning Model

We now turn to the formulation of the algoritim for the solution
of (P). There are two stages to our approach, and both make use of
the theoretical developments of the two preceding sections: in the
first stage for problem size reduction, and in the second for the

development of a branch-and-bound procedure.
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3.4.1 Problem Reduction Stage

Assume that initial screening of products has been done using
Theorem 3.2, and that the set I now contains only products i such
that H, > O.

i

As pointed out in the preceding section, Fact 3.1 can be used
to further reduce the size of the problem; if the condition
H.D, - Z F, > 0 1is satisfied for some i, this allows us to

ii KeK . k
i

fix at the level 1 "all Ak for k e Ki' We use, however, for this
case a strengﬁhened version of Fact 3.1. It is strengthened by
continuous updating of the Hi to reflect the savings of production
over imports given that certain products are known to be optimally
produced and also by considering the endogenous demands generated by
these production activities. For ease of exposition we present the
procedure within the context of the simplex method. However, no LP
problem will be solved by the simplex method since the solution
approach developed for (P) allows for updating the costs by means of
very simple computafions.

Consider (P) and let the initial basic feasible solution be
formed by all the import activities (i.e., all the slack variables
v, = Di)' Rather than introducing into the basis at a given iteration

the production activities that price out negativelyl/ (which would

1/

In section 3.5 we show that block pivoting can be used when
solving (P) and that once an activity has been introduced into
the basis it will not be removed in succeeding iteratioms.
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be optimal in (P)), our approach consists of introducing into the
basis only activities that satisfy a sufficient condition for opti-
mality in (P).

For the first iteration the sufficient condition is clearly

that of Fact 3.1, that is,

HD, - ) F_ > 0, (3.5)

where an iteration consists of the pricing-out of each nonbasic
production activity and the introduction into the basis of each one
that satisfies the sufficient condition. Let the set I* contain the
production activities that satisfy (3.5), i.e., become basic in the

first iteration, and let K* = {k eK| ke U K.} .
ieI*

At the second iteration, the condition for a given production

activity 1, 1 £ I*, to enter the basis permanently becomes

HD, - ] F > 0, (3.6)

kEK*

where Hi is the savings of variable domestic production cost over

import price for product i when iInputs j are domestically pro-

duced if j ¢ I* and imported if 5 ¢ I*, and Di is the total

for each 1 ¢ I*,

-~

demand for product 1 in that solution. The Hi’

are obtained sequentially by

>

a,. H,
jel* 3]

and the Di recursively by
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~ . -~

D, = D, + ) a,D, .
1 jeI* 3

This is similar to the way the .§i are obtained in Step I and the

Xg in Step II of the solution procedure to (P). oObviously ﬁi :-Hi
and Bi'i Di. Condition (3.6) is thus strengthened each time a new
activity is identified that should optimally be undertaken, (i.e.,
enter the basis). It is also strengthened whenever the set K* is
augmented as a result of a process interdependent activity being
identified.

At each succeeding iteration the set I* is augmented by the
activities that are introduced into the basis in the immediately pre-
ceding iteration, the ﬁi updated and condition (3.6) reapplied for
each activity 1 ¢ I*. The process 1s repeated until no new activity
is added to I*.

This ends the problem reduction stage, which yields a set of
products known to be optimally produced (I*), as well as a set of

process elements (K*) known to be open (built) in the optimal

solution to (P).

3.4.2 Branch-and-Bound Stage

The method of branch-and-bound (B-B) is based on an enumeration
technique that implicitly considers all possible solutions of an
integer or mixed integer programming problem. 1In the case of our
planning model, in which the varlables required to assume integer
values are binary, explicit enumeration of all possible solutions

would require the solution of ZK linear programming problems, each
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with a given combination of fixed values for the K 'biﬁary variaples.
The B-B procedure allows us to eliminate from explicit enumeration
those solutions which, based on bounding considerations, are known

to be nonoptimal. An enumeration tree is built for the zero-one

variables A with each node of the tree characterizéd_by a set

k,
of Ak variables having fixed values. That 1s, each node contains

a partial solution of (P) and thus represents a problem with the

same form of (P) but with the appropriate set of Ak variables fixed.

We refer to these problems in the B-B algoritim as candidate problems

and to all such problems at any point in time as the candidate list.

The LP relaxation of the problem at each node is solved to obtain an
upper bound on the optimal solution of the problem at that node. This
upper bound represents the best value attainable by any completion

of the partial solution at that node. The node may be fathomed if

the bound 1s less than the value of the incumbent, that is, the

best currently known feasible solution of (P). The bounds obtained
by the LP relaxation can also be used to direct the search along the
branches of the tree;l/

We refer to (P) with some of the A  variables fixed as (PE)

k
and defined Eb = {k e K | A, is assigned the value 0}, Ei = {k € K |
A, 1is assigned the value 1}, and K = ib U'El. K is thus the
index set of all variables A, ina partial solution to (P). The
1/

=~  For a very comprehensive exposition of the branch-and-bound
method see Geoffrion and Marsten [1972].
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LP relaxation (EE) of (PE) can be written as

T
— k
3 Max §) | By - ) by xlo- L F
iel kekK, k keK
i 1
X - z . 4 < D, , iel
i jel ij ] i
x, > 0, iell,
;i =
where
Fk if k£ X
Fk = 0 if ke Kl
e if k e'EO

Since the Ak variables disappear in the relaxed problem, the above

definition of ?£ allows us to fix process elements open (Fk = 0)

or closed (?k = ®),

For the presentation of the B-B procedure to solve (P) we appeal
to the general framework of Geoffrion and Marsten [1972]. The
algorithm is:

1. Initialize the candidate list to consist of (PE) alone, with

K = K*, and set Z* = Z H.D, - Z F KO = f, and

jerx T 1 pexx K

=

= K*
1 K*,
2. Stop if the candidate list is empty: the incumbent solution
is optimal in (P).

3. Select one of the problems from the candidate list to

become the current candidate problem (CP), using a LIFO
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rule. Let (PE) be the chosen (CP).
Solve (ﬁi), the LP relaxation of (PEQ. Obtain the Gi and

Xss and compute the A

K using

If v(?i) < Z* go to 2.
If the optimal solution of (FE) is feasible in (PE) go to 9.

Pick a k such that A, is fractional and compute

k
E, = 121 HD.. ~ kZK F -
Tk 1
ir—:Ik
If Ek >0 set Fk = 0 for each k € Ki’ ie Ik and go

to 4; otherwise repeat step until there are no more k

such that 'Zk is fractional.

Separate (CP). From among the A, fractional select (by

some rule) AE as the separation variable and add its

descendants to the candidate list in the order (CP | AE = 0)

then (CP | b-=1). Tag (CP | bz = 0) as follows:

UB(K | b= 0 = v(RR - 151— S0 8, + Fhy .

k

Update K for each problem and recompute the effective
capacity bounds for all process elements k ¢ Ki, iceg IE

(i.e., tighten the Ck) in (cp | AE = 0). Go to 3.
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9., If wv(CP) > Z* record this solution as the new incumbent
and set Z* = v(CP). Purge the candidate list of those

problems with upper bounds UB(:) < Z*, Go to 2.

The root node of the B-B tree is represented by problem (PK*)’
or, equivalently (PE) with the K = K*., K* 1is the index set of the

Ak variables determined in the first stage to be optimally set at

level one. Thus at the root node Kl = K* and Eb = @, and conse-

quently K =K*, If K* = p then the initial candidate»list contains
precisely (P). Z* 1is initialized at the value of savings over
imports obtained from the domestic production of the I* products
identified in the first stage. If 1I*¥ = P themn 2Z* = 0, which is
the value of savings over imports if all I products continue to be
imported.

In step 7 an effort is made to peg some Ak at the level one

after the fathoming criteria of steps 5 and 6 fail and before
resorting to separation of (CP). The ﬁi are known from the first
stage.

In step 8 separation occurs. Two separation rules are computa-
tionally tested in Chapter 4. The first one makes use of the values

of Ek computed in step 7 for each k such that 'Zk is fractional

in (CP). It consists in selecting AE such that Ei- = max {Ek} as
k

the separation variable. A second promising rule consists in

selecting a Ak such that IE is the largest among those Ik for

k such that Z£ is fractional. This has the potential effect of

making more Si >0, 1i.e., increasing the set of products i ¢ }E
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with Gi = 1, thus strengthening the test Ek > 0 1in step 7 by

picking a larger set or process interdependent products to share the
fixed costs.

Note that whenever separafion is necessary (step 8), the order
in which the problems are added to the candidate list ensures that
(CP l AE = 1) 1is always selected first and thus the candidate list
contains only problems in which the separation variable was fixed at
the level 0. Consequently, (still by step 8) all problems in the
candidate list are tagged with an upper bound on their optimal values.
These a4 priori or conditional upper bounds are used for fathoming
purpose whenever a new incumbent solution is obtained (step 9).

