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Abstract

We consider a risk-aware forest owner and electricity producer evaluating
the Reduced Emissions from Deforestation and Degradation (REDD)-based
offsets with a benefit-sharing mechanism under uncertain CO2 prices. For
a range of CO2 prices and respective risks perceived by the forest owner
(seller) and electricity producer (buyer), we apply a model of fair (indif-
ference) pricing. Parties’ risk preferences are reflected by exponential utility
functions. The potentially contracted amounts of REDD offsets are analyzed
under various risk preferences and for different benefit-sharing opportunities.
Our results show that a risk-averse attitude considerably increases the con-
tracted offset amounts (compared to risk-neutral case) and, therefore, creates
a higher potential for REDD implementation. We demonstrate possible sit-
uations, when parties could agree on a certain range of REDD contracts, e.g.
smaller amounts of REDD offsets are traded for higher prices, and larger
amounts – for lower prices, although contracting a moderate amount at a
moderate price is impossible. The suggested benefit-sharing mechanism can
help increase contracted offset amounts. Our modeling results highlight two
ways to promote higher REDD participation: (i) strengthening the carbon
price signal to reveal risk-averse behavior of energy producers, and (ii) imple-
menting the mechanism of benefit/risk sharing between the REDD consumer
and supplier.
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1. Introduction

This paper elaborates on the development of financial instruments that
support Reduced Emissions from Deforestation and Degradation (REDD)
(Lubowski and Rose, 2013; Obersteiner et al., 2009; Krasovskii et al., 2014).
In the papers Fuss et al. (2011); Szolgayová et al. (2014) decision-making of
the price-taking electricity producers consists of choosing between investing
in research and development (R&D) to implement new technologies (carbon
capture and storage (CCS) modules) and buying REDD options. We explore
a similar idea of employing REDD for offsetting emissions of electricity pro-
ducers by setting a new problem with a few distinctive features. Firstly, we
consider the case when an energy producer has a market power (Stoft, 2002;
Hunt and Evans, 2009; Janssen and Wobben, 2009) – the ability to reduce
production output and charge higher electricity prices to consumers. Thus, in
the face of uncertain CO2 prices the electricity producer with market power
has more flexibility compared to the price-taking energy producer. Secondly,
the electricity producer in our model is a medium-term decision maker: they
do not change their technology portfolio by decommissioning CO2-intensive
plants and building new power plants (which would be a long-term invest-
ment). The optimization model works with two time steps: initial (low) CO2

price and future (uncertain) CO2 price. This simplified rather conceptual
modeling approach is justified, because a dynamic model would require ad-
ditional information about the future which is not available at the moment:
CO2 price formation process, REDD offsets acceptance on the market, etc.
For the same reason we focus on the direct contracting of REDD offsets be-
tween the forest owner and electricity producer, and do not consider market
modeling.

We construct a microeconomic model of interaction between the forest
owner (REDD supplier), electricity producer (REDD offsets consumer), and
electricity consumer. In the proposed partial equilibrium modeling frame-
work CO2 prices are exogenous and uncertain. The decision-making process
of the electricity producer (under a condition of an existing or absent CO2

tax/price) consists of (see, e.g., Stoft (2002); Masters (2004)): (i) choosing
power plant load factors to minimize the cost given the hourly electricity
demand profile and installed capacities of particular power generation tech-
nologies; and (ii) choosing an electricity price to maximize the profit based on
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the demand function indicating consumers’ sensitivity to electricity prices.
In the study we apply a constant elasticity demand function (Bohi, 2013).

The elevating CO2 price might impact not only the profits of the elec-
tricity producer (decrease), but also the electricity prices for the consumer
(increase), and, hence, some financial instruments might be implemented
today in order to be prepared for the uncertain CO2 prices in the future
(Krasovskii et al., 2014). We propose and explore financial instruments sup-
porting the REDD program. On the supply side of the REDD-based emission
offsets we model a forest owner who decided to preserve the forest and sell
respectively generated REDD-based emission offsets (further – REDD off-
sets). The focus of our analysis is on how the forest owner and the electricity
producer evaluate their fair prices for different amounts of REDD offsets. In
the paper the “fairness” of the price is understood in the sense of parties’
indifference regarding whether to engage in contracting a given amount of
REDD offsets or not. The fair price of the electricity producer (forest owner)
means that for a higher (lower) price the electricity producer (forest owner)
will not want to engage in the contract. In case the parties can agree on a
fair price, the problem is to find a range of REDD offsets’ amounts which
can be contracted.

Risk preferences play an important role in the model of fair pricing. Here
we employ exponential utility functions to reflect parties’ risk attitudes. The
exponential utility admits all types of risk preferences: risk-taking, risk-
neutral, and risk-averse.

The idea of benefit-sharing is important within the REDD context (Lind-
hjem et al., 2010). We propose a benefit-sharing mechanism that is activated
in the case when electricity producer emits less than the amount of REDD
offsets contracted in the first period (without CO2 price); in this case the
unused amount of REDD offsets is shared with the forest owner.

The paper considers mathematical constructions and properties of a pro-
posed financial instrument. Analytical results presented in the paper are
illustrated by a numerical case study based on realistic data for regional
electricity production. Modeling results show how risk preferences of the elec-
tricity producer and forest owner, combined with the benefit-sharing mech-
anism, impact the fair prices and contracted amounts of REDD offsets. Our
key findings signal that higher REDD participation can be achieved when
parties are risk-averse, and the benefit-sharing mechanism is activated. Risk
preference is not a policy variable. However, the source of risks in our model
is associated with uncertain CO2 tax/price distribution and REDD-offsets
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acceptance. Thus, to let the proposed mechanism work it is necessary to
strengthen the relevant policy signal. A stronger CO2 price signal can reveal
risk-averse behavior of energy producers.

2. Modeling Framework

In this section, firstly, we present a model of an electricity producer with
market power operating without contracting REDD offsets. The decision-
making of the electricity producer consists in choosing a technological mix
in order to meet the hourly demand and to maximize profit. The optimal
response in terms of emissions’ reduction and raising electricity prices is
constructed for any future CO2 price. Secondly, we introduce a two-period
model for REDD offsets contracting. Given the distribution of uncertain
CO2 prices in the second period, the electricity producer solves in the first
period the problem of expected profit maximization for various amounts of
contracted REDD offsets. In general, the electricity producer maximizes
utility – a function of their profits. In our study we apply the exponential
utility function, that fits well with our modeling framework. In the first time
period, based on the comparison of maximum expected utilities with and
without contracting REDD offsets, the electricity producer evaluates their
fair (indifference) price for each amount of offsets that they could potentially
buy. Similarly, the forest owner – the seller of REDD offsets – calculates their
fair price, based on the exponential utility reflecting their risk preferences.
We also introduce the benefit-sharing mechanism and solve the optimization
problem of the electricity producer, who has two options: either (i) to emit
more than available REDD offsets purchasing the CO2 offsets on the market
to cover excess of their emissions, or (ii) to emit less and share the benefits
from selling the excess of offsets at a market price with the forest owner.

In this study we develop the model proposed in Krasovskii et al. (2014).
The model improvement consists of introducing utility functions and analysis
of fair prices under exponential risk preferences. We also prove analytically
results for risk-neutral utilities (a special case of exponential utility). This
extended version of the model allows for a wider application of benefit-sharing
mechanism.

2.1. Notations

In our model the electricity producer uses n technologies varying in costs
(US$/MWh, excluding emission costs) and emission factors (ton of CO2/MWh).
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Let us introduce the following notations:
ai, i = 1, .., n are installed capacities (MW);
vi are variable costs (US$/MWh);
dj, j = 1, .., 24 is hourly average demand (MW);
x = {xij}, i =, 1.., n, j = 1, .., 24, is a matrix of hourly load factors

(controls, ratio between 0 and 1);
q(x) = (q1, ., q24) = {

∑n
i=1 aixij} is a vector of hourly outputs (MW);

Q = Q(x) =
∑n

i=1 ai
∑24

j=1 xij is aggregate daily production (MWh);
P e is electricity price (US$/MWh);
D−1 : P e = D−1(Q) is inverse demand function (see Section 3.1);
εi are emission factors (ton of CO2/MWh);
p is CO2 price (US$/ton of CO2).

