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PREFACE

In recent years there has been a considerable interest in the
development of models for river and lake ecological systems.
Much of this interest has been directed towards the development
of progressively 1larger and more complex simulation models. In
contrast, relatively little attention has been devoted to the
problems of uncertainty and errors in the field data, of uncer-
tainty in the relationships between the important system varia-
bles, and of wuncertainty in the model parameter estimates.
ITASA's Resources and Environment Area's Task on "Environmental
Quality Control and Management" addresses problems such as "Un-
certainty, Forecasting and Management of Environmental Quality"
(Subtask 2B).

Within the frame of a case study of Austrian Lake Ecosystems,
supported by the Austrian "Fonds zur Forderung der wissenschaft-
lichen Forschung"™, grant No.3905, and conducted in coopertaion
with Austrian research institutions, this paper presents an ap-
proach to explicitely account for uncertainty and arbitrariness

in modelling and forecasting water quality.
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ABSTRACT

Mathematical models of ecosystems are considerable simplifica-
tions of reality, and the data upon which they are based are
usually scarce and wuncertain. Calibration of 1large, complex
models depends upon arbitrary assumptions and choices, and fre-
quently calibration procedures do not deal adequately with the
uncertainty in the data describing the system under study. Sin-
ce much of the uncertainty and arbitrariness 1in ecological
modelling 1is 1inevitable, because of both practical as well as
theoretical limitations, model-based predictions should at least
reveal their dependence on, and sensitivity to uncertainty and
arbitrary assumptions. The paper proposes a method that expli-
citly takes 1into account the uncertainty associated with data
for modelling. By reference to a qualitative and somewhat vague
definition of system behaviour in terms of allowable ranges, an
ensemble of acceptable parameter vectors for the model may be
identified. This contrasts directly with a more conventional ap-
proach to model calibration, 1in which a quantitative (squared-
error) criterion is minimised and through which a supposedly
"unique" and "best" set of parameters can be derived. The en-
semble of parameter vectors is then used for the simulation of a
multitude of future systems behaviour patterns, so that the un-
certainty in the initial data and assumptions is preserved, and
the thus predicted future systems response can be interpreted in

a probabilistic manner.



1. INTRODUCTION

Mathematical models of ecosystems are inevitably considerable
simplifications of reality. The data available for analysis are
usually scarce, they have mostly been measured infrequently, and
are subject to high levels of sampling error. Furthermore, the
stochastic variability of the systems themselves is also reflec-
ted in the data. Consequently such data allow only an uncertain
description of system's behaviour to be developed; the data are
probably inadequate for the calibration of 1large, complex
models. At the same time more or less arbitrary choices have to
be made about the structure of the model, the criteria to be
used for model calibration and parameter estimation, and the
calibration procedure itself. Such choices are neither unique
nor absolute in some sense, yet they will affect the results ob-
tained from the application of the calibrated model. Since it is
necessary to make arbitrary assumptions and to use uncertain
field data, we argue that our modelling results, 1i.e. model-
based predictions about the future, should reveal their depen-
dence on, and sensitivity to such assumptions and uncertainty.

Recently, formalized parameter calibration routines have begun
to be applied in the field of modelling complex aquatic ecosys-
tems, e.g. Lewis and Nir (1978), Jorgensen et al. (1978), Di
Toro and van Straten (1979) and Benson (1979). In these methods
a loss function is defined, wusually in a squared-error form,
and, subsequently, a parameter vector is sought that minimizes
this loss function. This procedure thus avoids the analyst's
subjective perception of which parameter ought to be adjusted to
improve the fit, inherent in the more commonly applied trial-
and-error calibration procedure. Also, the equally subjective
judgement of agreement between simulation and observation is
replaced by a more formal quantitative notion. However, although
frequently called "objective function", this does not imply that

the criterion chosen is free from subjective elements. For exam-



ple, 1in problems with state variables having different physical
dimensions some (subjective) form of weighting is required in
the formulation of a single-valued loss function. Furthermore,
it 1is not easy to account for uncertainty in the field data,
although methods to do this have been attempted (Beck and Young,
1976; Beck, 1979; Lewis and Nir, 1978; Di Toro and van Straten,
1979; Jolankai and Szdlldsi-Nagy, 1978; Fedra, 1979; Fedra, in
press a,b). Finally, however, it has to be recognized that the
assumption that a single 'best' parameter vector exists 1is at
least questionable, especially if data wuncertainty 1is con-
sidered, and in any case experience shows that it is extremely
difficult to find such a unique vector if the number of

parameters to be estimated is larger than, say, six to ten.

This paper proposes a method that explicitly takes 1into ac-
count the uncertainty associated with data for modelling, inclu-
ding initial conditions and forcing functions; the method pro-
posed also circumvents the problem of assuming parameter uni-
queness. Basically, instead of assuming the existence of a
"best, wunique"™ parameter vector, which may be found through
minimisation of a loss function, the method allows a set of vec-
tors to be identified by reference to a more "vague" definition
of systems behaviocur. The uncertainty in the available informa-
tion is expressed in this "vague™ definition through the speci-
fication of bounds between which "acceptable" model simulations
should fall. Clearly, given these ranges, more than one vector
exists that fulfills the requirements of being "acceptable".
This part of the work owes much to the recently reported study
of Spear and Hornberger(1980), although the emphasis and focus

are different.