Steps 7 and 8 require some further elaboration. The 51 in

the expression for the E in step 7 ensure that the sum will be

k

only over those 1 such that Si > 0, as from the solution approach

to the LP relaxation we know that 61 =1 iff.gi > 0. Also, the

test Ek > 0 cannot possibly pass for any k such that Z 61 =1
' iel
k

since in this case the test is equivalent to the condition of Fact 3.1,
which was already used in the problem reduction phase. The expression

for the conditional upper bound UB(X | AE = 0) on (CP | AE = 0)

in step 8 is very straightforward. We know that v(?%? is an upper

bound on V(PE)’ and if we fix 'Kt, fractional in the optimal

solution to (E%?, to zero, then we also know that the objective

function of (PE) must decrease by at least igr— SiDidi - b,
k

where the first term is the variable savings foregone when products
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ie IE with Gi = 1 are no longer domestically produced, and the

second term is the fraction of fixed cost for process element k
that will no longer be incurred. The reason why z S.D,68, - thi
ieIs-
k

is a lower bound on the decrease in v(?i) when we fix Et =0 1is

that input source switching will necessarily occur for products j e I

-for which one or more products 1i ¢ IE are inputs to their production

processes. Input source will switch from the domestically produced

source at Wi - Si per unit to the import source at W per unit,

i
with W, - S, <W_ as 6§, =1 implies that S, > 0. Finally, the
i i i i i
tightening of the capacity bounds Ck (still in step 8) are easily

accomplished by recomputing the bounds on the X i ¢ I, knowing

that x. = 0 if i € I-—.
i k

3.5 Solution to the Relaxed Problem when A 1is not Triangular

Although (P) is a general LP problem when A 1is not triangular,
we still can do better than a direct application of the simplex
method. It will be shown in fact that a bound can be placed on the
number of iterations required to solve (P). Tor the development that

follows we find it convenient to add slack variables i to (5):

Max Z Sixi

iel

X, - 'Z aiij + v, < Dl ’ iel
jel

x, > 0, y. > 0, iel
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There are I equations in the constraints and thus any optimal

solution to (P) need not contain more than I nonzero x, and vy

i
variables. If each Di > 0, then any feasible basis must contain
at least one "technique" that produces each product (i.e., for each
i we cannot have both X, = 0 and vy = 0). Since there are only
I activities in the basis, any feasible solution, and thus the
optimal solution, to (P) must be such that each product will be
produced by one and only one technique.

The above argument actually constitutes a proof of the substi-
tution theorem as it applies to (P). As discussed below, this result
enables a short-cut in the simplex method to this problem.

1/

Assume we have a basic feasible solution= to (P) that is
non-optimal. If the ith activity vector is to enter the basis at
the next iteration, then, by implication of the above development, it
must replace in the basis that activity that produces product i. That
is, no computation is needed to determine which activity should leave
the basis at any iteration, which in turn implies that the optimal
basis is independent of the exogenous demand levels Di >0,

since in the simplex method the D, have no influence on the activity

i
to enter the basis, only on the activity to be removed. This implica-~
tion of the substitution theorem was explored in section 3.2 to

develop the two-step computational approach to (P), and 1is used

1/

=’ Any combination of I activities, with precisely one "technique"
for each, yields a basic feasible solution.
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again here to simplify the simplex method.

For the problem at hand, an initial basic feasible solution
readily available is an all-import solution, i.e., vy = Di for
all i e I. We then proceed to price out each activity not currently
in the basis in order to determine if any should enter. If none
should enter, then clearly the all-import solution is optimal.z/
If an activity is found that should become basic, then the
corresponding activity that "produces" the same product is removed
from the basis and the pricing-out operation is repeated. Below we
give a result that has the following implication: starting with an
all-import basic solution, any activity that enters the basis at a
given iteration of the simplex method will never be removed at
succeeding iterations. Equivalently stated, any activity that is
removed from the basis at a given iteration can never be part of the

optimal basis. This equivalence follows from the substitution

theorem.

;‘_‘i(n)

the ith constraint of (P) at the nth iteration of the simplex method,

(n)

Let be the value of the dual variable associated with

and B8 the corresponding basis matrix. The following theorem

establishes the desired result.

Theorem 3.3 Starting with an all-import basic solution, the value of

. n : . .
the dual variables Wi( ) are nondecreasing from iteration to

1/

=" (Given the interpretation of the coefficients of the X, in the

objective function, this has a counterintuitive implication iden-
tical to that of Theorem 3.1 of section 3.3.
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iteration, for each 1 e I.

Proof. Assume that Si > 0 for at least one 1 € I, since otherwise,

by Theorem 3.1, x* = 0 for all i € I. We show by induction that

i
P (n+1) >';i(n) = (1D

i > », n=1,2, .... Clearly ﬂi =0 for all 1i ¢ I.

Let Sj > 0. Then production activity j 1is introduced into the basis

(n) is the

and the corresponding import activity is removed. If S
vector containing the objective function coefficients corresponding
to the basic variables at the nth iteration of the simplex metheod,
and [']i denotes the ith component of the vector [-] and [.]ii the

element i1ii of the matrix ['], then for the second iteration we

have:
-2 _ [S(z) [8(2)]-1].
3 _ j
5 [
) [[8 i3
> 0 since S, > 0 and [[8(2)J—I}.. >0 ,
J 1]
and ';1(2) =0 for all {1 eI, 1i# j. Thus -Fi(z) 3:?1(1) = 0 for

(n)

all 1 e I. Assume now that ?3 > 0 and that a given nonbasic

production activity is to enter the basis at iteration n+l. We have

then that
T () T @ {S(nﬂ) [B(nﬂ)J-l _ g [B(n)J—l]' (3.7)
J J J
It must also be true at iteration n+l that Z(n+1) z_Z(n), where Z(n)

. . . th . .
is the objective function value at the n iteration. And
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Z(n+l) . Z(n) . S(n+l) B(n+l)J—lD :s(n) [B(n)]~lD ’

or
) [S(n+l) [B(HH)J'IDLi ) [S(n) [B(n)J—lD] ' (3.8)
1eI ieI .

But since the activity to be removed from the basis at any given
iteration does not depend on the right-hand-side vector D (by the
substitution theorem), (3.8) must be satisfied for any vector D > 0,

which in turn implies that

[s(““) s(“J’l)J'L > [s“‘) [s(“)]'}i (3.9)
for each i € I.
Combining (3.9) with (3.7) we obtain Fj (n+1) 1?:,'(“) for all

j € I, which completes the proof.

An important implication of the above is that we may use block
pivoting, that is, we may introduce into the basis in a single
iteration of the simplex method every production activity that
prices out negatively (with the corresponding import activities
removed), and that only production activities are candidates for
entering the basis. This allows for a very simple solution to (P).
If I is the set of products in an optimal solution to (f), then
it will take at most T simplified iterations of the simplex method
to obtain the optimal solution (where by simplified we mean that no
computations are needed to decide which activities are to be removed
from the basis). Note that I is a bound on the number of iteratioms
even if no advantage is taken of block pivoting.

The above result is highly significant in the context of our

solution approach to (P). Since bounds can also be easily obtained
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with very little computational effort when A 1s not triangular, a
solution approach to the more general planning model is readily
available. Simply disregard the problem raduction stage, and make the
following changes in the B-B algorithm: 1In step 1, since K* = f,

initialize the candidate list to consist of (P) alone, and set

~

Z2* = 0, and 'Eb = Ei =K = f; and, either replace Hi by ‘H, in
step 7, or drop the step altogether from the algorithm.

The sufficiency conditions used in the problem reduction stage
for the triangular case are no longer valid here due to the circular
nature of the interdependence in this case. An initial elimination
of activities not competitive with imports at marginal cost can
still be carried out, however, by solving (P) with all Fk set to

zero (i.e., set Si = Hi for each i € I). As in the triangular
case, the import activities in the optimal basis of such a problem
correspond to products that are optimally imported in the solution
of (P).

A problem reduction stage could conceivably be developed for
the nontriangular case, although not in the simple form allowed by
the triangularity of A, and probably not in as strong a form.
One such weaker form of a problem reduction stage, for example,
consists of disregarding all the elements of A below the main

1/

diagonal=" and use the same conditions as for the upper triangular

case. Because all the elements of A are nonnegative, if the

1/

=" This can be viewed as a form of "data relaxation.'