2.2. Model description

For each matrix of load factors x the profit of the electricity producer in
the absence of CO2 price is calculated as follows:

Πe(x) = R(x)− C(x), (1)

where
R(x) = P e

(
Q(x)

)
Q(x), (2)

is the revenue, and

C(x) =
N∑
i=1

viai

24∑
j=1

xij + Fc, (3)

is the cost function. A constant fixed cost component, Fc, is not included in
the optimization problem, and is used only for profit calculation.

For each CO2 price p a production scenario x generates corresponding
emissions:

E(x) =
n∑
i=1

εiai

24∑
j=1

xij, (4)

and the total profit of the electricity producer is calculated as follows:

Π(x, p) = Πe(x)− E(x)p. (5)

We will assume that the CO2 price belongs to a segment p ∈ [0, p̃]. Let
us note that profit component Πe and emissions E do not directly depend on
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price p, however, they are indirectly determined by the technological possi-
bilities of the electricity producer.

We assume that hourly profile changes proportionally to the aggregate
demand (see Krasovskii et al. (2014) and section 3.1 for details) and introduce
the feasibility domain X, which contains all technological mixes (controls)
satisfying the hourly demand:

X = {x : xij ∈ [0, 1] and q(x) ≥ Q(x)

Q0
d0}, (6)

where d0 = (d0
1, .., d

0
24) and Q0 are, respectively, the initial hourly and daily

aggregate demands (at zero CO2 price).

Remark 1. In the model we use hourly demand in order to allow for op-
timizing a technological mix with respect to exogenous CO2 prices. At the
same time we model a market power based on the elasticity of aggregate de-
mand. To reconcile these two dimensions, we introduced the proportionality
assumption in the study. This assumption seems to be realistic; e.g. empirical
analysis in Bigerna and Bollino (2013) indicates possible proportionality.1

For convenience, let us first consider the electricity producer as a profit
maximizing decision maker, and afterwards introduce their utility (as a func-
tion of profit). The profit maximization problem is formulated as follows.

Problem 1 (without REDD offsets). Given the feasibility domain X (6),
for every CO2 price p the electricity producer maximizes their profit (5):

maximize
x∈X

Π(x, p). (7)

Let us denote a solution to Problem 1 – the optimal technological mix –
by the symbol x∗

1 = x∗
1(p) for any price p ∈ [0, p̃]. Then, by definition of x∗

1

for any x ∈X (6) the following inequality holds:

Π(x∗
1, p) ≥ Π(x, p). (8)

Let us denote by the symbol Π̂(p) the maximum profit at price p:

Π̂(p) = Π(x∗
1(p), p) = Πe(x

∗
1(p))− E(x∗

1(p))p. (9)

The corresponding electricity price is calculated as P e(Q(x∗
1(p)).

1see Bigerna and Bollino (2013), Figure 1 – Hourly profile of electricity demand in Italy
– MWh, 2010-2011.
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2.3. Assumptions for modeling

In our study we assume the following properties of optimal profit Π̂(p)
(9) and emissions Ê(p) = E(x∗

1(p)) with respect to CO2 price.

Assumption 1. The optimal profit and optimal emissions achieve their max-
ima at zero CO2 price, p = 0, and are continuous strictly declining functions
with respect to growing p:

Π̂(p) ↓, Ê(p) ↓, when p ↑ . (10)

This assumption is straightforward in the provided modeling framework
as the power generation technologies are fixed (see also Krasovskii et al.
(2014)). It is consistent with the results of larger scale modeling (OECD,
2009) in the short and medium term.

Remark 2. Under Assumption 1 for every CO2 price p ∈ [0, p̃] there exists
a unique emissions level Ê(p) = E(x∗

1(p)) corresponding to maximum profit

Π̂(p).

Remark 3. Assumption 1 basically restricts the consideration of electricity
producers to those unfavorably (negatively) affected by an emerging CO2 price.
Those who can potentially benefit from it, e.g. due to a competitive advantage,
are not considered here. This situation is beyond the scope of this paper,
which is focused on the problem of CO2-intensive power generation.

Based on Assumption 1 we prove the following lemma.

Lemma 1. For any x ∈ X (6), such that E(x) 6= E(x∗
1(p)), the following

inequality holds for all p ∈ (0, p̃]:

Πe(x
∗
1(p))− E(x∗

1(p))p > Πe(x)− E(x)p. (11)

The proof is given in Appendix A.
Lemma 1 has the following meaning. If we fix CO2 price p and select an

arbitrary mix of technologies x satisfying the hourly demand, such that the
corresponding emissions differ from optimal emissions for the price p, then
this mix x is not optimal for the electricity producer in the sense of profit
maximization.
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2.4. Modeling REDD-based offsets under uncertainty

High CO2 price decreases the profit of the electricity producer. This neg-
ative effect as such can be amplified by uncertainty about the future CO2

price levels and lead to an excessive risk. To hedge against that the emitter
can engage in contracting REDD offsets before the information about CO2

price is revealed, so that contracted REDD offsets could allow offsetting CO2

emissions in the future. Let us note that we are not taking into account
additional factors in the payoff of a REDD supplier (forest owner), e.g. op-
portunity of deforesting and selling the wood. We assume that the forest
owner decided to keep the forest for generating REDD offsets.

Let the future CO2 price be an uncertain variable (Raiffa, 1968) following
a discrete probability distribution:

{pl, wl}, l = 1, ..,m,
m∑
l=1

wl = 1, pl ∈ [0, p̃], wl ∈ (0, 1], (12)

where wl stands for probability, and realizations of possible prices are pi 6= pj,
if i 6= j.

A problem is divided into two stages (time periods): in the first stage
the forest owner and electricity producer negotiate an amount E ∈ (0, E0] of
REDD offsets and their price. Here E0 is the maximum amount of emissions
– generated by the electricity producer at zero CO2 price, i.e. E0 = Ê(0).

In the second stage they face the realization of uncertain CO2 prices.
At each realization of the CO2 price the electricity producer can either use
all REDD offsets (by emitting more or equal to the previously contracted
amount E), or emit less than E and share the benefit with the forest owner
from selling the rest (unused offsets) on the market (at a market price p).

Benefit-sharing mechanism. The electricity producer and forest owner, when
selling offsets on the market, get shares of the market price δ and (1 − δ)
respectively, so that:

• If δ = 1, the electricity producer has the right to sell the offsets in the
second period at a market price without sharing the profit with forest
owner.

• If δ = 0, the electricity producer can only use the contracted REDD
credits to offset the factual amount of their emissions and the unused
credits are returned (without compensation) back to the forest owner,
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i.e. no resale by the electricity producer is possible on the market. The
profit from unused offsets goes entirely to the forest owner.

• If 0 < δ < 1, the electricity producer faces a trade-off between emitting
more and, hence, using more of the contracted REDD credits for off-
setting their emissions versus sharing the profit with the forest owner
from selling the offsets at the market price.

The benefit-sharing ratio δ is included in the negotiation process between
REDD-offsets supplier (forest owner) and consumer (electricity producer)
along with the amount of offsets E and their price.

We assume that the forest owner and electricity producer face the same
CO2 price distribution. The presence of REDD offsets at the second stage
of the model leads to the following modification of the Problem 1 (the case
without REDD).