Once it is recognized that the uncertainty of the field data
suggests the specification of bounds on acceptable system
behaviour, -- and nothing more precise -- it ought also to be
recognized that those parameter vectors that are found to give

the defined behaviour are all equally good in view of the data



uncertainty. Any sample parameter-vector that is found to simu-
late the defined system behaviour can -- since it has passed the
"test" of "calibration™ -- be applied in principle to generate
future systems responses under changed conditions (represented
by a change in any of the vector elements). Hence a multitude
of simulated future system behaviour patterns can be generated
from the set of acceptable parameter vectors.

Two points are worth noting about this approach to model-based
predictions, First, the <close inter-dependence of estimation
and prediction is emphasised (see also Beck, 1980, Fedra, in
press c¢).Second, the uncertainty in the data has not been ig-
nored in applying the model to the problem of prediction. Uncer-
tainty about the system's behaviour is included explicitly and
in effect "preserved"; thus future responses of the system are
predicted in the form of sampled probability distributions, as
opposed to unique, average, deterministic forecasts -- see also
O'Neill and Gardner (1978), Tiwari et al.(1978), Di Toro and van
Straten (1979), Beck et al. (1979), Halfon and Beck (1980),
Fedra(1979), Fedra in (press a,b,c).

We shall illustrate the method with an application to a
specific problem relating to an Austrian 1lake (Attersee,

Salzkammergut) .
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2. THE METHOD: estimation and prediction by Monte Carlo

simulation

For the first step in the approach the system behaviour is de-
fined in terms of the model to be used by a series of constraint
conditions. From the field data typical features of the system's
behaviour are derived. We consider it significant that the
behaviour definition, 1i.e. the constraint conditions, includes
both dynamic and aggregate features. The latter, for example
yearly primary production, are usually more reliable than indi-
vidual data at any single instant in time, thus they allow for a
definition of the system's behaviour in which one intuitively

would place more confidence.

The set of m ranges of behaviour describing measures defines a
set RD of acceptable model responses, representing the range of
empirical system behaviour under the range of empirical "condi-
tions"™ in a broad sense. RD is a subset of the set of all pos-
sible model responses R or a region RD in the m-dimensional

response-space R:
RD C R (see fig.1).

As a second step, suppose a given structure for the model re-
iationships c¢an be assumed -- this is, we admit, an unavoidable
(arbitrary) assumption that will subsequently affect the predic-
tions obtained. From empirical evidence and from previously
quoted values for model coefficients, it is possible to specify
ranges of inputs, forcings, initial conditions, and model coef-
ficients required by the particular model structure. A set (vec-
tor) of numerical values taken from these ranges fully charac-
terizes the response of the model. In order to make a distinc-
tion from the usual term parameter-vector, we shall call any

sample combination from these ranges a character vector. The

ranges of n character vector elements define a region CD (the

set of all allowable character vectors) in the n-dimensional



character space (as a subset of the set of all possible charac-

ter vectors) C:

Cb CC

Figure 1: Set diagram of the relationships of character- and
response~space. C: set of all possible character vectors; R: set
of all possible model responses; CD: defined plausible range for
character vectors; RD: defined realistic response range; CM: set
of character vectors corresponding to RD; CS: character vectors
sampled in the Monte Carlo procedure; RS: responses to CS; CS':
subset of CS, resulting in realistic responses RS'; CS'': subset
of CS resulting in unrealistic responses RS''; CS¥*: modified CS'

used for prediction, resulting in RS¥.



Third, this character vector region CD is now randomly sampled
N times by a Monte Carlo technique. Each sample character vector

Csi (i=1,...,N) is then used for &a simulation run, and the

resulting set RS of model responses RSi(i:1,...,N) is classified

according to the behaviour definition RD:

behaviour:

RS' = {Rsi | (RS; € RS) - (RS, € RC)} n(Rs') = M
not-behaviour:

The set CS of sample character vectors is separated correspon-
dingly 1into two complementary subsets CS' and CS'', wusing the

relationship given by the model

RS, —r(csy)
such that
| - — A
cs' = {cs; | (Cs; € Cs) v s, (RS; = £(CS,)) (Rs; € RC)}
vy = R ,E . = A
cs {cs; | (Cs; € Cs) ¥ Cs; (Rs; £(Cs;)) (RS, £ RC)}

with M and N-M elements respectively. In other words, by this
"calibration" procedure we are looking for a separation of the
sample character vectors into & behaviour-giving group (CS') and
a not-behaviour-giving group (CS''). The total sample of M
behaviour generating character vectors is then analysed to give
sor.e insight 1into possible relations and interdependencies or

the character space configuration.