'
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sufficient condition for domestic production of a certain product is
satisfied when the lower triangular elements are ignored, it must
also be satisfied when they are taken into account. The effect of
ignoring the lower elements corresponds to taking less than full
advantage of the potential benefits from input-output interdependence.
Numbering the endogenous activities in such a way that maximum upper
triangularity is obtained for A would strengthen these conditions

and render such a problem reduction stage potentially more effective.



CHAPTER 4

COMPUTATIONAL RESULTS

4.1 Introduction

This chapter reports on the computational results obtained from
the implementation of the solution approach described in Chapter 3.
We make use of the same data that was estimated for the implementation
of the Korea model and used by Westphal and Rhee to analyze ‘experi-
mentally possible investments in the Republic of Korea's mechanical
engineering sector during its Third Five-Year Plan. Here, however,
the data is merely used to test computationally the performance of
our proposed solution approach to the investment planning problem.

The products produced by the mechanical engineering or metal
working sector include: fabricated metal products, non-electrical
machinery, electrical products and machinery, and transport equip-
ment.l/ The sector is characterized by the great variety of its
output; mechanical engineering products are highly differéntiated
and number in the millions. Another characteristic of this sector
that greatly complicates planning at the sectoral or even subsectoral
level is that many products can and often are pioduced by multi-
purpose equipment that is not tailored to the production of a
specific product. Finding an appropriate model specification that
adequately treats this type of 'capacity sharing" was considered by

Westpahl and Rhee as the major stumbling block to constructing

1/ See Westphal and Rhee [1978], Chapter 1l4.

47
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sector-wide planning models to the mechanical engineering sector.

' a term we used

Products share capacity in "process elements,'
generically in the presentation of the planning model in Chapter 2 to
designate an individual element of production capacity. In section
4.2 it is given specific meaning in the context of the mechanical
engineering industry as it was applied in the Korea case study. For
a discussion of the methodology of decomposing production fagilities
into process elements within the format of models such as the one
studied here, see Nam, Rhee and Westphal [1973]. Section 4.2 also
describes very briefly the estimation of the model; 1t serves to illu-
strate some of the important issues that arise in model estimation.
Particularly important is the issue of aggregation that must necessar-
ily be confronted when modeling sectors such as the mechanical engi-
neering. For a detailed discussion of the model estimation Westphal
and Rhee [1978] should be consulted.

In section 4.3 some features of the Korea data are examined
within the context of computational complexity. Finally, computa-
tional experience from the implementation of our solutiomn approach

to the planning problem is provided in section 4.4.

4.2 Model Estimation

The model used in the Korea case study was intended merely to
serve as a screening device to obtain initial comparative-advantage
ranking of production activities within the mechanical engineering
sector prior to the design of specific projects. The methodology

used by Westphal and Rhee can be regarded as a refinement of that of
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Vietorisz [1972], which in turn is a refinement of the methodology

used to study the Soviet Union's mechanical engineering sector by a
team of researchers at the Institute for Research in Social Science,
University of North Carolina (1958-9). It will be apparent from the
following description of Westphal and Rhee's model estimation metho-
dology that the issue of aggregation is a very important one in sectors
characterized by a great multitude of products, such as the mechanical
engineering sector. Aggregation is iIn fact what essentially dis-
tinguishes the Korea study methodology from its two predecessors.

Two features characterize Westphal and Rhee's methodology. First
is the aggregation of equipment into shops. A "shop," or process
element, is defined to be "a collection of complementary equipment
(and associated labor) that perform closely related processes; for

1/

example, a machine shop or a foundry.'"= Process elements are thus

' which are

specified at the subplant level and correspond to 'shops,’
the building blocks that make up individual plants within the sector.
In order to place a limit on the extent to which the model can exploit
capacity sharing, each shop type is further divided into '"shop
classes." Two elements describe a shop class: the type of processing
activity, and the collection of products that can be processed together
within a single shop. Westphal and Rhee make use of the following
example, which appears in the Korea study, in order to illustrate

this. A given type of shop conducts stamping operations using a press

of less than 50 tons maximum force. The production of any of the

Y Westphal and Rhee [1978], Chapter 15.
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following products involves processing in shops of this type:
household blenders, household ovens, bicycles, motorcycles, passenger
cars, 3-wheel trucks, and 4-wheel trucks. The stamping operation
could, in principle at least, be carried out in a single shop. 1If
this pattern of production organization is considered feasible, this
could be expressed in the model by specifying a single constraint for
this type of shop; it could process any combination or all of the
above seven products. In this case there would be a single class

of shops with respect to the corresponding stamping operation involved
in the production of these products. In the Korea model three dif-
ferent classes of shops are specified for the stamping operation to
reflect the judgment that capacity sharing with respect to this opera-
tion 1s unlikely across all seven products. A shop class was speci-
fied for each of the following sets of products: household blenders
and ovens; bicycles and motorcycles; and passenger cars and 3-wheel
and 4-wheel trucks. Capacity sharing was thus allowed, for example,
between household blenders and ovens, but not between either of these
and bicycles and/or motorcycles. We can see from this illustration |
" that the number of shop classes specified for each type of shop
implies a restriction on the feasible pattern of production organiza-
tion.l/ All shop classes of a given type were assumed to have iden-

tical fixed-charge cost functions which considerably reduced the

1/

—' There are many reasons why one pattern of production organization
would be preferable over another, and they may be as diverse as:
engineering judgement, institutional factors, and marketing consi-
derations, to name a few. See Westphal and Rhee [1978], Chapter
15.
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amount of parameter estimation required to implement the model. The
Korea model contains 37 different types of shops and 272 shop classes.
The second feature that characterizes Westphal and Rhee's approach
is the use of 'representative products'" to aggregate over heterogeneous
products. Each of the 116 individual products appearing in the Korea
model represents in fact a whole class of products.l/ As an example,
one of the "products" that appears in the study is '"fractional horse-
power electric motor" and it represents the class of all electric
motors of less than one horsepower. According to the '"representative
product" concept, the technical coefficients used for describing the
production of the product class are the ones corresponding to the sin-
gle, most "representative" product within the class. The most repre-
sentative products are in general taken to be those which have the
largest share of demand or expected growth in demand within their
respective classes, with the boundaries between product classes drawn
on the basis of similarities among indiQidual products with respect
to intermediate input and processing requirements. Demands for the
products are specified in units of physical weight, with the non-
representative products in each class converted in terms of units
(metric tons) of the representative product. The products selected
to be included in the study were those for which it was judged that
Korea could most likely achieve production costs competitive with

imports over the medium term horizon.

L/ A list of the 116 products as well as the 37 shop types can be

found in Westphal and Rhee [1978], annex of Chapter 17, and Chap-
ter 16, respectively.
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To obtain the processing coefficients b a "reference shop"

ki’
was designed for each shop class. Engineering estimates for the
coefficients were then obtained in relation to these reference shops,
in total machine hours, by summing over the machines used within the
reference shop the time required in actual processing. Total machine
time requirement is then converted to shop time requirement by dividing
it by the number of machines in the reference shop. The bki thus
gives the number of hours of processing in shop class k required
in the production of one metric ton of produc; i. The capacity of
a shop is measured by the number of hours within a year that the
shop may be operated, multiplied by the number of machines it contains.
Finally, the following procedure was used by Westphal and Rhee
to estimate the parameters of the fixed-charge cost function for
each type of shop. A "dodble-reference—capacity" shop was designed
with twice the physical output capacity of the reference shop. These
double-reference shops, however, are not merely proportional blow-ups
of the corresponding reference shops. Individual pieces of equipment
may be found in a given reference shop that are not found in the asso-
ciated double-reference shop. The capacity in effective shop hours
of the double-reference shop is taken by definition, regardless of
its actual machine hours capacity, to be twice that of its associated
reference shop. Shop time is thus a relative concept used to measure
the volume of processing activity.
Having obtained estimates of the costs of building and operating

reference and double-reference-capacity shops, the fixed-charge cost

function for each type of shop was obtained by fitting a straight
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line through the point estimates of annual cost for the reference and
double-reference shops. These point estimates were obtained by
adding annualized capital costs to annual operating costs, which
include expenditures on labor, fuel and other consumed inputs which
do not appear as an identifiable part of the products endogenous to

the model.

4.3 Structure of the Data

Some features of the Korea data are examined in this section,
as they provide a rough indication of the degree of interdependence
among the production activities included in the study.

The Korea model specifies 272 different process elements (shop
classes) which are required in the production of the 116 endogenous
products. The model thus contains 272 zero-one variables (one for
each shop class) and 232 continuous variables (a production and an
import variable for each product).