Problem 2 (with REDD offsets). Given the feasibility domain X (6), CO2

price distribution {pl, wl} (12), benefit-sharing ratio δ ∈ [0, 1], and amount
of REDD offsets E ∈ (0, E0] contracted in the first time period the electricity
producer solves in the second time period the following profit maximization
problem for every possible future CO2 price pl:

maximize
x∈X

ΠR(x, pl), (13)

where
ΠR(x, pl) = Πe(x)− pl

[
E(x)− E

]
+

+ δpl
[
E − E(x)

]
+
. (14)

Here [y]+ = max{y, 0}, meaning that the electricity producer can offset
their emissions up to the amount E by using REDD offsets, the rest is sold
on the market and the profit is shared with the forest owner.

The optimal technological mix x∗
2(pl) – solution to (13) – generates the

maximum profit with REDD:

Π̂R(pl) = ΠR(x∗
2(pl), pl), (15)

at a particular CO2 price pl. We denote by the symbol:

ER(pl) =
[
E − E(x∗

2(pl))
]

+
, (16)

the corresponding amount of unused emission offsets that have to be sold on
the market generating the profit (to be shared).
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2.5. Modeling risk preferences of forest owner and electricity producer

We model risk preferences by implementing utility functions. Let us de-
note by the symbol UF the utility of the forest owner, and by the symbol UE
– electricity producer’s utility. In our model utilities are functions of profits:

UE = UE(ΠE), UF = UF (ΠF ). (17)

Here symbol ΠF stands for the profit of the forest owner from selling REDD
offsets (to be specified in more detail in section 2.5.2), and ΠE is the profit
of electricity producer: ΠE = Π as in (5) without REDD, and ΠE = ΠR (14)
with REDD. In this paper we deal with exponential utility functions. Thus,
electricity producer’s utility is given by the function:

UE(ΠE) = (1− e−αΠE)/α, (18)

where α is a constant parameter that represents the degree of risk preference:
α > 0 for risk aversion, and α < 0 for risk-taking. Applying L’Hôpital’s rule,
one can show the following asymptotic property:

lim
α→0

1− e−αΠE

α
= lim

α→0
ΠEe

−αΠE = ΠE, (19)

meaning that when α tends to zero the utility function (18) converges to
the risk-neutral utility UE(ΠE) = ΠE. Exponential utility implies constant
absolute risk aversion equal to α (see Pratt (1964)).

2.5.1. Utility maximization by the electricity producer

After the introduction of utility function (18) into the model, the profit
maximization Problem 1 (without REDD) (7) and Problem 2 (with REDD)
(13) can be substituted, respectively, by the utility maximization problems:

maximize
x∈X

UE(Π(x, pl)), (20)

maximize
x∈X

UE(ΠR(x, pl)). (21)

Remark 4. In the case of exponential utility function UE (18) the solutions
to utility maximization problems (20) and (21) coincide with the solutions to
the profit maximization problems (7) and (13), respectively.
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The utility function UE (18) is a strictly increasing with respect to ΠE:

dUE
dΠE

=
αe−αΠE

α
= e−αΠE > 0. (22)

Let us consider the case without REDD: ΠE = Π (5). The monotonicity
property (22) by definition means that for all x ∈ X, such that Π(x∗1, pl) ≥
Π(x, pl) (8), we have

UE(Π(x∗1, pl)) ≥ UE(Π(x, pl)), (23)

meaning that x∗1(pl) delivers the maximum UE(Π̂(pl)) in (20). The same
reasoning is valid for the case with REDD, implying that x∗2(pl) is the solution
to problem (21).

2.5.2. Utility of the forest owner

The profit at price pl of the forest owner who does not contract REDD
offsets in the first time period is calculated as follows:

ΠO
F (pl) = plE , (24)

meaning that they keep all the offsets in the first period and sells them in
the second period when the CO2 price reveals.

Their profit when contracting REDD offsets in the first time period (under
unknown CO2 price) is given by the optimal behavior (including benefit-
sharing) of the electricity producer (see Problem 2):

ΠR
F (pl) = (1− δ)plER(pl) + pFE . (25)

Recall, that symbol ER(pl) = ER(E , δ) (16) denotes emissions shared with
the electricity producer in the second period at realization of CO2 price pl.
Here pF is the price of REDD offsets paid to the forest owner.

The utility function of the forest owner is given by the similar to (18)
equation:

UF (ΠF ) = (1− e−βΠF )/β, (26)

where β is a constant representing the risk preferences. Here profit ΠF =
ΠO
F (24) without REDD in the first time period, and ΠF = ΠR

F (25) with
contracting REDD offsets under uncertainty.
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2.5.3. Expected utilities

In order to determine fair prices we need to introduce expected utili-
ties. Given the distribution {pl, wl} (12) of CO2 price, they are calculated
straightforward:

E[UE(ΠE)] =
m∑
l=1

UE(ΠE(pl))wl, E[UF (ΠF )] =
m∑
l=1

UF (ΠF (pl))wl. (27)

Remark 5. If we apply risk-neutral utilities (special cases of (18) when α→
0 and (26) when β → 0):

UE(ΠE) = ΠE, UF (ΠF ) = ΠF , (28)

then we arrive at the expected mean values (EMV) (Raiffa, 1968) in (27).

2.5.4. Interpretation of risk preferences

The interpretation of parameter α in (18) is the following. For illustration,
let us consider a situation when a decision maker evaluates their participation
in the lottery with two outcomes: they can win 10 mln. with a probability of
0.5, or lose 10 mln. with the same probability. If α ' 0, the decision maker’s
expected utility (27) is zero, meaning that they are indifferent regarding
whether to participate in this lottery, or not. The risk-taker’s expected utility
(with α = −0.1) is 5.43, meaning that they are willing to participate in
the lottery. On the contrary, the risk-averse decision maker (α = 0.1) has
an expected utility equal to −5.43, meaning that they prefer to avoid this
venture. In a similar manner, the risk preference parameters reflect parties’
perception of the uncertain CO2 price distribution in our model.

In Figure 1 we can see the impact of risk preferences to the shape of an
exponential utility function. Here we depict the functions of profit UE(ΠE)
(18), where profit ΠE belongs to the segment from 0 to 4 mln. US$, deter-
mined by our case-study below.

2.6. Fair prices in the model with exponential risk preferences

The discussion below is devoted to valuation of various amounts of REDD
offsets contracted in the first time period under unknown CO2 price assuming
the given distribution (12) and a fixed benefit-sharing ratio δ ∈ [0, 1]. The
forest owner and electricity producer evaluate their fair (indifference) prices
for the given amount of offsets. The electricity producer derives the price
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Figure 1: Sensitivity analysis of exponential utility function (18) with respect to risk
preferences α = −0.2 – risk-taking, α ' 0 – risk-neutral, α = 0.2 – risk-averse.

they are willing to pay for the REDD offsets according to their indifference
condition based on (9) and (15):

E[UE(Π̂(pl))] = E[UE
(
Π̂R(pl)− pEE

)
]. (29)

Here pE is the desired fair price of the electricity producer. Let us note,
that here we deal with the maximized expected utilities of the electricity
producer. The maximum of the utility function’s argument and, hence, the
maximum of the utility function itself is achieved at solutions x∗2(pl) as the
term pEE is a constant and, hence, it is not included in the optimization (see
(13), (20)-(21), and Remark 4). The indifference condition (29) means that
electricity producer’s expected utility stays the same regardless of whether
or not the electricity producer participates in REDD.