The character vectors CSi, giving rise to a response RSi' com-
pletely within the behaviocur defining boundaries are considered
as random samples from a character space region CM corresponding

to the defined behaviour region RD of the model:

cs' C CcM



= = ~ . € .
cM = {c, | (c; €C) ¥ Cy (R; = £(C,)) (R, € RC))

as illustrated in Figure 1. It should be noted that CM may not
be fully 1included in CD, so that there are character vectors
some of whose elements are outside the specified ranges, that

give rise to the defined behaviour.

Finally, the set CS' of M sample character vectors CS'i’ being
identified as 'acceptable' character vectors, 1is then used for
computations of model responses under changed conditions. That
is to say, one or more elements of the M character vectors are
changed according to the extent of the assumed alteration, and
the set of M modified vectors is used to generate probability
distributions of model responses. This procedure can be repeated
to represent different conditions, and in fact the modification
of the vector elements may be done systematically to investigate
a range of possible future changes and their significance in

terms of response probability distributions.



3. APPLICATION

3.1 Initialization

3.1.1. The Lake System

In cooperation with the Austrian Lake Eutrophication Program,
Project Salzkammergutseen, the Attersee, a deep, stratified,
oligotrophic lake of almost 4000 Mill. cubic metres and a
theoretical retention time of seven to eight years, was subjec-
ted to our approach. Basic lake data are compiled 1in Table 1.
The investigations on the lake, carried out since 1974, and ini-
tially within the frame of the OECD Lake Eutrophication Program,
indicated an 1increasing eutrophication of the lake. Increasing
phytoplankton peak biomass and decreasing transparancy of the
water signalled a trend towards eutrophication; however, the
variability in the measurements and the comparatively short time
span of observations make it difficult to identify significant
changes. Nevertheless a preliminary study of the nutrient-
loading/production relations seemed to be promising (here pri-
mary production per unit lake area was taken as an approximate
measure for the trophic state of the lake). Although the prob-
lem setting is somewhat diffuse from the point of view of pos-
sible management and water quality control measures, two princi-
pal features of the lake system allowed us to address practical
problems. First, the major nutrient input stems from one point
source, namely the upstream mesotrophic Mondsee (14.2 km2 sur-
face area, 510 Mill. m3, 247 km2 catchment area and a retention
time of about two years). More than 50% of the phosphorus 1load-
ing of the Attersee is attributable to the Mondsee discharge,
and a very high fraction of particulate phosphorus is contained
in this discharge (Miller 1979). The impact of possible changes
in the trophic state of the Mondsee on the Attersee is therefore
of considerable interest. Second, a sewer system and associated
treatment plant for the sewage discharge to the Attersee have

been constructed recently (F1ogl 1974). Again, the impact of



these installations on the water quality of the Attersee are of

interest.

The data available for our analysis, comprising estimates of
nutrient inputs and outputs as well as lake nutrient concentra-
tions, were found to show a high degree of variability both
within and between years, and this variability was especially
pronounced for the phosphorus measurements. This is, at least in
the case of the orthophsophate, due to its low concentrations
around 1 mg m-3, which is approximately at the same level as the
absolute measurement error. This also led us to the simplifying
assumption of a horizontally completely mixed water body; the
data would not support a more detailed spatial resolution for
the model. It was also decided to 1lump the observations of
several years together to obtain a picture of a typical Attersee

behaviour pattern.

TABLE 1. Attersee: basic lake data After Flogl (1974).

Geographic position 470 52' N

130 32' E
Catchment area: 463.5 km2
Surface area: 46.0 km2
Maximum depth: 171 m
Mean depth: 84 m
Volume: 3934 Mill. m3
Length: 20 km
Average width: 3 km
Total shorelength 53 km
Retention time: 7-8 years

Average outflow: 17.5 m3 sec-1
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3.1.2. The Simulation Model

For the simulation of the nutrient-lcading/production rela-
tionship on a yearly timescale the dynamic lake phosphorus model
by Imboden and Gidchter (1978) was chosen. The model predicts
primary production per unit lake area as related to imports of
soluble reactive as well as particulate phosphorus, various for-
cings, and model parameters. The relationship between loading
and primary production is described by means of a dynamic, one-
dimensional, vertical (multi-layer) diffusion model for the two
state variables of particulate phosphorus and soluble reactive
phosphorus concentrations. The model wuses Michaelis-Menten
kinetics and self-shading by algae, together with a production
rate that varies in time according to the seasonal variations in
irradiance and water temperature. Respiration, sedimentation,
stratification with vertical eddy diffusivity and variable ther-
mocline depth, lake morphometry and, finally, hydraulic loading
are all accounted for in the model. A homogeneous, well mixed
epilimnion is assumed, and phosphorus export is determined by
its epilimnion concentration and by hydraulic loading. Zoo-
plankton is not explicitly included in the model; its effects on
phytoplankton are included in the first order loss-term descri-
bing respiration/remineralization. Consequently, the model 1is
designed more for the simulation of yearly aggregate features
than for the simulation of short term algal population dynam-

ics.