Both the matrix of input-output coefficients, A, and the pro-
cessing requirements coefficient matrix B are fairly sparse. The
A matrix, which is upper triangular, has a density of 4.37%. Four-
teen activities require no endogenous intermediate inputs, and the
average number of endogenous intermediate inputs over the remaining
102 production activities is 5.8. This somewhat low number is in
part due to the level of aggregation of the products included in the
study. A more narrowly defined "product' would necessarily increase
the number of endogenous intermediate inputs required in its produc-

tion. The sparsity is also partly due to the fact that it was assumed
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that many intermediate inputs would continue to be'impqr;ed, and
are thus exogenous to the model.

The density of the B matrix clearly depends on how many shop
classes are specified for each type of shop.l/ The lowest possible
density would occur if no capacity sharing is allowed in any process
element. In this case, however, the problem could be cast into the
form of froblem (P1) of Chapter 5, for which it is shown there that a
very simple solution technique exists. This specification implies a
pattern of production organization that is totally end-product
oriented. The density of B, on the other hand, would be the
maximum possible whenever only one shop class is specified for each
type of shop; that is, a shop type would be identically equal to a
shop class. This 1s a situation under which maximum advantage can
be taken of capacity sharing, implying a pattern of production organi-
zation that is totally process oriented within the sector. This
higher density of the B matrix would, on the one hand, most likely
increase the difficulty in obtaining globally optimal solutions to
this class of problems. On the other hand, however, it would result
in a smaller number of constraints (fewer rows for the B matrix)
and consequently fewer O - 1 wvariables. Under this specification
the Korea model would contain only 37 0 - 1 wvariables. It is
probably safe to infer from this that intermediate specifications
with regard to the allowable pattern of production organization would

constitute problems computationally more complex than either of the

by,

See the discussion on production organization in the previous
section.
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extreme situations. The actual density of B, based on 272 shops

classes, is 2.4%Z. Of the 272 shops, 148 may be shared.

4.4 Computational Experience

To implement the solution approach described in Chapter 3 a
FORTRAN H code was developed and run on an IBM 3033 computer.

Test problems were generated based on the data from the Korea
study using different parameter specifications. These parametric
changes are similar to the ones made by Westphal and Rhee for the
purpose of sensitivity analysis of the solution to the Korea model,
and they correspond to different specifications of the foreign ex-
change rate, hourly wage rate, inteérest rate, and demand levels. A
change in the foreign exchange rate affects not only the import
price of the endogenous products, but also domestic production costs
through exogenous imported inputs and capacity costs through imported
production équipment. Hourly wage rates directly affect domestic
production costs, and changes in interest rates affect the investment
cost for production capacity. Because of economies-of-scale, changes
in the demand levels affect the average domestic production costs
attainable for each product.

Fifteen alternative problems were generated from the Korean data,
and the computational exﬁerience with these problems is summarized
in Table 4.1. Problem 1 corresponds to the basic specification of
the Korea model. The remaining problems correspond to different
combinations of parametric changes applied to the basic data; dif-

ferent demand levels, exchange rates, and labor wage rates were
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TABLE 4.1

COMPUTATIONAL RESULTS WITH THE KOREAN DATA
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assumed, either individually, two at a time, or all three simultan-
eously. As the purpose of this study is not to analyze the sensi-
tivity of investment decisions in the mechanical engineering sector
of Korea to changes in some important ecomnomic variables, but merely
to test the computational efficiency of our solution approach, the
effects of Interest rate changes on investment cost for production
capacity were not considered. Nor were the effects of exchange rate
changes on investment cost through the imported components of new
production capacity;l/ Instead, we simply considered a decrease of
25%, and increases of 25% and 50% respectivley in the total
cost of investment (i.e., applied to the fixed-charge function) as
three additional specifications.

Table 4.1 should be read as follows. For Problem 1, for example,
column (1) shows that 57 of the 116 production activities specified
in the model were identified as not competitive with imports at mar-
ginal production costs using minimum-cost input sources. As a result
of the elimination from the model of these 57 activities, it is shown
in column (2) that 102 zero-one variables (one for each process ele-
ment) were also eliminated. Of the 170 (= 272 - 102) remaining binary
variables, the problem reduction stage (Stage 1) succeeded in identi-
fying 154 which should be at level one in the optimal solution
(column (3)). Thus, only 16 zero-one variables remained free at the

end of Stage 1l; this is shown in column (4). In column (5) we can

1/

= The consideration of these effects would require manipulating
the individual cost components of the investment cost function.
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see that only one node of the B~B tree needed to be evaluated in order
to obtain the completion of the optimal solution of Problem 1. That
is, the LP relaxation solved at the root node of ;he B-B tree was
naturally Integer. This in fact was true for all but one of the 15
problems; problem 6 required 17 node evaluations. The computational
times, which include input-output time, are shown in colummn (6).

We can see from Table 4.1 that Stage 1 was extremely successful
in reducing the size of the problem. An important fact that does not
appear in the table, however, is that for 11 of the 15 problems Stage
1 succeeded in identifying all profitable production activities. Of
course this could not be known at the end of Stage 1, as at that stage
of the solution process nothing can be said of the activities not
identified. The solution of one LP relaxation, however, established
the optimality of the solution. For these cases exactly the condition
of Theorem 3.1 of Chapter 3 occurred, with the cost coefficients Si
obviously adjusted to reflect the fact that the products identified
by Stage 1 are optimally produced.

It is evident from Table 4.1 that a true test has not been
given to the B-B stage of the solution process. In order to test
its performance all 15 problems were re-solved without using the
problem reduction stage. In other words, it was left to the B-B
stage alone to find the optimal solution to these problems. The
computational results obtained are shown in Table 4.2. Column (1)
gives the number of free zero-one variables remaining after the
marginal condition for importing ﬁi < 0 was applied. It is worth

noting, however, that exactly the same number of nodes would have



TABLE 4.2

COMPUTATIONAL RESULTS WITH THE KOREAN DATA: B - B STAGE ALONE

(D (2) (3)
Problem Number of free Number of nodes CPU time

number 0-1 variables evaluated (in seconds)
1 170 60 1.95
2 170 72 2.30
3 170 25 1.20
4 125 18 0.99
5 181 24 1.19
6 164 6l 2.05
7 142 38 1.33
8 201 95 3.21
9 201 110 3.76
10 201 82 2.82
11 195 20 1.10
12 182 12 0.90
13 209 11 0.96
14 189 23 1.16

15 182 19 1.13
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been evaluated if the import condition had not been applied. This is
true because all the Ak .that were set to zero because of the said
condition, would be zero in every relaxation solved along the B-B
tree. Also, all computational times reported in this chapter include
this pre-Stage 1 identification and elimination of noncompetitive
activities.

As column (2) indicates, in no case did the B-B tree grow very
large; and the computational times, although larger than those of
Table 4.1, are nevertheless quite small for the size of the problems
being solved.

Encouraged by these results, some further testing was conducted.
Additional problems were generated from the Korea data by making
parametric changes as before, but with one important difference.
Rather than making a percentage change in one or more parameters
across all activities, changes were made by individually examining
each Hi value. Some parameters were adjusted upward and some
downward for each product in an attempt to increase the effect of
the interdependencies among the activities. Some changes in the
fixed-charge cost functions were also made in some of the runs. The
computational results obtained with these 'fabricated" problems are
reported in Tables 4.3 and 4.4, with and without Stage 1, respectively.
These tables have the same format as Tables 4.1 and 4.2.

The computational experience with this latter set of problems
lends further empirical support to the efficiency of our approach to
the planning problem. The efficiency of the B-~-B stage is particularly

significant for the following reason. As it was discussed in section
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TABLE 4.3

COMPUTATIONAL RESULTS WITH "FABRICATED" DATA
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0.9
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60 108 137 27 17 1.07
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47 83 156 33 15 1.03

25




-62~

TABLE 4.4

COMPUTATIONAL RESULTS WITH "FABRICATED" DATA: B - B STAGE ALONE

€Y (2) (3)
Problem Number of free Number of nodes CPU time
number 0-1 variables evaluated (in seconds)
16 233 157 5.96
17 233 73 3.02
18 233 71 2.97
19 229 211 7.54
20 233 105 4.23
21 233 116 4.74
22 229 127 5.01
23 219 99 3.65
24 164 59 1.84

25 189 87 2.89
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3.5 of Chapter 3, if we want to solve problems with nontriangular
input-output structure, we cannot count on an efficient problem
reduction stage to decrease the size of the problem to a more mana-
geable size. Because of the circular nature of the interdépendence
in such situations, any problem reduction stage that may be devised
will necessarily be either more cumbersome, or weaker (as the data
relaxation suggested in section 3.5), and in either case may prove
not to be worth the computational effort required. Since it was
shown in Chapter 3 that the solution to the LP relaxation when A
is not triangular is essentially no more difficult than for the case
in which A 1is upper triangular, the computational experience pro-
vided in this chapter with the B-B stage alone (Tables 4.2 and 4.4)
indicates that our LP-based B-B approach would be rather efficient in
solving problems with nontriangular input-output structures without
any problem-reduction attempt being made. Although improvements
could possibly be made by such attempts, our results indicate in the
least that it is feasible to solve very large problems without depen-
dence on the success of any form of problem reduction techniques.
Table 4.5 gives the summary statistics from Tables 4.2 and 4.4 on the
performance of the B-B stage alone for the two sets of problems.