Substituting exponential utility (18) into equality (29), we simplify it to
the following equation with respect to unknown fair price pE:

pE =
1

αE

(
ln(

m∑
l=1

e−αΠ̂(pl)wl)− ln(
m∑
l=1

e−αΠ̂R(pl)wl)
)
. (30)

The indifference condition for the forest owner means that they choose
their fair price pF in such a way, that their expected utility stays the same
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regardless of whether or not they engage in REDD in the first time period.
Hence, the equation takes the form:

E[UF (ΠO
F (pl))] = E[UF (ΠR

F (pl)]. (31)

Let us derive the forest owner’s fair price for REDD offsets by substituting
(24)-(26) to (31):

pF =
1

βE

(
ln(

m∑
l=1

e−β(1−δ)plER(pl)wl)− ln(
m∑
l=1

e−βplEwl)
)
. (32)

Thus, for the given CO2 price distribution {pl, wl}, l = 1, ..,m (12),
benefit-sharing ratio δ ∈ [0, 1] and amount of offsets E ∈ (0, E0] one de-
rives the fair prices of the forest owner pF (32) and the electricity producer
pE (30). Using equations of the fair prices, we can find the volumes of REDD
offsets E , for which the deal takes place. Namely, the amount E can be con-
tracted only if pF (E) ≤ pE(E), meaning that the selling price pF is not higher
than the buying price pE. Functions pF = pF (E) and pE = pE(E) represent,
respectively, risk-adjusted supply and demand curves for REDD offsets.

Remark 6. The exponential utility function (18) considered in this study
possesses the feature of equal buying and selling price of an asset, discussed
e.g. in Raiffa (1968).

If we consider an electricity producer having REDD offsets and wishing
to sell them at a fair price denoted by psE subject to indifference equation
inverse to (29):

E[UF (Π̂R
E(pl))] = E[UF (Π̂E(pl) + psEE)], (33)

we determine that the fair selling price coincides with the fair buying price:
psE = pE (30). The same is valid for the forest owner. It is well known
that some other types of utilities do not possess this feature (see, e.g. Raiffa
(1968), p. 90) 2.

Defining fair prices (29), (31) allows for the application of a wide variety
of utility functions. In Appendix B we show that for some functions the

2Let us note that Raiffa (1968) treats these prices as the prices for which one is willing
to buy or sell their participation in the lottery. In our case “no lottery” means that the
forest owner (electricity producer) does not participate in REDD.
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derivation of fair prices pE and pF may require additional numerical calcula-
tions.

To sum up, we apply exponential utility in this study for the following
reasons:

1. It allows for modeling risk preferences by a single parameter

2. It contains a risk-neutral utility as a special case

3. The analytical derivation of fair prices is possible.

This form of utility is common in applied studies (see, e.g. Bocquého and
Jacquet (2010); Lappi et al. (2010)).

2.7. Analytical solution for risk-neutral case

In the case of risk-neutral utilities (28) we analytically find solutions to
utility maximization problems (20)-(21) of the electricity producer depending
on the amount of REDD offsets E ∈ (0, E0] and determine the corresponding
fair prices of the forest owner and electricity producer. This allows us to
obtain an analytical estimate of the amount of REDD offsets, that can be
contracted.

Theorem 1 (Risk-neutral case). In the case, when both forest owner and
electricity producer are risk-neutral, meaning that their expected utilities are
mean values (28), for a given CO2 price distribution {pl, wl}, l = 1, ..,m (12)
and for any benefit-sharing ratio δ ∈ [0, 1) there exists an amount Ẽ ∈ (0, E0]
of REDD offsets up to which the fair prices of the forest owner pF (B.10)
and of the electricity producer pE (B.6) coincide and are equal to the expected
CO2 price p̄. This amount equals the minimum optimal quantity of emissions
generated by the electricity producer at the maximum possible CO2 price p̃ =
max{pl}:

pF = pE = p̄ for any E ≤ Ẽ , δ ∈ [0, 1], (34)

where

Ẽ = E(x∗
1(p̃)), p̄ =

m∑
l=1

plwl. (35)

For any amount of REDD offsets larger than Ẽ (35) the fair price of the
forest owner pF is higher than the fair price of the electricity producer pE:

pF > pE for any E > Ẽ , δ ∈ [0, 1). (36)

The proof is given in Appendix C.

15



Remark 7. Theorem 1 shows that in the case of a bounded CO2 price dis-
tribution, the forest owner and electricity producer can contract any amount
E ∈ (0, Ẽ ] of REDD offsets for the fair price p̄. Thus, in the considered
risk-neutral case, only two characteristics of distribution fully determine the
solution to the problem: the mean and the highest price.

The practical consequence following from this result is that – on one
hand – the potentially contracted amount is limited by the potentially high
future CO2 price (the higher the price, the lower is the contracted amount).
On the other hand, even in the risk-neutral case with possibility of a high
CO2 price the contracted amount is non-zero, hinting at the opportunity to
practically implement the REDD-based offset instrument featuring a benefit-
sharing approach as considered in this paper.

3. Modeling Results

The analytical solution obtained for the case of risk-neutral utilities (28)
in the previous section is valid for a broad range of possible model setups
in our modeling framework. In order to provide a numerical example and
illustrate the impacts of risk preferences and benefit-sharing mechanism on
the contracted amount of REDD offsets, we calibrate the model for a realistic
case-study, and carry out numeric optimization.

3.1. Data and calibration

Technologies in the model. In our illustrative case study a regional electric-
ity producer is operating power plants with the following technologies: coal
(pulverized coal steam), combustion turbine (natural gas-fired) and combined
cycle gas turbine (CCGT) (see Masters (2004)). The corresponding fixed and
variable costs, as well as the installed capacities are given in Table 1. The
total size of installed capacity (7900 MW) is chosen to illustrate a model at a
regional scale, and is roughly equivalent to the installed capacity of Belarus3.

Average hourly electricity demand. To construct an economically efficient
production plan the electricity producer has to determine the combination of
technologies to be used hourly during the day in order to satisfy the hourly

3See International Energy Statistics provided by the U.S. Energy Information Admin-
istration (EIA) http://www.eia.gov/cfapps/ipdbproject/
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Table 1: Technological data for the case-study. Sources: Masters (2004); Weisser (2007);
Schröder et al. (2013).

Technology Annual
fixed cost,
thou-
sands of
US$/MWy

Variable
cost,
US$/MWh

Installed
capacity,
MW

Emission
factors,
tons of
CO2/MWh

Coal-fired 224 18.9 3800 1.02

Natural gas-fired
combustion tur-
bine

64 55.6 1900 0.55

Natural gas-fired
combined cycle

96 39 2200 0.33

demand profile. A hypothetical demand profile for an average day of the year
is depicted in Figure 2. It features the same shape (peaks) as the regional
profiles provided in the literature (Bigerna and Bollino, 2013; Andersen et al.,
2013). The hourly demand values are scaled to match the installed capacity
of the electricity producer (as in Table 1). Similar to Andersen et al. (2013)
we use the hourly average demand for each day over a longer period, e.g.
one year. We estimate the hourly profile change assuming that a change in
aggregate demand leads to proportional shifts for every hour of the profile
on an average day. Our model works with an average demand profile at
the annual scale and provides a higher level of abstraction than the unit
commitment (UC) problem (see, e.g. O’Neill et al. (2010)).

Demand function. We assume that the electricity producer has market power
in the region, and use a constant elasticity demand curve, that is commonly
employed in aggregate energy demand studies (Krishnamurthy and Kriström,
2015; Bohi, 2013). The consumers respond to the change in electricity price
P e by changing the consumption Q according to an aggregate demand func-
tion D(P e), i.e.,:

P e = D−1(Q) = AQα, (37)

where A > 0 is a constant, and α < 0 is the constant elasticity of de-
mand. The coefficients of the aggregate demand function in our model are
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Figure 2: Average hourly electricity demand (based on Figure 1 in Bigerna and Bollino
(2013)).

calibrated in such a way that a realistic electricity price (close to European4

electricity price) is achieved in the solution to an optimization Problem 1.
The estimated parameters of the demand function (37) are A = 1.05 × 105,
α = −0.612. These values are consistent with P e = 88.8 US$/MWh at
maximum profit without CO2 price. The value of elasticity coefficient εd =
1
α

= −1.63 is within a plausible range as estimated in the literature (for a
set of OECD countries it was found to be within the confidence interval of
−2.3, ...,−0.1, see, e.g. Krishnamurthy and Kriström (2015)). In our exam-
ple the profit maximizing quantity is Q0 = 103.65 GWh/day (which is ap-
proximately equal to the average daily electricity consumption in Belarus5),

4See Quarterly Reports On European Electricity Markets
http://ec.europa.eu/energy/en/statistics/market-analysis

5See the EIA website: http://www.eia.gov/cfapps/ipdbproject/
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and the corresponding profit is Π̂(Q0) = 1.3 bln. US$/year (excluding taxes
and depreciation).