Some minor modifications of the model were made in order to
ailow for a parameterized description of time-varying forcing
functions (production rate and thermocline depth). Rather than
specifying these coefficients in the form of tables, as was done
originally for the model, we approached the time patterns by
simple analytical functions of time. Thus, the dynamic pattern
of the production rate is described by a sine function with the
minimum, maximum, and the time of the maximum as auxiliary

parameters. Similarly, the thermocline depth is a linear func-
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tion of time, characterized by the depth and time at the outset
of stratification and the depth and time at the end of the stra-
tified period. Other potentially time-varying data (e.g. nu-
trient inputs, hydraulic loading, eddy coefficients) were kept
constant, since the available field data did not allow a mean-
ingful yearly pattern to be specified. In view of the morphology
of the Attersee, the backflux of phosphorus from the sediments

was set to zero in the model.

Ultimately a total of 22 character vector elements
(parameters, forcing-function related parameters and initial
conditions) were required in this application. These are listed
by name in table 2, together with the ranges used in the Monte
Carlo Simulation. The minimum and maximum values, which define
the ranges, were obtained either from the known variability of
available estimates (e.g. particulate phosphorus 1loading) or
from expansion around values given in the literature. It should
be pointed out that the results of the method are not critically
influenced by the ranges selected, as long as they are ecologi-
cally or physically feasible. However, reduction of the ranges
wherever possible is useful for increasing the efficiency of the
computation. Thus, for several of the character vector elements
the ranges given in table 2 were obtained after reduction on the
basis of an initial set of 10,000 pilot runs (see section
3.2.1).

The simulation model was incorporated as a subroutine in a
control program, that generated random sample character vectors
from the ranges specified. Since a priori information on the
probability distributions and correlation structure of the
parameters was absent, independent rectangular distributions
were assumed. For each character vector one simulation run was
completed (for a period of one year) and the model response

stored for subsequent analysis.
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TABLE 2: Character vector elements and the ranges used

DATA TYPE UNIT MINIMUM MAXIMUM
Parameters sensu stricto:
1 Michaelis constant (phosphorus) mg m3 0.20 2.00
2 resp./mineralization epilimnion day-1 0.02 0.20
3 resp./mineralization hypolimnion day-1 0.01 0.025
4 net sedimentation velocity epilimnion m day-1 0.01 0.75
5 net sedimentation velocity hypolimnion m day-1 0.025 2.00
€ diffusion coefficient Hypolimnion cm2 sec-1 c.02 0.50
7 diffusion coefficient Thermocline cm2 sec-1 0.01 0.25
8 extinction coefficient m-1 0.20 0.40
9 self shading coefficient m2 mg-1 0.01 0.02
10 thickness of thermocline m 5.00 10.00
Import- and forcing describing data:
11 orthophosphate import mg m-2 day-~1 0.01 0.20
12 particulate phosphorus import mg m-2 day-1 0.25 1.50
13 hydraulic loading m day-1 0.03% 0.05
14 minimum production rate day-1 0.25 0.50
15 maximum production rate day-1 1.00 10.00
16 time lag of production maximum day 180 270
17 initial thermocline depth m 3.00 6.00
18 final thermocline depth m 15.00 20.00
19 begin of stratified period day 120 280
20 end of stratified period day 280 330
Initial conditions:
21 initial orthophosphate mixed period mg¥*m-3 0.20 2.00
22 initial particulate P mixed period mg¥m-3 2.50 7.00

1.1.1. Behaviour definition

The output of any given model run has to be compared with the
(defined) system behaviour in order to enable classification of
the character vectors into a behaviour-giving class and a class
that does not give the behaviour. It is obvious that the defini-

tion of the system's behaviour is a crucial step in the



analysis. The system behaviour definition should reflect all the
available, relevant knowledge on the system (for example that
obtained from field observations). It is worth noting that a
definition of system behaviour derived from the observations
does not depend upon the model. However, this definition has to
be specified in terms of model output constraint conditions, or,
in other words, the behaviour definition must be cast within the

framework of the model actually used.

Based on the available data and discussions with biologists
acquainted with the Attersee system, 7 indices were selected for
inclusion in the behaviour definition. The constraints placed on
these indices for the purpose of behaviour definition were
specified such that the measurement uncertainty and the natural
stochastic variability of the ecosystem (including variability
among the years) were accounted for. Table 3 summarizes the

resulting behaviour definition.

TABLE 2: definition of the system's behaviour

1) Total primary production per year has to be between 50 and
150 gC m-2,.

2) Total phosphorus export per year has to be between 2 and 8

tons.

3) The peak value of particulate phosphorus in the epilimnion
has to occur between Julian day 60 and Julian day 210.

4) The peak value of particulate phosphorus in the epilimnion

must not exceed 15 mg P m-3.

5) The concentration of ortho-phosphate during the mixed
period must not exceed 2.5 mg P m-3.
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6) The peak value of particulate phosphorus must be at 1least

twice the minimum value.

7) The maximum total phosphorus content of the lake during the

year must not exceed twice the minimum value.

In this way the behaviour definition can be viewed as a
seven-dimensional box in the response space and a model simula-
tion run has to lie completely within this box in order to be
classified as a simulation belonging to the behaviour giving

class.