Thus far nothing has been said concerning the particular imple-
mentation of the B-B algorithm that yielded the results just discussed.
We next analyze in turn: (1) the effectiveness of step 7 of the B-B
algorithm; (2) the alternative separation strategies proposed in
Chapter 3; (3) the quality of the bounds obtained from the LP relaxa-

tion; and (4) the tightness of the conditional upper bounds UB(-)
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TABLE 4.5

SUMMARY STATISTICS FOR THE B -~ B STAGE

Problems Average number of Average number of CPU time
0-1 variables* nodes evaluated® (in seconds)
1-15 179 45 1.74
16 - 25 219 110 4.18

Note: * Rounded to nearest integer.

computed at each separation.
At step 7 of the B-B algorithm an attempt is made to peg at
the level 1 some of the Ak fractional in the solution to the

relaxed problem at a given node. For this purpose E is computed

k
for each k corresponding to a fractional Ak' Computational tests
performed with a sample of the problems, both with and without Stage 1,
showed that although it succeeded in many cases in pegging some varia-
bles, it did not prove to be worth the computational effort expended

in computing the E Even in those cases in which the size of the

K
tree decreased significantly as a result of using step 7, computational
times were generally higher than those in which the step was bypassed.
This was particularly true for problems with a large number of free
variables, regardless of the separation strategy used. As a result

of these experimental runs step 7 was discarded, and along with it

the separation rule of selecting the Ay corresponding to the largest

E . The simplest implementation of the B-B algorithm thus proved
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the most effective, and all the computational results given in this
chapter pertain to this simpler form of the algorithm.

The last two items ((3) and (4)) concerning the B-B algorithm are
best discussed in the context of the ineffectiveness of step 7, as it
serves to illustrate the success of the approach. The ineffectiveness
of step 7 may be explained by several factors. First, node evalua-
tions are carried out extremely fast. Independently of any other
factor this implies that an all-integer solution (i.e., the first
feasible solution of (P)) can be obtained at a very small computational
cost.lj Secondly, if the first factor is combined with an efficient
separation strategy one can conclude that the first all-integer solu-
tion obtained should be reasonably good. In our approach this is evi-
denced by the fact that in nearly 5072 of the test problems the first
feasible solution obtained was in fact optimal. Thirdly, if the two
previous factors are combined with a relaxation that yields tight
bounds, one can confidently expect that the B-B tree should not
grow very large. The computational experience provided here shows
that the number of node evaluations required in any of the problems
was never very large in relation to the number of 0-1 variables. In
fact, in no case did the number of node evaluations exceed the number
of variables! Moreover, for most of the cases in which the first
all-integer solution obtained was optimal, every active node of the
tree subsequently examined was fathomed by bound without any further

branching taking place. Finally, the conditional upper bounds UB(-)

1/ Even if a large number of nodes must be evaluated.
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proved relatively effective in fathoming at all levels of the B-B tree,
causing in most cases a significant reduction in the number of node
evaluations required.

It is fairly safe to conclude from the above discussion that all
the ingredients for a successful B-B are present in our solution
approach to such an extent that attempts as those of step 7 are
rendered ineffective or "not worth the effort." It is iﬁportant to
note, in conclusion, that the simpler B-B implementation seems to
provide the best of two worlds; not only it appears to be more
efficient for the cases in which the input-output matrix A is
upper triangular, but, most importantly, it is also the version

that applies when A is not triangular.l/

1/

=" A weaker form of step 7 could actually be used, as indicated in
section 3.5 of Chapter 3. 1In view of the results of this chapter,
however, it is extremely unlikely that it would be effective.




CHAPTER 5

RELATED PROBLEMS AND EXTENSIONS

5.1 Introduction

In this chapter we study several versions of the planning problem
(P) in which the capacity sharing feature is eliminated. The most
basic version studied here is identical to (P) with B = I, where
I 1is the identity matrix. We show that for this version of the
planning problem stronger results than those of Chapter 3 can be
obtained for both stages of the solution approach. The results ob-
tained are then extended to the cases in which the following features
are added to this basic version of (P): alternative products, choice
among alternative production techniques for each product, and piece-
wise and general concave investment cost functions. These models will
be discussed within the generél context of the solution approach to
(P); that is, we assume that they will be solved by the two-stage
approach and discuss how the results derived here can improve each
stage of the solution for thesz special problems.

We assume throughout this chapter that the input-output matrix

is upper triangular.

5.2 Models of Input-Output Interdependence

Consider the problem, which we label (Pl):

(P1) Max .Z (H;x; = F.8))
i€l

67
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Xy - jglaijxj < D:L , i e 1
CiAi - Xy 2 0o, i e 1
Ai = 0 or 1, i € 1
X5 > 0, ie I,

where H, = W, - Z a, W, -V, -G,, and C, > x, for all possible
i i j€T jij i i i-"1
X..

i

(P1) is a no-capacity-sharing version of (P). It can be viewed
alternatively as a Leontief substitution problem with economies-of-
scale, or as a generalization of break-even analysisl/ for inter-
dependent products.

Since (Pl) is (P) with B = I, it is obvious that the solution
approach to (P) can be directly applied to (Pl). For this simpler
structure, however, we show that a sufficient condition for imports
similar to the condition for domestic production used in the problem
reduction stage (Stage 1), can be obtained. Stronger results can

also be derived for the B-B stage based on (Pl), the LP relaxation

of (Pl), given below:

i

(D) Max ) |H, - Tolxg
1€1 i

~ If all aij = 0 (Pl) decomposes into I simple make~buy problems.
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(P1) has precisely the structure of (P), and the two-step

solution approach applies, with the §i computed at Step I (with

F; _
Si = Hg --EI ) and the X, obtained at Step II. Theorem 3.1
clearly applies to (P1) also, and thus at least one S; must be
strictly positive if any domestic production is to take place.
Theorem 3.2, as before, can be used to eliminate activities noncompe-
titive at marginal cost; as this theorem applies to all the versions
of (Pl) studied in this chapter, we assume hereafter that the set I
contains only the competitive activities (i.e., ﬁi > 0 for each
ieI).

The sufficient conditions for domestic production ((3.5) and

(3.6)), of Stage 1, become respectively

H.,D > F, (5.1)
and

8.0, > F, , (5.2)

4

with the ﬁi and Di having the same interpretation as in Chapter 3.
If I* 1is the set of activities that satisfy (5.1), then any activity
i ¢ I* that satisfies (5.2) is added to I* in an iterative fashion
as described in Chapter 3. At the end of this stage a set of activi-

ties I*< I 1is identified which is known to be optimally undertaken.
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The problem reduction stage for (Pl) does not end here, however. We
give next a sufficient condition that can be used iteratively to iden-
tify activities that are optimally imported in (Pl).

In the absence of capacity sharing the total variable savings
attained by undertaking a given activity must cover the fixed cost
incurred in undértaking it;l/ In other words, total benefits must
cover total costs; this is true whether production is for final
consumption, for intermediate input in the production of other pro-
ducts, or both. If xi is the optimal level for activity 1 and
H; its associated variable savings (i.e., Wi ~ Hf is the variable
cost of producing product 1), then for each i such that xi >0
the condition Hix; > Fi must be satisfied. It is easy to see that
if this condition is not satisfied then the minimum average production

2/

cost attainable is larger than the import cost= and thus no savings

can be obtained by undertaking domestic production.

L Under capacity sharing an activity with positive marginal savings
over import cost could optimally be undertaken which did not cover
its associated fixed costs. It was only required that all pro-
cess interdependent activities jointly covered fixed costs.

Let MACi = minimum average domestic production cost attainable

for product 1i.
F,
i
= - * —
Then MACi (Wi Hi) + **

H§x§ - Fl
= wi - x*
> W, if H*x* - F < 0
- i i
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Based on the condition given above that must be satisfied by the
activities at a positive level in the optimal solution to (Pl), we
show how a necessary condition for domestic production (equivalently,

a sufficient condition for import) can be obtained which can be
applied iteratively to identify activities that are optimally imported.
The condition is presented within the context of the simplex method.