Emissions factors. For presently operating, coal-fired power plants the cumu-
lative emissions range between 950 and 1250 gCO2 eq/ kWh (Weisser, 2007).
In our study we use a value from this interval as given in Table 1. Emissions
factors for gas powered plants are taken from Schröder et al. (2013).

3.2. Numerical results

Simulations were carried out for the discrete (nine points) approximation
of a uniform price distribution within the range 0–80 US$/ton of CO2:

pl = 10(l − 1), wl =
1

9
, l = 1, .., 9. (38)

Sizes of REDD-based offset contracts used in the model are within the
range [0, E0], where E0 is the optimal emission without CO2 price.

3.2.1. A case of risk-neutral utilities

Let us start with a case of risk-neutral utilities (28) (by setting parameters
close to zero: α = 0.001 in (18), and β = 0.001 in (26)). In Figure 3 the fair
prices (30) and (32) with respect to the contracted amount of offsets E ≤ E0

are depicted for the benefit-sharing ratio δ = 0.5. The plot demonstrates that
the maximum amount of emissions offsets for which the deal can take place
is Ẽ = E(x∗(p9)) = 11.8 MtCO2/day, i.e. 4 GtCO2/year (at the equilibrium
fair price p̄ = 40 US$/ton CO2). That amount the electricity producer emits
at the maximum CO2 price p9 = 80 US$/ton CO2, while maximizing their
profit. For amounts larger than Ẽ the fair price of the forest owner is higher
than the fair price of the electricity producer. This is consistent with the
analytical results (34), (36).

In the following sections we keep all model parameters fixed except for
the risk preferences of the forest owner and electricity producer, by assigning
values to parameters α and β, and benefit-sharing ratio δ.

3.2.2. Sensitivity analysis of fair prices with respect to risk preferences

In Figure 4 we show, how different values of parameter α (risk preferences
of the electricity producer) impact the fair prices of the electricity producer
pE = pE(E) (30) for the fixed benefit-sharing ratio δ = 0.5. The range of
parameter α ∈ [−0.2, 0.2] corresponds to approximately 10 % variation of
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Figure 3: Fair prices of the risk-neutral electricity producer (EP) and forest owner (FO)
depending on the volume of REDD offsets. Benefit-sharing ratio is δ = 0.5, and future
CO2 price distribution is uniform within the range 0–80 US$/ton CO2.

the fair price relative to the risk-neutral scenario, α ' 0 (see Figure 1 with
utilities). The plot demonstrates, that the risk-taking (α < 0) electricity
producer is less interested in REDD offsets and, hence, they evaluate these
offsets lower than the risk-neutral (α ' 0) electricity producer. Quite the
opposite, the risk-averse electricity producer (α > 0) is ready to pay a higher
price for the same amount of REDD offsets.

The sensitivity of a forest owner’s fair prices is symmetric to the electricity
producer’s. The risk-averse forest owner is charging a lower fair price, and
the risk-taking – a higher fair price – compared to the risk-neutral behavior.
Similar to the electricity producer, the magnitude of change in the forest
owner’s fair price depends on the degree of risk preference parameter β.

3.2.3. Impacts of risk preferences on contracted amounts of REDD offsets

Here we consider the risk-averse electricity producer and risk-averse forest
owner by setting their risk preference parameters to positive values: α = β =
0.1, and also the risk-taking forest owner and risk-taking electricity producer
by setting: α = β = −0.1.

For convenience let us denote the maximum contracted amounts by the
symbol: EY Z , where Y is a risk preference behavior of the electricity producer
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Figure 4: Sensitivity analysis of electricity producer’s fair prices with respect to their risk
preferences α < 0 – risk-taking, α ' 0 – risk-neutral, α > 0 – risk-averse. Benefit-sharing
ratio is δ = 0.5.

taking two values: “a” – risk-averse, and “t” – risk-taking, and Z is defined
in the same manner for the forest owner.

Figure 5 shows that within the considered set of risk preference param-
eters the risk aversion of the electricity producer enables contracting the
REDD offsets (if EP is risk-taking the fair price curves of EP and FO do not
intersect and, hence, there is no agreement on the price and consequently
REDD offsets cannot be contracted). The contracted amount when the forest
owner is risk-averse exceeds the amount when the forest owner is risk-taking:

Eaa = 19.5 MtCO2 > Eat = 15.9 MtCO2. (39)

Both contracted amounts Eaa and Eat are greater than in the risk-neutral
case (Figure 3). At the same time the risk-taking electricity producer in this
experiment never agrees on buying any REDD offsets, Eta = Ett = 0, as their
buying price is too low – even lower than than the price set by the risk-averse
forest owner (Figure 5). In this case and generally if there is a gap between
supply and demand prices, public funds could help close the gap and enable
emissions offsetting with REDD.

Modeling results presented in this section highlight, that the risk-averse
behavior of the forest owner and electricity producer may lead to an increase
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of contracted amounts of REDD offsets along with a decrease in price (com-
pare Figures 3 and 5). Obviously, the contracted amount of REDD offsets
also depends on the benefit-sharing ratio δ (δ = 0.5 here).
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Figure 5: Fair prices of electricity producer (EP) and forest owner (FO) depending on
the volume of REDD offsets. Risk-averse (r.-a.) utilities correspond to α = β = 0.1,
risk-taking (r.-t.) to α = β = −0.1. Benefit-sharing ratio is δ = 0.5.

3.2.4. The role of the benefit-sharing mechanism

We consider a situation of the risk-averse electricity producer and for-
est owner where parameters are set the following values: α = 0.2, β = 0.8.
The plot in Figure 6 shows how the benefit-sharing ratio impacts the con-
tracted amounts of REDD offsets. At every value of parameter δ expected
utilities of the forest owner and electricity producer stay the same, but the
contracted amounts (solid line) and equilibrium prices (dashed line) differ.
The nonlinear shape of the plots is explained by nonregularities in searching
for the intersection point between the curves of fair prices (as in Figure 5).
Our modeling results indicate that there is a certain value of benefit-sharing
ratio, δ = 0.75 in our case, which provides the highest possibilities for con-
tracting REDD offsets. Namely, as indicated in Figure 6, at this “optimal”
benefit-sharing ratio the entire amount of REDD offsets 83.9 MtCO2 can be
contracted at the lowest price 32.9 US$/ton. In this way, benefit-sharing
allows to engage in REDD with less investments at the start. The fact that

22



the highest amount can be traded at the lowest price generates possibilities
for involving more energy producers in REDD.
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Figure 6: Sensitivity analysis of fair prices and contacted amounts of REDD offsets with
respect to benefit-sharing ratio. Forest owner and electricity producer are risk-averse:
α = 0.2, β = 0.08. Solid line – maximum contracted amounts for each δ ∈ [0, 1], dashed
line – corresponding equilibrium fair prices.