3.2 ANALYSIS

3.2.1. Character vector space structure

Out of 10,000 runs only 293 character vectors were found that
gave rise to a model output fully within the behaviour con-
straint conditions given in the previous section. Inspection of
the sample ranges of individual elements of these 293 vectors
showed that no further "rectangular" reduction of the character
vector space was possible. In other words, the boundaries of the
behaviour-giving character vector space region (CM), as sampled
by the 293 behaviour-giving vectors (CS') extended up to the
boundaries of the 22-dimensional character vector box. Figure 2
shows the distribution of the behaviour giving class for one of
the character vector elements in order to illustrate this point.
Figure 2 also suggests that there are regions in the character
vector space where one is more 1likely to find a behaviour

response than in others.
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Figure 2: frequency distributions of behaviour-giving values of
individual <character-vector elements within the ranges sampled
(compare Table 2), and probability distributions fitted; cl:
sedimentation rate epilimnion; <¢5: sedimentation rate hypolim-

nion; c8: extinction coefficient.
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Due to the high dimensionality of the character vector space
the geometry of the behaviour-giving region is in general diffi-
cult to investigate. However, a tentative -exploration of the
distributions of Figure 2 can be made by projecting these dis-
tributions onto a two dimensional surface. An example is given
in Figure 3. From this figure it is apparent that the behaviour
giving parameter combinations are more densily clustered in cer-
tain regions. It 1is also evident that other regions in the
22-dimensional box are "empty". However, in view of the 1large
number of not-behaviour-giving combinations, we must conclude
that almost every individual value of a character vector element
can give rise to the behaviour or not, depending on the sample
values of the other elements. Thus, as also suggested by Figure
3, it is rather the (multiple) correlations between the charac-
ter vector elements that determine the shape of the behaviour

giving character space.

To gain insight into the structure of the model (and, hopeful-
ly, of the system) a correlation analysis was performed. Out of
the 22 character elements, 13 were found to ©be significantly
correlated with one or more of the other character elements. The
most complex relations, with four or five significant pairwise
correlations, were found for the respiration/mineralisation rate
in the hypolimnion, the net sedimentation velocities, the parti-
culate phosphorus import, and the hydraulic loading. Also, pro-
duction rate maximum and time lag showed more than one signifi-
cant correlation. Correlations between the character vector
elements of the behaviour-giving class reflect the ability of
the model to balance one extreme with another while still ful-
filling the behaviour definition constraints. Character vector
elements which would force the behaviour defining variables in
the same "direction"™ (relative to the boundaries of the 7-dimen-
sional behaviour box) can be expected to be negatively correla-
ted, and vice versa for the positive correlations. In this way,
the strong positive correlation of particulate phosphorus import

and sedimentation velocity (epilimnion), for example, indicates
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that the constraint variables yearly primary production and/or
the allowable algal biomass peak value are sensitive to the
"net" effect of these counteracting processes. The constraint of
maximum allowable orthophosphate concentration provides another
example. Hypolimnic remineralisation -- a major process effec-
ting the value of ortho-phosphate concentratién -- 1is conse-
quently negatively correlated with orthophosphate import and

with the initial phosphorus concentrations.

In geometrical terms it can be said that the correlations in-
dicate the main axes along which the behaviour giving character
vector region is oriented. Consequently, the model response (of
giving the defined behaviour) is most strongly influenced by
varying the parameter values in a direction orthogonal to these
axes. In this sense the correlation matrix can be interpreted in

terms of a sensitivity analysis too.

According to the character vector correlation structure, the
Attersee system, as defined by 1its geomorphology and the
behaviour definition, 1s characterised by a delicate Dbalance
between the processes responsible for primary production and
phosphorus export (which is mainly determined by fhe epilimnic
phosphorus concentration) and those which determine the ortho-
phosphate peak concentrations, namely (besides the imports),
sedimentation to the comparatively largeAhypolimnion and hypo-
limnic remineralisation. This balance can only be achieved with
a high phosphorus turnover in the epilimnion and comparatively
slow net remineralisation in the hypolimnion. For a lake in the
geographical position of the Attersee and with Attersee's mor-
phometric features and associated temperature distributions,
this seems to be a reasonable interpretation.
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CHARACTER-VECTOR-SPACE PROJECTION
COMBINATIONS FOR BEHAVIOUR GIVING CLASS

RELATIVE FREQUENCY PERCENTAGE

UNITS ON X-AX1S¢  /MONTH
UNITS ON Z-Ax1S« M/0RY

-z oo gure 3: projection of character-vector-space for the behaviour

~z2zving class; combinations of two character-vector-elements over

———-——="=eir initial ranges used for sampling.
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3.2.2. The role of the behaviour definition

Choosing values for the constraints on the allowable behaviour
patterns is subject to a two-sided problem. On the one hand, the
constraint ranges should be sufficiently narrow so as to res-
trict the allowable patterns such that they represent unambi-
guously the system's empirical behaviour in a meaningful way. On
the other hand, all the variability in the system behaviour and
the uncertainty in the observations should be taken care of with
a minimum of arbitrariness. Since a reconsiliation of these two
objectives is rather difficult in practice, we examined the ef-
fects of the constraint setting on the character vector classi-
fication. For this purpose, the model response space was pro-
jected onto the individual model output variable axes. The posi-
tion of the constraints in relation to the resulting frequency
distributions (Fig.4) gives some indication on the relative im-
portance of the individual constraints. Fig.5 shows two contras-
ting examples for a pair of critical and uncritical constraints,

respectively.