Let C, = = (equivalently, F, = 0) for each i€ I 1in (P1),

and assume we have a basic feasible solution which contains all the

production activities. With the Fi = 0 this basic solution is in

fact optimal in (P1) since all activities with ﬁi < 0 have been

eliminated and are thus exogenous to the model. With the ﬁi and

Xy corresponding to this basis at hand, the following theorem provides

a sufficient condition for an activity to be optimally imported.

Theorem 5.1 If ﬁigi E_Fi then product 1 is optimally imported in

the solution of (Pl).

Proof. F. > H.x,
_— i — Ti7i
> H.x* since x > x*¥ > 0 ,
> Hix* since B > H* > Q0
- i 1 - i =
Hence H.x, < F, => H*x* < F, => x* = 0 .
iYi — i i1 — i i

Assume that the condition of Theorem 5.1 is satisfied for one
or more products and the corresponding activities are eliminated from
the basis in (P1). Let It be the set of production activities

remaining in the basis. If ﬁi and ii correspond to the new values
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of ﬁi and ;i associated with the new basis, then, by the inter-
pretation of the ﬁi and their updated values ﬁi’ it should be

clear that ﬁi > Hy > Hf for each 1€ It. It is also true that

- -~

X 2 Xy > x¥, since the set I* still contains the set of activities
optimal in (P1). ﬁiii is thus still a valid upper bound on Hix; :

hence any activity in the new basis that satisfies

Hyx, < Fi (5.3)

can be removed, as it cannot possibly be optimal in (P1l). Since only
activities that are optimally imported in (Pl1) are eliminated from the
basis of (P1), the ﬁi and ii obtained at each iteration consti-
tute upper bounds on Hi and xi respectively, and the process can
thus be repeated until (5.3) is no longer satisfied for any of the I+
production activities remaining in the basis.

The set of products I+ obtained at the end of the elimination
procédure has the following property: If any one product is dropped
in favor of imports, total savings over imports obtained from the
domestic production of the remaining I+ - 1 products is less than
if all I+ products are produced. In other words, the value of
the objective function of (Pl) decreases if any one of the I+
activities is not undertaken. It is possible, however, that it
increases if two or more interdependent activities are dropped in
favor of imports. In principle at least, one could apply at this point
the equivalent of condition (5.3) to combinations of two or more inter-

dependent products from the set It- I*, This, however, would be ra-

ther tedious. The optimality or non-optimality of the current set of
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activities can be easily established with a very simple B-B stage.

At the root node of the B-B tree (P1) with I+ endogenous acti-

+ o 1if 1€ I*
vities is solved. We set, for each 1€ I, Ci =

ii otherwise

This corresponds respectively to setting Fi = 0 for each activity
known to be optimal in (Pl) and to tightening the capacity bounds for
the remaining production activities by setting them equal to the best
upper bounds currently known, namely the ii. If the solution to

this problem is naturally integer then it is obviously optimal in (Pl).

If it is not integer, however, it should be easy to see that in the

X

absence of capacity sharing, all Ai variables (Ai =-Ei ) that are
i

at the level one may be fixed to one and the corresponding activities

may be added to the set I*, Moreover, any A integer in the solu-

i
tion to the relaxation at any other node of the B-B tree will be

integer in any completion of the partial solution at that node.

5.2.1 Alternative Products

Assume now that each production process (or industry, whichever
may be the interpretation) in (Pl) may produce more than one product,
but each product can only be produced'by one production process. That
is, the only substitution among activities is between domestic pro-
duction and imports -- no alternative production techniques.

There are K production processes specified for the production
of the T products, K < I. Industry k can produce any combination

and for any k# ¢ I I = f. This problem,

of products i€ 1 X n }

k’
(P2), has the following formulation:
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(P2) Max § ) ] Hyxp - ] R

keK nEIk keK

X - z a < Di , i e I

jer 3
Cele = L bx, > 0, k € K
iel
k

Ak = 0 or 1, k € K

X > 0, i e I,
where Hi = wi - ngajin - kaki - Gi’ and bki is defined as in

®. Ck is an upper bound on the total activity of industry k for
any possible value of X5 ie Ik'
(P2) obviously includes (Pl) as a special case, and the basic

distinction between (P2) and (P) is that in (P) Ik N Iz # § for at

least one k # £. (P2) has the following LP relaxation:

2 - —
(P2) Max | Y = by lxg
kek ieIk k
X, - Z a,.x < D, , i e 1
i j€I 1373 i
x., > 0, i e I
l —

Theorem 3.1 obviously applies to (P2); and conditions (5.1)

and (5.2) become respectively
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121 HD, > F (5.1a)
k
and
.0, > F . (5.2a)
€1, i1 k

If the condition of the Theorem 5.1 is replaced by Z HX. <F

iEIk

the same results obtained for (P1l) follow for (P2). A characteristic
of the solution of (P2) can be seen to be that each industry k will
either produce all products 1 & Ik’ or none, where Iy contains

only products 1 such that ﬁi > 0, as we assume that all products

with ﬁi < 0 have been eliminated from the set 1I.

5.2.2 Alternative Production Techniques

In this subsection we extend the basic model (Pl) to allow for
choice among alternative production techniques for each product, and
show how the results obtained for (Pl) apply to this version of the
problem.

Let 'I'i be the set of alternative techniques for product 1i, as
well as the cardinality of the set. 'I‘i fixed-charge cost functions
are thus specified for each i € I. This version of the problem,

labeled (P3), has the following formulation:

(P3) Max ) ) (Hzxz - FEAE)

iel tETi

t t
- - X, D, , i €1
téT. " jél th.aleJ =i " e
i j
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t t
CiAi - X2 0, i e 1, t € T,
AY = 0 1 i e I t € T
i = or , i , i
xt > 0 1 e 1 t € T
i - ’ ’ i?

t

where H? =W, - - G? -V, and C, 1is an upper bound on
i i i i _

a, . W,
1 jer it J
xi, for any t € Ti' Superscripts t have been added to the appro-

priate parameters to denote their dependence on the production tech-

niques. A set of constraints of the form

is not required in (P3), as the substitution theorem guarantees that
only one technique t from each Ti will be used if product i 1is
domestically produced.;/ In other words, at most one x;, t & Ti’
or 'y (the slack variable) will bg at a positive level for each
ie L.

It is assumed in the formulation of (P3) that the input-output
structure does not vary with the production technique. This is a
reasonable assumption for choice of technique problems with input-
output relationships specified at the product level. It merely says
that each technique t € Ti under consideration for product i

requires the same endogenous inputs (parts, components, modules, sub-

assemblies, etc.) in its production process, but may have completely

1/ See Chapter 3.
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different exogenous input requirements, labor skills, etc. The cost

t
components Gi account for these differences.

We also assume, without loss of generality, that the inequalities

vt > ¥4 s e 5 yiagt
i i i i i i
T,
and F% < F% < e < F.* (5.4)
—_— i i i

are satisfied for each 1€ I. If (5.4) is not satisfied for ome
or more 1 € I, then we can show that at least one production tech-

L ]
nique t can be eliminated from T,. Let Vt + GF = min VF + GE .
i i teT i
i

We can then eliminate from further consideration all techniques

t € Ti such that Fi z_FE', as they are completely dominated by
technique t' (i.e., costs under these techniques are at least as
high as under t' at all production levels). This simple dominance

t" tl! A t t
rule can be repeated for V + G = min V., + G_pr, and so on

i i tETi-{t'} i i

for each t € Ti and 1 € I. 1If we then renumber the '"competitive"

techniques for each product in decreasing order of (V; + G;), t € Ti
inequalities (5.4) will be satisfied and we will have obtained the
concave envelope of the capacity cost curves for each product.

We note at this point that if we relax the assumption of constant
marginal expansion cost in (Pl) and specify instead a piecewise linear
concave cost function for each product, the formulation of the problem
would take exactly the form of (P3), with inequalities (5.4) automa-

tically satisfied. The superscripts in the variables and parameters

in this problem would be associated with the segments of the capacity
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cost functions. Thus, we can conclude that after the elimination of
noncompetitive techniques, the "alternative production techniques"
version of (Pl) is identical to the 'multi-segment cost function"
version.