Figure 6 illustrates the following features. Lower benefit-sharing ratios
mean that there is no additional profits for electricity producers in the second
period (the CO2 price realization). For this reason, the contracts for REDD
offsets are at their minimum level (see δ from 0 to 0.4). Namely, the energy
producer buys only the minimum amount, which they will use anyway for
offsetting. At the same time, the forest owner keeps a higher price for these
small amounts, as all of them will be consumed and, therefore, no benefits
shared. With the growing sharing ratio, the risk-averse electricity producer
gets more flexibility in the uncertain second period; they can exploit high
CO2 prices to get additional revenue by selling the unused offsets (despite
sharing the benefit with the REDD supplier). Thus, they are willing to buy
more offsets. Simultaneously, the REDD supplier knows that they will likely
get a benefit share in the second period, and reduces the price. The minimum
of the fair price and maximum of the volume is achieved at the ratio δ = 0.75.
For higher ratios, the electricity producer is still interested in large amounts,
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but the forest owner’s share is now too low, and, therefore, they raise the
price.

3.2.5. Multiple ranges of contracted REDD offsets

In conclusion, we would like to illustrate an interesting effect arising from
certain combinations of risk preferences and benefit-sharing ratio. In Figure 7
one can see the fair prices pE = pE(E) (30) and pF = pF (E) (32) constructed
for the case when both the electricity producer and forest owner are risk-
averse: α = β = 0.15, and benefit-sharing ratio δ = 0.5. In the plot we
observe two points of intersection, meaning that either smaller amounts of
REDD offsets are contracted E ≤ Eaa for the higher price, or a larger amounts
E ≥ Êaa – at lower prices. At the same time there is a range of amounts
of REDD offsets E ∈ [Eaa, Êaa], which are not contracted as indicated in
Figure 7. In our numerical simulation we observed that this gap vanishes as
the benefit-sharing ratio increases.
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Figure 7: Fair prices of the risk-averse electricity producer (EP), α = 0.15, and risk-averse
forest owner (FO), β = 0.15, for benefit-sharing ratio δ = 0.5.

Figure 7 illustrates a bifurcation in a transition from contracting smaller
amounts at higher prices to larger amounts at lower prices. The electricity
producer is willing to buy smaller amounts when they plan to use them for
offsetting, or – larger amounts, when there is a possibility of getting addi-
tional profit due to benefit-sharing (financial hedging against high prices). In
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this particular case, intermediate amounts provide additional risks – consum-
ing all of them might be unprofitable, while the volume is not high enough
(and the purchase price is not low enough) to get a necessary benefit while
sharing. In the figure we see that for range of “intermediate” volumes the
forest owner wants a higher price than the electricity producer can offer.
This is explained by the fact that they get a higher utility by keeping these
volumes and selling them in the second period.

Remark 8. The modeling results presented in this paper deal with a certain
range of exponential risk preferences. The analytical results are obtained only
for the risk-neutral case. Thus, results may change when different utilities of
the forest owner and electricity producer are applied. Studying utilities beyond
the exponential class could be an interesting direction for future research.

4. Conclusions and Policy Implications

According to a recent IEA (2015) report a considerable share of total CO2

emissions (about 80 %) comes from the energy sector. This makes the sector
a good candidate for emissions reduction and in particular using REDD. In
order to implement REDD mechanism efficiently it is necessary to under-
stand the decision-making process (rational behavior) of energy producers
– the potential buyers of REDD-based offsets. Our model deals with the
medium-term planning of the electricity producer who possesses flexibility
in their response to uncertain CO2 prices. The electricity producer in the
model is restricted in exercising market power (raising the electricity price)
by the elasticity of demand coming from electricity consumers and maxi-
mizes their utility (function of profit) by optimizing technological mixes in
the production. Utility of the forest owner (REDD supplier) in the model is
a function of their profits from selling REDD offsets and reflects their risk
preferences. Here we applied an exponential utility function that includes
the risk-neutral utility as a special case. The analytical results provided in
the paper for the risk-neutral utilities show that there is a restricted amount
of REDD offsets that can be contracted in this case. Modeling results on
the fair pricing under risk preferences and active benefit-sharing mechanism
show that risk-averse behavior increases the contracted amounts compared
to the risk-neutral case. In the case where both parties are risk-taking no
contracts can be made (for any possible amount of REDD offsets) under
symmetric information on CO2 price distribution. We illustrated an impor-
tant feature of benefit-sharing mechanism, which consists in the possibility
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of choosing optimal benefit-sharing ratio, allowing to contract the highest
amount of REDD offsets at the lowest price.

Thus, in this study we identified two promising approaches to effective
REDD implementation in connection to the energy sector: (i) strengthen-
ing the policy signal to allow for exposing a risk-averse behavior, and (ii)
activating the benefit-sharing mechanism. The current delay in REDD im-
plementation can be connected with the fact that energy producers are not
able to adequately assess the risks associated with CO2 prices (explained by
the weak policy design). An additional hurdle for REDD development is its
future acceptance on carbon markets as illustrated by the case of the Euro-
pean Emission Trading System (EU ETS). The benefit-sharing mechanism as
discussed in our study, could allow the REDD supplier and consumer to have
an alternative means of controlling future uncertainty, and hence facilitate
REDD implementation at a larger scale. Another mechanism for supporting
REDD (although not cost-free) might involve public funds for closing the
price gap between REDD demand and supply, especially when other means
are not sufficient and the uncertainty as perceived by the parties still remains
too high. This is potentially the case where relatively small investments may
play a decisive role in enabling REDD.

Reduction in power generation for the electricity producer is one alter-
native to REDD. Alternatives to REDD in the longer term which are not
considered in the model include for example shifting to greener technologies
and/or installing CCS modules (Fuss et al., 2011). EU ETS or similar cap
and trade systems, where power generators hold CO2 allowances to hedge
for future power sales (see, e.g. Lappi et al. (2010); Schopp and Neuhoff
(2013)), are another alternative to REDD. Introducing these alternatives in
the model in order to search for trade-off solutions would be an interesting
direction for further research.
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Appendix A. Proof of Lemma 1

Proof. Firstly, by definition of maximum (8) we have:

Π(x∗
1(p), p) = Πe(x

∗
1(p))− E(x∗

1(p))p ≥ Πe(x)− E(x)p. (A.1)

Secondly, let us assume on the contrary that for some x̄ ∈ X, such that
E(x̄) 6= E(x∗

1(p)) relation (A.1) is equality. Then, we have:

Π̂(p) = Πe(x
∗
1(p))− E(x∗

1(p))p = Πe(x̄)− E(x̄)p. (A.2)

According to Remark 2 to Assumption 1 equation (A.2) means that:

Ê(p) = E(x∗
1(p)) = E(x̄). (A.3)

Thus, we came to a contradiction, meaning that assumption (A.2) is false,
and (11) is true.

Appendix B. Deriving fair prices for some utility functions

Exponential utility. By substituting exponential utility (18) to (29), we get
equation with respect to pE:

m∑
l=1

e−αΠ̂(pl)wl =
m∑
l=1

e−α(Π̂R(pl)−pEE)wl, (B.1)

which allows for factorizing the term containing the price pE:
m∑
l=1

e−αΠ̂(pl)wl = eαpEE
m∑
l=1

e−αΠ̂R(pl)wl, (B.2)

and, consequently, resolve it in the analytical expression (30).
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Logarithmic utility. Let us consider a logarithmic utility function:

UE(ΠE) = ln ΠE. (B.3)

Due to monotonicity of logarithmic function, the solution to utility max-
imization problem at each price p coincides with the solution to profit max-
imization problem. Therefore for this function we get the following indiffer-
ence equation (29):

m∑
l=1

ln(Π̂(pl))wl =
m∑
l=1

ln(Π̂R(pl)− pEE)wl. (B.4)

Here pE can not be factorized and some procedure for deriving it is needed.