The original constraint values were altered and the effects of
this on the charecter-vector separation were studied by logging
violations of the constraints. For the standard set of con-
straint values (Table 3) the numbers of violations together with
a relative coincidence-matrix of violations are shown in Table
4, Clearly, the allowable phosphate level and the first permis-
sible day for the algal peak are the major constraints on
achieving an overall "acceptable" model response. Some of the
other constraints are either not violated at all, for example
minimum relative biomass increase, or are rarely violated, for
example the upper limit of total phosphorus output. There are
also some notable relationships in the violations observed. For
example, 1in almost all cases in which condition 5 1is wviolated
(upper limit for biomass peak) so too are conditions 1, 3, and 8
violated (primary production too 1low, biomass peak too

early,phosphorus export too low); however, only 1% of this
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subclass violates the most critical condition 7 on maximum phos-
phate level. Excessive primary production always occurs togeth-
er with an excessive level of phosphate, and about half of this
subclass gives the biomass peak to be either in the required in-
tervall of time, or too late (40%). Excessive variations in the
total phosphorus content of the lake are mostly paralleied by a
too early biomass peak, but almost never occur in conjunction

with an excessive peak value.

TABLE 4: Constraint violations (standard definition, 10,000 runs):

1) Primary production too low 1237 cases
2) Primary production too high 904 cases
3) Biomass peak too early 5108 cases
4) Biomass peak too late 1492 cases
5) Biomass peak too high 357 cases
6) relative biomass increase too low 0 cases
7) phosphate level too high 7201 cases
8) phosphorus export too low 2398 cases
9) phosphorus export too high 1 cases
10) relative change in P-content too high 2148 cases

Constraint violation %-coincidence matrix

cond.: 1 2 3 by 5 6 7 8 9 10
1 100.0 0.0 77.8 8.2 28.5 0.0 35.6 67.7 0.0 17.
2 0.0 100.0 13.3 39.5 0.4 0.0 100.0 0.0 0.1 9.
3 18.8 2.4 100.0 0.0 6.9 0.0 60.5 36.5 0.0 34,1
y 6.8 23.9 0.0 100.0 0.3 0.0 89.1 8.1 0.1 13.7
5 98.9 1.1 98.9 1.1 100.0 0.0 1.1 98.9 0.0 0.6
6 0.0 .0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
T 6.1 12.6 42.9 18.5 0.1 0.0 100.0 10.1 0.0 13.6
8 34.9 .0 77.7 5.1 14,7 0.0 30.2 100.0 0.0 36.0
9 0.0 100.0 0.0 100.0 0.0 0.0 100.0 0.0 100.0 0.0

10 10.1 y,0 81.0 9.5 0.1 0.0 45,7 Uuo0.2 0.0 100.0
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MODEL RESPONSE-SPACE PROJECTION

ATTERSEE PHOSPHORUS MODEL: STANDARD INPUT RANGE
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Figure 5 a: Model response-space projections on planes of two
response variables, indicating the position of the constraint

conditions for a pair of uncritical conditions.
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Figure 5 b: Model response-space projection on planes of two
response variables, indicating the position of the constraint

conditions for a pair of critical conditions.
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Changing condition 7 from the initial 2.5 mg P to 3.0 mg P al-
lowable in the mixed period decreased the number of violations
of this condition from 7201 to 5680, and resulted in 665
"behaviour"-giving character vectors. Thus, 372 of the 1521 vec-
tors located in that "interval" (compare with Figure 5) do not
violate any other condition. Further change in the allowable
phosphate level from 3.0 to 3.5 mg P increased the number of
behaviour-giving vectors to 1127, with 4126 residual violations
of the constraint condition, indicating a fraction of about 500
potential "behaviour" vectors within that interval. For compar-
ison, a reduction of the allowable values from the original 2.5
to 2.0 mg per cubic meter, decreased the number of behaviour
runs quite dramatically to 68 with a corresponding number of
constraint violations of 8565. Again, a considerable number of
the vectors in that interval (more than 1000 of the total of
1350) were already violating at least one other constraint con-
dition. In addition, as another example, changing condition 3
from day 60 to day 50, resulted in only two additional
"behaviour" vectors, although the number of violations of condi-
tion 3 dropped from 5108 to 5074. The remaining 32 samples thus
give a model response that violates at least one other condi-

tion.

In conclusion it can be said that although the specification
of some of the constraint conditions is rather c¢ritical for the
resulting character-vector separation, the high degree of coin-
cidence makes the method less sensitive to the individual condi-
tions. This analysis may give some indication of where further
efforts in data collection or analysis should be concentrated.
Admittedly, however, evaluation of the sensitivity of the ap-
proach to the behaviour definition should be carried out in
terms of response probability distributions for ©predictions,
which remains to be done.