The LP relaxation of (P3) is

Ft
@)  owmax [ ] B - G
i€l teT if *
i
X xt - Z l.xF < Dl , i e 1
teT, j€r ter, I3
s o0 1 eI, t erT
xi z » ’ i

With A upper triangular, the constraint matrix of (P3) is block
triangular; row i now contains Ti + 1 positive elements, including
the coefficient of the slack variable P

If we solve (53) with all C, = » (equivalently, all F; = ()

i
then obviously any product 1 that is domestically produced in the
solution to such problems will be produced by the technique with the
lowest (Vz + GE), namely technique Ti. Thus, rather than working
with the full problem, the approach taken here comsists of working
with a sequence of problems such that each has a single production

technique specified for each product. Initially we consider the

problem with t = Ti only, for each i € I, To this problem

: T,
Theorem 3.2 applies and all activities with ﬁil < 0 can be elimi-

nated, as they are optimally imported in (P3). Note that not only

technique Ti is eliminated in this case, but all Ti techniques
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are, since ﬁii_i 0 = ﬁ; < 0 for any t € Ti'
Rather than discussing both the sufficient conditions for domes-
tic production and the sufficient conditions for imports as they apply
to (P3), we choose to discuss in detail only the latter; it should
become apparent from the discussion how the former can be applied.
For the development that follows, some additional notation is

t . . .
needed. Let a; denote the activity vector associated with the

production variable xt and e

1 1 the activity vector corresponding

to the import variable yg- In addition, let C; denote the produc-
tion level for product 1 at which the capacity cost function
changes slope, that is, the break point between techniques t -1
and ¢t.

With a solution at hand for (P3) with t = Ti and all Ci = o,
the sufficient condition for a given production activity to be per-
manently removed from the basis (given by Theorem 5.1) can be applied.
In this case, however, if production activity az is removed from

the basis, it may be replaced either by the import activity e or

1’
by a different production activity ag', t' € Ti' If a similar
iterative procedure as that for (P1l) and (P2) is to be applied to
(P3), the new activity to become basic must be selected in a way that
the validity of Theorem 5.1 is maintained at each iteration of the

procedure. The following theorem replaces Theorem 5.1 for this

problem.

=t_t t t t
Theorem 5.l1a Let t = Ti. If Hix, < Fy and X 2 Ci then

product i is optimally imported in the solution of (P3).
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1

Proof. By condition (5.4) we know that Hi > H§ for all 1 1

, =t =t!
and any t' =1, 2, ..., t=1. It follows that Hi > Hi and that
-t —t' . Y
x> X/ for all i ¢ I and any t' =1, 2, ... t-1. Then, by
Theorem 5.1, 'ﬁi ;i < Fi is a sufficient condition for technique t
to be discarded, that 1is, for production activity ai' to be

permanently removed from the basis. Under alternative production
techniques, two cases must be considered in order to determine which

of the activities that produces product 1 should replace activity

ai‘ in the basis:
-t t
(1) Xy < Ci , and
-t t
(i1) X > Ci .

To complete the proof of the theorem we need to show that in order

for az to be replaced im the basis by the import activity e

condition (ii) must be satisfied. Assume first that

i’
—t - t-
X, < Ci .
Since ;i is a valid upper bound on the production level for product

i, then technique t cannot be used in the optimal solution of
(P3) because by condition (5.4) there exists a production technique

t''<t (t= Ti>l) for which lower domestic production costs are

attained at production level ;i‘. Now, if ;i > C; , then by

concavity of the investment cost function and the fact that

-t -t
X, < X

1 S % under any technique t' =1, 2, ..., t-1, no technique can

yield a lower domestic production cost for product i than technique
"t. Hence, the import activity e, should replace ai
that is, product i 1is optimally imported in the solution of (P3).

in the basis,

Under alternative production techniques, thus, the sufficiency

condition for product i to be imported must include the additional
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requirement that ';i 3_C§ , since if ;E < C; the expansion cost
=t =t t .
used in the condition Hi X i-Fi overestimates the true cost at the

production level ;g » and this invalidates the condition for activity

ai to be dropped in favor of the import activity e,- However,
§§ < Ci is a sufficient condition for az to be replaced in the

basis by a different production activity, that is, for switching

. t'-1 | —t t' ' ,
production techniques. If Ci j_xi j_Ci », t' <t, then activity
'-
at 1 should replace at

1 1
=t —t

tion Hi X j_FE is satisfied or not, since ;i is still a valid

in the basis regardless of whether condi-

upper bound on the level of domestic production for product 1i. If

ﬁi ;E > F; and ;E z_Ci then obviously activity ai remains basic.

Let I+ be the set of production activities remaining in the

basis after the above conditions are systematically applied for each

product in the set I, and let at(i) be the activity in the current

i
basis, for each 1 ¢ I+. Since the approach ensures that ﬁz(l) and

;E(i) are still valid upper bounds on variable savings over import
costs and production levels respectively, (i.e., Theorem 5.3a is valid
at each iteration with t = t(i) for each 1 ¢ I) the elimination
procedure can be repeated as long as technique switching occurs
and/or production activities are eliminated in favor of imports, with
=t (1)

and x updated at each iteration.

=t (1)
H, i

the set I+, and
The approach for identifying production activities that are
optimally undertaken in the solution of (P3) is basically the reverse
of the process just described and yields a set of products 1I* known
to be optimally produced, although not necessarily the techniques by

which they should be produced. The process starts with an all-import
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t . s
basic solution. Once a production activity ay enters the basis it

can only be replaced (in the basis) by another production activity

?
az ; that is, only production technique switching can occur for

such activities. Moreover, t' > t, since at each iteration we must

have lower bounds both on variable savings over imports and on produc-

tion levels; the first activity to enter the basis must therefore use
: . . "t
technique t = 1. At each iteration the D, give lower bounds on
i
the levels of domestic productionl/ and can be used to substitute one

production technique for another in the basis. At the first iteration

after ai is introduced into the basis, for example, if Di z_Ci
. t "1 t+1
then technique t such that Ci E_Di §_Ci will replace technique 1

for product 1. Technique switching may occur for one or more activi-
ties at each iteration. As new production activities are introduced
into the basis, apart from its effects on production costs of other
products, endogenous demands are generated for the interdependent
activities already in the basis; these added demands may justify a
switch from production technique t to t', t' > t. With activity

t' . t . . . .
a replacing a; in the basis, the marginal cost of producing

i
2 .
product 1 decreases;—/ which in turn decreases the production costs

for all products j € I such that aij > 0. This in turn may cause

either new activities to satisfy the sufficient condition for being

1y The Dz for this problem correspond to the Di in (P1) and (P2)

and are obtained the same way.

2/

—~ By the concavity of the cost function.
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introduced into the basis, or technique switching for the activities
already in the basis (i.e., ai such that 1i e I#%), or.both. This

t and Dt

process is repeated, maintaining at each iteration Hi i

valid lower bounds on variable savings over imports and production
levels respectively.

At the end of this problem reduction stage, as was also the case
of problems (Pl) and (P2), we have a set I* of products that are
known to be domestically produced in the optimal solution of (P3),
and a set I+ (I+‘3 I*) of products that have the property that if
any one is dropped in favor of imports, total savings over imports

+
from the remaining I - 1 products decreases. Under alternative

production techniques, however, the set Ti of competitive techniques
for each product may have been reduced. Let E(i) be the technique
corresponding to product 1 in the final basis formed by the I+
activities, and define t(i) similarly for the I* activities.

If t*(i) 4is the production technique for product i in the optimal

solution to (P3), then

t(i) < t*(d) < t(d) for each 1 e I* ,
and
— . +
t*(1) < t(1) for each 1 eI -~ I*
- . . e t(1)
The optimality of the solution given by activities a; ,

ice I+ can be easily verified or disproved by a simple B-B stage. At
each node a problem with only one technique specified for each product
is solved, and the sufficient conditions used in the problem reduction

stage can be used here for guiding separation.
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5.2.3 General Concave Cost Function

Consider now the case in which the investment cost function for

capacity is given by a general concave cost function Fi(xi)’ with

2
dF, (x,) d°F (x,)
;.x i >0 and _‘ZLi < 0 for all possible values of X:s for
i dxi

each i € I. This problem is formulated as

(P4) Max .Z [Hixi - Fi(xi)]
iel =

< D, , iel

x, - Z aijxj < Dy

jel

x, > 0, 1el.

The Hi in this case are distinguished from the H, of the previous

i
problems by the fact that variable investment costs are not included
as components of variable domestic production costs,

In the previous subsection was shown the equivalence between
(P3) and a version of (Pl) with multi-segment concave cost functions.
We show here that_(P4) can be solved by solving an "equivalent"
problem with a piecewise linear cost functiom.