Risk-neutral utility. Let us derive fair prices for the risk-neutral utilities,
which are special cases of exponential utilities. Substituting (28) to the
indifference equation (29), we get:

m∑
l=1

Π̂(pl)wl =
m∑
l=1

(Π̂R(pl)− pEE)wl. (B.5)

Here pE can be derived explicitly:

pE =

∑m
l=1 Π̂R(pl)wl −

∑m
l=1 Π̂(pl)wl

E
. (B.6)

In the case of risk-neutral utility, UF (ΠF ) = ΠF , of the forest owner, we get
the following equation with respect to pF :

m∑
l=1

(
(1− δ)plER(pl) + pFE

)
wl =

m∑
l=1

plEwl (B.7)

Denoting the mean CO2 price by the symbol p̄:

p̄ =
m∑
l=1

plwl,

m∑
l=1

wl = 1, (B.8)

we get:

(1− δ)
m∑
l=1

plE
R(pl)wl + pFE = p̄E , (B.9)

leading to the following fair price:

pF = pF (E , δ) = p̄− (1− δ)
∑m

l=1 plE
R(pl)wl
E

. (B.10)
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Appendix C. Proof of Theorem 1

Proof. We represent Problem 2 by two alternative problems.
Problem 2-A. [E(x) ≥ E ] Given the feasibility domain X (6) and the

amount of REDD offsets E ∈ (0, E0], maximize the profit:

maximize
x∈XA

ΠR
A(x, p), (C.1)

where
ΠR
A(x, p) = Πe(x)− p(E(x)− E), (C.2)

XA = X ∩ {x : E(x) ≥ E}. (C.3)

Let us denote the solution to Problem 2-A by the symbol x∗
A = x∗

A(p) ∈
XA. The corresponding maximum profit is given by the relation:

Π̂R
A = Π̂R

A(p) = Πe(x
∗
A)− p(E(x∗

A)− E). (C.4)

Problem 2-B. [E(x) ≤ E ] Given the feasibility domain X (6), benefit-
sharing ratio δ ∈ [0, 1], and the amount of REDD offsets E ∈ (0, E0], maxi-
mize the profit:

maximize
x∈XB

ΠR
B(x, p), (C.5)

where
ΠR
B(x, p) = Πe(x)− δp(E(x)− E), (C.6)

XB = X ∩ {x : E(x) ≤ E}. (C.7)

Let us denote the solution to Problem 2-B by the symbol x∗
B = x∗

B(p) ∈
XB. The corresponding maximum profit is given by the relation:

Π̂R
B = Π̂R

B(p) = Πe(x
∗
B)− δp(E(x∗

B)− E). (C.8)

Thus, for any fixed amount of E ∈ (0, E0] available in the second period
the electricity producer chooses the best response to CO2 price p = pl in
terms of profit maximization – between Π̂R

A (C.4) and Π̂R
B (C.8):

Π̂R(p) = max{Π̂R
A, Π̂

R
B}, (C.9)

which is equivalent to (13)-(14). The solution to Problem 2 is chosen
according to the rule:

x∗
2 =

{
x∗
A, if Π̂R = Π̂R

A

x∗
B, if Π̂R = Π̂R

B

(C.10)
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In this section we analytically find the maximum profit (C.9) of the elec-
tricity producer depending on the amount of REDD offsets E ∈ (0, E0] and
determine the corresponding fair prices of the forest owner and electricity
producer. This allows us to obtain an estimate of the amount of REDD
offsets that can be contracted in the case of risk-neutral utilities.

We introduce the following function of CO2 price p:

ξ(p) =
Π̂R(p)− Π̂(p)

E
. (C.11)

Using this function the fair price of the electricity producer (B.6) can be
represented as follows:

pE = pE(E , δ) =
M∑
l=1

ξ(pl)wl. (C.12)

Similarly, we introduce the function:

φ(p) = p− (1− δ)E
R(p)p

E
, (C.13)

and represent the forest owner’s fair price (B.10) in the following way:

pF = pF (E , δ) =
M∑
l=1

φ(pl)wl. (C.14)

The following lemmas deal with CO2 price realizations p. Although these
realizations are uncertain, we can analyze optimal responses to any p in terms
of decision-making without REDD (Problem 1) and with REDD (Problem 2).
This analysis allows us to compare functions φ(p) and ξ(p) depending on
the amount of REDD contracts E and optimal emissions without REDD,
Ê(p) = E(x∗

1(p)). Due to the fact that functions (C.11), (C.13) are respective
terms in the calculation of fair prices (C.12), (C.14), we can compare pE and
pF for a distribution of uncertain prices {pl, wl} (12) according to formulation
of the Theorem. Thus, we use the model construction to analytically compare
fair prices in the risk-neutral case depending on the amount of REDD offsets.

Lemma 2. For any CO2 price p, any benefit-sharing ratio δ ∈ [0, 1], and
any fixed amount E of contracted offsets in the first period such that E ∈
(0, E(x∗

1(p))], the equality takes place:

φ(p) = ξ(p) = p. (C.15)
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The proof is in Appendix C.1

Lemma 3. For any CO2 price p ∈ [0, p̃], any benefit-sharing δ ∈ [0, 1), and
any amount E of contracted offsets in the first period such that E > E(x∗

1(p)),
the inequality takes place:

φ(p) > ξ(p). (C.16)

The proof is in Appendix C.2.
According to Assumption 1 the amount Ẽ (35) is emitted by the electricity

producer at any price pl in distribution (12). Hence, for every p = pl in the
distribution, the conditions of Lemma 2 are true, meaning that:

ξ(p) = φ(p) = p. (C.17)

Substituting (C.17) to the definition of fair prices (C.12), (C.14) we get:

pE =
M∑
l=1

ξ(pl)wl =
M∑
l=1

φ(pl)wl =
M∑
l=1

plwl = p̄ = pF . (C.18)

The same reasoning is valid for any E ∈ (0, Ẽ ], and, hence, (34) is proved.
For the amount of REDD offsets E ∈ (Ẽ , E0] for some CO2 price real-

izations p = pl in distribution (12) the conditions of Lemma 2 are satisfied
and, hence, φ(pl) = ξ(pl). At the same time, there are price realizations in
distribution (12), at which conditions of Lemma 3 are satisfied (at least for
the price p̃ = max{pl}), meaning that φ(pl = p̃) > ξ(pl = p̃), and hence:

M∑
l=1

φ(pl)wl >
M∑
l=1

ξ(pl)wl. (C.19)

Sustitution of (C.19) to definitions of fair prices (C.12), (C.14) provides the
required inequality:

pF =
M∑
l=1

φ(pl)wl >
M∑
l=1

ξ(pl)wl = pE. (C.20)
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Appendix C.1. Proof of Lemma 2

Proof. Let us find the optimal profit with REDD in the second period. By
the condition of the lemma, E(x∗

1(p)) ≥ E , meaning that x∗
1(p) ∈XA (C.3).