3.3 Projections into the future

Having established an ensemble of "model calibrations" for the
range of empirical conditions covered by the behaviour defini-
tion, this ensemble can now be used for making predictions of
the 1lake system's response to changes in nutrient loading. The
mean total phosphorus loading in this ensemble was estimated to
be 1 mg P m-2 day-1 (S.D.: 0.33), which corresponds well with
independent field estimates (Muller,1979). For the predictions,
the 1loading (sum of character elements 11 and 12 in Table 2)
were now varied from 0. to 5 mg P m-2 day-1 in steps of 0.25.
The proportion of of the available (ortho-) phosphorus in the
total loading was set to 10% after a series of runs in which ra-
tios of 0, 10 and 25% were compared. For each of the 21 new
loading values the first 150 sample character vectors from the
behaviour giving ensemble were taken (due to technical limita-
tions, not all 293 could be used), thus generating a set of 150
estimates for several output variables (yearly primary produc-
tion, algae peak biomass, phosphate maximum, phosphorus export,
and phosphorus sedimentation) for each 1loading value for a
series of 10 years. Fig. 6 summarizes the results for primary

production, showing the situation after years 1, 2, 5, and 10.

As indicated in Fig.6, the probability distributions 1in the
higher 1loading classes level out with time. Taking the coeffi-
cient of variation as a measure of prediction uncertainty, a
saturation-curve type pattern in time can be observed for this
measure (see also below). When plotting this coefficient of
variation against loading for the first year's response, a dis-
tinct minimum -- in the empirical (observed) range of 1loadings
-- can also be observed (Figure 7). One may conclude therefore,
that prediction uncertainty increases with increasing extrapola-
tion away from both the present time and the presently observed
input loading conditions. Certainly, the predictions for larger
deviations from the empirical situation are rather trivial after

only a few years: an estimate of yearly primary production
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Figure 6: Estimates of primary production for different loading
levels (293 runs); empirical range is used for initial condi-
tions for the first year; simulation is extended for a period of

ten years. (continued)
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between 100 and 1000 g C m-2 for a phosphorus loading of 5 mg
m-2 day-1 is of little value as a prediction. However, it should
serve as a warning to the analyst that the wuncertainty 1in the
data available or the variability of the system itself simply do

not support such an extrapolation.

The samples of predictions can now be interpreted in terms of
the original problem setting. Only the loading values close to
the empirical range result in meaningful distributions in the
ten-year projections, but these are of course the most interes-
ting and "realistic" alternatives to be studied. At the end of
the ten-year period of simulations the lake system is found to
be in a kind of new dynamic equilibrium with regard to the out-
put variables considered. Whereas the variability of the
predictions rapidly increases during the transient stage of the
first six years (or less in some cases) after a change in the
loading, this variability has stabilized by the end of the simu-
lation period ( the somewhat unrealistic O-loading class is om-
itted from these evaluations). The time to reach a new equili-
brium was found to be related to the relative change in the
loading. The comparison of different loadings in terms of pri-
mary production, peak biomass or phosphate level can now be made
by either comparing the mean levels and their confidence inter-
vals, or by comparing the probabilities for reaching or ex-
ceeding certain levels. This is especially interesting, as 1in
fact almost all of the probability curves fitted are skewed,
which cleary implies that & simpl: comparison of mean values

might be misleading for certain problems.
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4. DISCUSSION

This paper, in line with a growing number of other publica-
tions (for example, O'Neill and Gardner, 1979; Di Toro and van
Straten, 1979; van Straten and de Boer, 1979; Reckhow, 1979;
Beck et al, 1979; Hornberger and Spear 1980, Spear and Hornber-
ger, 1980; Fedra, in press a,b,c), has discussed the problem of
uncertainty in ecological modelling. We have, 1in fact, taken
the scope of the paper one step further to include an examina-
tion of problems of arbitrariness. In order to carry out an
analysis in which these problems of uncertainty and arbitrar-
iness can be considered explicitly we have prepared a method for
model "calibration" and subsequent prediction with the model
which is based on the idea of Monte Carlo simulation. Given the
uncertainties in the field data and our a priori knowledge of a
system's behaviour, "calibration of the model depends upon a
"vague" definition of observed behaviour and a comparison with
this definition of responses obtained from the model. The
structure of the relationships among the variables represented
in the model is fixed a priori. The parameter values and other
information required to run the model, such as 1input forcing
functions, are gathered together in a character vector, random
realisations of which are used to generate a 1large sample of
simulated responses. Each realization of the character vector
is drawn from prespecified rectangular distributions for the
character-vector elements; each simulation run thereby obtained
is classified as either "giving the defined behaviour" or "not-
giving the defined behaviour". All the character vector real-
isations that give the defined behaviour are then regarded as
equally good '"calibrations"™ of the model and they can subse-
quently be wused to generate distributions of the future

behaviour of the system under study.