The "equivalent'" problem with piecewise linear approximation of
the cost curves Fi(xi) is obtained sequentially. The equivalence

is in the sense that at the optimal solution the piecewise linear

approximation coincides with the true cost function. Let Ci be an
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upper bound on all possible values of xi;l/ Obtain then for each

Fi(xi) a fixed-charge approximation that is tangent to it at X, = Ci'
Let F, be the intercept, and the slope dFi(xi)

i
v —_— .
1 dxi x.=C

The

formulation of this fixed-charge version of (P4) is brecisely (PL),
with Hi = Hi - Vi’ and Theorem 3.2 applies to this problem since the
minimum attainable Vi are used in Hi and consequently the .ﬁi are
not underestimated. We can thus eliminate from the problem all
products i such that ‘Ei < 0 as they are optimally imported in (P4).
If any product with .Ei < 0 1is found, we can set Ci =‘;i, the
solution of the relaxation of the fixed-charge problem with all

Fi = 0, and obtain a new fixed-charge approximation at the new upper

bounds ;;. This can be repeated as long as products are eliminated.
The procedure developed for (Pl) and used for (P2) and (P3) can
now be applied to the fixed-charge approximation of (P4). Starting
with all production activities in the basis, the condition of Theorem
5.1 can now be systematically applied here. At the end of the first
iteration we set Ci =';i, where the ;i, the new basic solution, are

obtained like in (PI), and new fixed-charge approximations to Fi(xi)’

ie I+, are obtained. At this point of the iterative procedure

1/ One such upper bound can be easily computed as follows:
CI = DI
C, = D, + ) a,C., i=1-1, I-2, , 1
i i J ] .
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we have an opportunity to reapply Theorem 3.2 1if one or more Ci

changed from their previous values, since in this case some H, nay

i
decrease as a result of possible increase in the variable investment
dFi(xi) § dFi(xi)

dx — dx

cost Vi’ as
i X,=a i xi=b

if a < b by concavity

of Fi(xi)'
The above process 1s repeated until no production activity is
dropped either in favor of a production activity with a different

"technique" (i.e., one with higher V which would occur if one or

i’

more ;; decrease from one iteration to the next, but remain at a

positive level). We have at the end of this stage a set of products
I+ with the same property as in the previous problems treated, and

fixed-charge functions which coincide with the Fi(xi) at the points

X for each 1 € I+.

1?
Again, the optimality or not of the solution from the first
stage can be determined by a B-B stage, in which at the root node we
have the last fixed-charge approximation obtained. The procedure of
the first stage can be used to obtain fixed-charge approximations

whenever separation occurs.
We note finally that the procedure for obtaining a set of

products I* known to be optimally produced in (P4) cannot be applied
dr, (x,)

to this problem, as Tax.

may not be finite. It could be

applied, however, to those activities, if any, which satisfy

dFi(xi)
dx, i i’

i xi=0



CHAPTER 6

CONCLUSION

6.1 Summary

In this study a solution procedure was developed for a class

- of investment planning models which incorporates the following fea-
tures: economies—of-scale in production, intermediate input-output
relationships among production activities, and capacity sharing.

The choice is between domestic production and imports to satisfy
exogenously stateddemands for a given bill of goods. The model was
presented in Chapter 2, which also provides a brief discussion of
the complex interdependencies that exist among production activities
and their potential effects on investment decisions.

The theoretical analysis of the planning model was done in
Chapter 3. Simple sufficiency conditions for import and for domestic
production of a given product were discussed and a problem reduction
stage was devgloped which applies these conditions in an iterative
fashion. Activities which are not competitive with imports when
maximum benefits from interdependence are assumed are identified at
this stage, as well as activities that are profitable even when no
advantage is taken of interdependence. For the solution stage an
LP-based branch-and-bound (B-B) algorithm was developed. It was shown
that the LP relaxation of the planning problem is a simple maximiza-
tion over a Leontief substitution structure for which a very efficient

solution approach exists. The development of this chapter assumed an
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upper-triangular input-output structure for the planning model. It
was shown then how 'data relaxation" allows for the same problem
reductionlstage to be used for nontriangular input-output structures,
and, most importantly, it was shown that the LP relaxation can also be
very efficiently solved in this case, and the B-B stage is thus
readily applicable to this more general problem.

Computational results obtained from the implementation of the
solution approach developed in Chapter 3 using the Korea study data
were given in Chapter 4. The results frbm 25 test problems generated
by making parametric changes in the Korean data provided strong evidence
of the efficiency of our gwo-stage approach. The problem reduction
stage was very successful in reducing the size of the problem. For
several problems, in fact, all profitable production activities were
identified at this stage, although this could only be known after
the B-B stage. More important than the first stage, however, was
the efficiency of the B~B stage. Computational experience obtained
for the B-B stage alone showed that its efficiency does not depend
in any significant way on the success of a problem reduction stage.
This is important for two reasons: First, the effectiveness of the
problem reduction stage decreases with the degree of interdependence
among the activities; and secondly, for nontriangular input-output
structures it is uncertain whether it ''pays" to use a problem reduc-
tion stage and the solution to such problems must therefore rely
more heavily or perhaps entirely on the B-B stage, or some other
solution method.

The important conclusion from the computational experience of
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Chapter 4 is that very large problems can be efficiently solved by
our two-stage approach. Computational feasibility should thus no
longer be an issue in deciding the level of aggregation at which
such models should be estimated.

In Chapter 5 various models of input-output interdependence (no
capacity sharing allowed) were studied, each incorporating different
features. The two-stage approach was specialized to each. It was
shown for these models that besides the possible identification of
activities known to be optimally undertaken, the problem reduction
stage ylelds a set of activities which contains all the activities
in the optimal solution to the model and has the following property:
if any one activity is dropped from the set, total savings from
undertaking all the remaining activities decreases.

While it is unlikely that the simple models of Chapter 5 fit
any real situation, they comstitute nevertheless basic substructures
of many important planning problems, including the process analysis
models cited in Chapter 1. These substructures can be exploited in
many ways in decomposition schemes to obtain efficient solution
approaches to more complex real problems, and this is perhaps the

main value of the analysis of Chapter 5.

6.2 Suggestions for Further Research

An obvious area for further research is the introduction of
spatial and dynamic elements in the planning model (P). Another
important extension of (P) would be the incorporation of alternative

production techniques for each product. It seems that this particular
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extension could be incorporated in our two-stage approach with only
minor changes along the lines of the alternative techniques extension
of (Pl).

It was pointed out in the previous section that the problems
studied in Chapter 5 constitute important substructures of many
planning problems. As most of the successful approaches to mixed
integer programming problems rely heavily on éxploiting structures,
the results of Chapter 5 can be useful in solving more complex problems.
A serious difficulty, however, occurs when constraints are added to
these simple models, or even to (P), which explicitly place a limit
on some resource. In these cases the dichotomy between domestic pro-
duction and imports will not be in general a property of the optimal
solution. This is the case, for example, if a budget constraint is
added to (P) or to any of the models of Chapter 5. It is an important
extension that would allow sectoral models like (P) to be imbedded
in economy-wide models. This constitutes a very difficult problem,
as no price can be found in general for the limited resource which
would lead to the optimal production decisions.l/

An example is given next of an extension of one of the simple
models of Chapter 5 which constitutes a very important class of
problems and for which the difficulty described above does not occur.
The general approach of this dissertation seems to be promising for
this class of problems. Consider the following multi-period extension
of (Pl1), the most basic structure studied in Chapter 5. We use a

1/ This immediately rules out an otherwise promising approach to this

constrained version of (P), which is Lagrangian relaxation (dual
decomposition) with respect to the added constraint(s).
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cost minimization formulation of (Pl) without substituting for the

import variables so that all the parameters appear explicitly.

(P5) Min ) } (vixz + wiy'i: + F;:_A;)

i€I teT
t t t-1 t t

x, - Z a,.x, +y., -y = D_ , ieIrl,teT
i je1 1i7j i i i
t t t

CiAi - % > 0 iel,teT
t

Ai = 0 or 1, iel, teT
t

xi > 0, iel,teT
t .

vy > 0, iel,teT

We assume that V; includes the variable production cost component

t . . . .
Gi’ and, as before, that the input-output matrix A is upper tri-

angular. If we give the following interpretation to the variables and

parameters in (P5):

xi = quantity of product i produced or ordered at the
beginning of period t,

yz = ending inventory of product i in period t,

VE = wvariable cost of production for product i in period t
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Wz = 1inventory holding cost per unit of product i in peribd
t,
F; = fixed cost component of production cost, set-up cost,

or ordering cost, for product i in period t,

then (P5) represents an important class of problems occurring in
material requirements planning (MRP) systems. (P5) is similar to
Veinott's [1969] multi-facility economic-lot-size model, and it
includes as special cases the formulation of Crowston, Wagner and
Williams [1973], and Crowston and Wagner [1973].

An optimal solution to (P5) exists which is an extreme point of
the material balance constraints, and the LP relaxation of (P5), as

in all the models studied here, yields a Leontief substitution problem,

It can be seen immediately, by the substitution theorem, that at most

1 t-1 _

one of x- and yi- will be at a positive level (i.e., xiyi = 0)

i
in the optimal solution of (P5), and exactly one if D; > 0.

The results of this study suggest that the specialization
of our two-stage approach to this important class of problems might

be a worthwhile research effort.
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