It is also true, that XA ⊆ X by definition of XA. Problem 2-A (equations
(C.1) and (C.2)) is formulated as follows:

maximize
x∈XA

{Πe(x)− pE(x) + pE} . (C.21)

Here the term pE does not depend on x, and hence we can solve the following
problem:

maximize
x∈XA

{Πe(x)− pE(x)} . (C.22)

Recall that Problem 1 (equations (7) and (5)) without REDD is:

maximize
x∈X

{Πe(x)− pE(x)} . (C.23)

Since x∗
1(p) ∈ XA ⊆ X, x∗

1(p) is maximizing both (C.22) and (C.23), im-

plying that their maxima coincide. Using Π̂(p) (9) we get the following
maximum in Problem 2-A with REDD (C.21):

Π̂R
A(p) = Πe(x

∗
1(p))− E(x∗

1(p))p+ pE = Π̂(p) + pE , (C.24)

where Π̂(p) is the maximum in (C.22) and (C.23).
Let us show that Π̂R

A ≥ Π̂R
B in (C.9). Indeed, using (C.4), (C.8), (C.24),

and the definition of maximum (8), for x∗
B ∈ XB ⊆ X we come to the

following chain of inequalities:

Π̂R
A(p) = Πe(x

∗
A)− p(E(x∗

A)− E) = Πe(x
∗
1(p))− pE(x∗

1(p)) + pE ≥
Πe(x

∗
B)− pE(x∗

B) + pE = Πe(x
∗
B)− p(E(x∗

B)− E) ≥
Πe(x

∗
B)− δp(E(x∗

B)− E) = Π̂R
B(p). (C.25)

This relation means that Π̂R
A(p) ≥ Π̂R

B(p) if δ = 1, and Π̂R
A(p) > Π̂R

B(p) if
δ ∈ [0, 1). Thus,

Π̂R(p) = Π̂R
A(p) = Π̂(p) + pE , (C.26)

meaning that electricity producer uses the whole REDD offsets amount E
and does not share offsets with the forest owner. Substituting ER(p) = 0 to
(C.13) we get:

φ(p) = p. (C.27)
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Substituting (C.26) to (C.11) we get:

ξ(p) =
Π̂R(p)− Π̂(p)

E
=
pE
E

= p. (C.28)

Appendix C.2. Proof of Lemma 3

Proof. Let us consider two cases depending on the optimal profit in (C.9).

Case 1. Π̂R(p) = Π̂R
A, meaning that the electricity producer does not share

emission offsets with the forest owner and emits E(x∗
A(p)) ≥ E . Substituting

ER(p) = 0 to (C.13) we get:
φ(p) = p. (C.29)

Substitution of (9) and (C.4) to (C.11) gives the following relation:

ξ(p) = p+
Πe(x

∗
A(p))− E(x∗

A(p))p

E
−

Πe(x
∗
1(p))− E(x∗

1(p))p

E
. (C.30)

For x∗
A(p) ∈ X such that E(x∗

A(p)) ≥ E > E(x∗
1(p)) we can apply

Lemma 1 (11), leading to the following inequality:

Πe(x
∗
A(p))− E(x∗

A(p))p

E
−

Πe(x
∗
1(p))− E(x∗

1(p))p

E
< 0. (C.31)

Combining (C.29)–(C.31), we obtain the inequality:

ξ(p) < p = φ(p). (C.32)

which proves Case 1.

Case 2. Π̂R(p) = Π̂R
B, meaning that the electricity producer can share emis-

sion offsets. By analogy with (C.21), (C.22), the solution to Problem 2-B
(equations (C.5)–(C.7)) can be obtained by solving the following problem:

maximize
x∈XB

{Πe(x)− δpE(x)} . (C.33)

Thus, two alternatives are possible in Case 2.
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Case 2a. E ≥ E(x∗
1(δp)), meaning that x∗

1(δp) ∈ XB (C.7). Problem 1
(equations (7) and (5)) at price δp is formulated as follows:

maximize
x∈X

{Πe(x)− δpE(x)} . (C.34)

Since x∗
1(δp) ∈XB ⊆X (C.7), x∗

1(δp) is maximizing both (C.34) and (C.33),

implying that their maxima coincide. Using Π̂(δp) we get the following max-
imum in Problem 2-B with REDD:

Π̂R(p) = Π̂R
B(p) = Πe(x

∗
1(δp))− E(x∗

1(δp))δp+ δpE = Π̂(δp) + δpE . (C.35)

Hence, according to Assumption 1 for all δ ∈ [0, 1) one has:

Ê(δp) = E(x∗
B(p)) = E(x∗

1(δp)) > E(x∗
1(p)). (C.36)

Susbtituting ER(p) = E − E(x∗
B(p)) to (C.13) leads to the relation:

φ(p) =
(1− δ)pE(x∗

B(p))

E
+ δp. (C.37)

The function ξ (C.11) takes the form:

ξ(p) = δp+
Πe(x

∗
B(p))− E(x∗

B(p))δp

E
−

Πe(x
∗
1(p))− E(x∗

1(p))p

E
. (C.38)

For the optimal mix x∗
B ∈ X such that (C.36) is true, one can apply

Lemma 1:

Πe(x
∗
1(p))− E(x∗

1(p))p > Πe(x
∗
B(p))− E(x∗

B(p))p. (C.39)

Substitution of (C.39) to (C.38) gives the required inequality:

ξ(p) = δp+
Πe(x

∗
B(p))− E(x∗

B(p))δp−
(
Πe(x

∗
1(p))− E(x∗

1(p))p
)

E
<

δp+
Πe(x

∗
B(p))− E(x∗

B(p))δp−
(
Πe(x

∗
B(p))− E(x∗

B(p))p
)

E
=

δp+
(1− δ)pE(x∗

B(p))

E
= φ(p). (C.40)
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Figure C.8: Optimal emissions of the electricity producer with respect to CO2 price (hori-
zontal axis) without REDD offsets. A conceptual graph of Ê(p), satisfying Assumption 1.

Case 2b. E < E(x∗
1(δp)), meaning that x∗

1(δp) /∈ XB (C.7). According to
Assumption 1 there exist price p̂, δp < p̂ < p, and technological mix x∗

1(p̂)
(see Figure C.8), such that:

x∗
1(p̂) ∈XB ⊂X : E(x∗

1(p̂)) = E . (C.41)

Below we show that technological mix x∗
B = x∗

1(p̂) is the solution to
Problem 2-B in this case. Let us take a technological mix x̃B ∈XB different
from x∗

1(p̂) (C.41). By definition of XB (C.7), E(x̃B) ≤ E(x∗
1(p̂)) = E ,

meaning that the following inequality holds:

E(x∗
1(p̂))(p̂− δp) ≥ E(x̃B)(p̂− δp). (C.42)

At the same time, by definition of maximum (8) at price p̂ we have:

Πe(x
∗
1(p̂))− E(x∗

1(p̂))p̂ ≥ Πe(x̃B)− E(x̃B)p̂. (C.43)

Combining (C.42) and (C.43) one gets:

Πe(x
∗
1(p̂))− E(x∗

1(p̂))p̂+ E(x∗
1(p̂))(p̂− δp) ≥

Πe(x̃B)− E(x̃B)p̂+ E(x̃B)(p̂− δp), (C.44)
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that leads to:

Πe(x
∗
1(p̂))−E(x∗

1(p̂))δp ≥ Πe(x̃B)−E(x̃B)δp for all x̃B ∈XB, (C.45)

meaning that Π̂R
B = Π(x∗

1(p̂)), δp), and:

E(x∗
B) = E(x∗

1(p̂)) = E > E(x∗
1(p)). (C.46)

We have proved that in the Case 2b the electricity producer does not
return any offsets to the forest owner and emits exactly the amount E . Sub-
stituting ER(p) = 0 to φ (C.13), we get:

φ(p) = p. (C.47)

Based on (C.46) we can apply Lemma 1, which leads to the following
inequality:

Πe(x
∗
1(p̂))− E(x∗

1(p̂))p < Πe(x
∗
1(p))− E(x∗

1(p))p. (C.48)

Function ξ (C.11) in this case is calculated as follows:

ξ(p) = δp+
Πe(x

∗
1(p̂))− E(x∗

1(p̂))δp− (Πe(x
∗
1(p))− E(x∗

1(p))p)

E
=

= δp+
Πe(x

∗
1(p̂))− E(x∗

1(p̂))p− (Πe(x
∗
1(p))− E(x∗

1(p))p)

E
+

+
(1− δ)pE(x∗

1(p̂))

E
.

Applying (C.48) and recalling that E(x∗
1(p̂)) = E (C.46), we get:

ξ(p) < δp+
(1− δ)pE(x∗

1(p̂))

E
= δp+

(1− δ)pE
E

= δp+ (1− δ)p = p = φ(p).

Thus, we have proved that in all cases:

ξ(p) < φ(p). (C.49)
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