There are five key themes of ecosystems modelling which we
wish to discuss 1in this section: "uncertainty," "arbitrar-

iness," "calibration," "prediction," and (to a lesser extent)



"management." Uncertainty, as related to model calibration, 1is
considered explicitly both 1in defining the range of observed
behaviour patterns and in defining the intervals of allowable
parameter values and forcing functions (the character-vector
elements). When the sample of behaviour-giving character vec-
tors 1is wused for generating predictions under changed condi-
tions, the uncertainty of the prior calibration process 1is
preserved and will propagate forward with the predictions. For
the case study reported (the Attersee problem) it is clear that
the data available for calibration are particularly uncertain.
The effects of this are clearly reflected in the model predic-
tions, which tend quickly to degenerate into rather trivial and
meaningless statements about the future. This is, of course, a
clear warning that the data available and the observed variabil-
ity of the system itself simply do not support such extrapola-
tion. We would 1indeed prefer to make predictions about the
range and variability of behaviour patterns rather than "best"

estimates of possibly meaningless average values.

Arbitrariness in ecosystems modelling is at first sight most
apparent in the problem of model calibration. There are more or
less arbitrary choices that have to be made for the structure of
the model, for the specification of the behaviour definition,
and for the permissible ranges of the character vector elements.
But wultimately, as with the effects of uncertainty, it is for
the purposes of prediction that the effects of arbitrariness are
important. In this paper, therefore, we have examined the sensi-
tivity of the model response to the arbitrary choices of the
calibration procedure. It has not been possible, however, to
study the influence of our particular choice of model structure.
One could propose that the approach be applied to alternative
model structures in parallel. But given a study with only one
hypothesis for the model structure it is necessary to supply the
appropriate qualifying statements for any interpretations placed
on the prediction results.
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There are several challenging aspects of the method adopted
here for model calibration. Since the model structure was fixed
a priori in this study we have not addressed the difficult prob-
lem of model structure identification (see, for example, Beck,
1979, 1980); the "calibration" exercise here has essentially
been concerned with a "parameter estimation” problem.
Nevertheless, the induced distributions of the parameter values
(in the character vector) that result from the analysis can pro-
vide not only meaningful insight into the nature of the system's
behaviour but also a posteriori information about the adequacy
of the model structure. For instance, a high variability or ab-
sence of <clustering in the parameter values that give the de-
fined behaviour could indicate an over-parameterisation of the
model. In other words this is the equivalent of the problem of
parameter identifiability that is commonly encountered in model-
ling poorly-defined systems (Young, 1978; Young et al., 1978).
We might alternatively suggest that such "random" distributions
of +the behaviour-giving parameter values are an indication of
"true" stochastic variability in the parameters. However, this
seems a less plausible interpretation, and again it is important
to recall that the data of the Attersee case study exhibit
especially high levels of uncertainty. It is also pertinent to
consider in more detail the nature of the criterion for model
"calibration," that is, the "vague" definition of the system's
behaviour. As one's knowledge of observed behaviour accumulates
and improves so it 1is possible to imagine that the behaviour
constraints can be made both more and narrowver. Thus the
"vague" definition becomes progressively less vague. Does this
suggest that the logical conclusion of this argument is that the
"vague" definition eventually approximates a least-squares-like
criterion? It does not: the "vague" definition of system
behaviour embodies no such concept as a degree of closeness to a
"true" behaviour; it serves merely as a binary classification of
parameter values that either "give" or "do not give" the defined
behaviour. Accordingly, one could thus speculate on the merits

of a ternar classification procedure with a "marginal" class
y



separating the behaviour-giving and not-behaviour-giving

classes.

The fourth theme for consideration in this discussion 1is
prediction. Of primary concern here is a problem of the per-
sistence of "extreme" conditions. The problem has 1its origins
in the "calibration™ procedure. In defining the system's
behaviour a number of aggregate yearly observations and features
were lumped together. The behaviour definition was of necessity
particularly wide in our case study and thus some of the
behaviour-giving character vectors reflect conditions of
behaviour (towards the boundaries of the defined ranges) which
we would 1intuitively, but not formally term "extreme" condi-
tions. When these specific character vector realisations are
used for prediction, say for ten years into the future, this is
tantamount to assuming that extreme conditions persist for 1long
periods of time. Whether such persistence of extreme conditions
contributes to a greater apparent variability of future
behaviour is a difficult question to answer. However, it is a

question that deserves further study.

Finally, let us turn to the topic of ecological modelling in a
management framework. Management usually requires answers now
to questions of immediate significance; and these answers must
be derived on the basis of the currently available observations.
The choice that management has, between the obscure, wuncertain
predictions given here and a detailed, deterministic, and ap-
parently confident statement of future behaviour, 1s indeed a
sensitive 1issue. What choice would any of us make between an
honest, but depressingly ambiguous prediction and a faithfully-
promoted, complex, and seemingly accurate prediction? Holling
and colleagues in their Dbook on adaptive environmental
management (Holling, 1978) discuss the "issue of uncertainty" in
considerable depth. The idea of benefiting from uncertainty, in
terms of the 1learning process and in the design of new exper-

imental or monitoring programmes to reduce <critical uncertain-



ties, 1is one with which this paper is in sympathy. Qur con-
clusion 1is that there should be careful and critical appraisal
of "deterministic”" modelling and prediction exercises, which
tend to ignore uncertainty and which tend to attract the appro-
val of being accurate because they are complex and contain much
detail.
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