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Study  region:  Four  headwaters  in Southern  Africa.
Study focus:  The  streamflow  regimes  in Southern  Africa  are  amongst  the  most  variable  in
the  world.  The  corresponding  differences  in  streamflow  bias  and variability  allowed  us  to
analyze  the  behavior  and robustness  of the  LISFLOOD  hydrological  model  parameters.  A
differential  split-sample  test  is  used  for calibration  using  seven  satellite-based  rainfall  esti-
mates, in  order  to assess  the  robustness  of  model  parameters.  Robust  model  parameters
are  of  high  importance  when  they  have  to be  transferred  both  in time  and  space.  For  cali-
bration, the  modified  Kling-Gupta  statistic  was  used,  which  allowed  us  to differentiate  the
contribution  of  the  correlation,  bias  and  variability  between  the  simulated  and  observed
streamflow.
New  hydrological  insights:  Results  indicate  large  discrepancies  in  terms  of the  linear  correla-
tion  (r), bias  (ˇ)  and  variability  (�)  between  the observed  and simulated  streamflows  when
using  different  precipitation  estimates  as model  input.  The  best  model  performance  was
obtained with  products  which  ingest  gauge  data  for bias  correction.  However,  catchment
behavior  was  difficult  to be captured  using  a single  parameter  set and to  obtain  a  single
robust  parameter  set  for each  catchment,  which  indicate  that transposing  model  param-
eters  should  be  carried  out  with  caution.  Model  parameters  depend  on  the  precipitation
characteristics  of  the  calibration  period  and  should  therefore  only  be  used  in target  periods
with  similar  precipitation  characteristics  (wet/dry).
©  2016  The  Authors.  Published  by  Elsevier  B.V.  This  is an  open  access  article  under  the  CC

BY  license  (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Hydrological models are widely used for water resources modelling, both drought and flood forecasting, and climate
change impact assessment studies, among others. Before applying these models their robustness needs to be tested vis-à-vis
with the specific modelling objective to build model credibility and ensure model applicability (Klemeš, 1986). Operational

models often need to be calibrated to obtain numerical values of model parameters. The aim of a calibration process is to
obtain parameters which allow an acceptable representation of the hydrological behavior of the selected catchment, and
moreover to obtain parameters which are robust and, therefore, be transposable towards other time periods as well. This
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ssumption might only be valid if the uncertainty in the obtained model parameters is low and/or the conditions between
he calibration and validation period are similar (stationary conditions). However, there are multiple reasons that might lead
o changes in model parameters in time and, therefore, raise a lack of model robustness. The most obvious cause might be
n inappropriate model structure (Butts et al., 2004; Bulygina and Gupta, 2009; Reusser and Zehe, 2011; Lin and Beck, 2012;
eiller et al., 2012). Recently, Coron et al. (2014) showed the inability of three models of increasing complexity in reproducing
he water balance on different sub-periods. Another explanation for the lack of model robustness can be miscalibration (i.e.
oor optimization algorithm) or overcalibration (i.e. insufficient calibration period, too many parameters, wrong objective

unction) of model parameters, as shown by Wagener et al. (2003), Hartmann and Bárdossy (2005), Son and Sivapalan
2007), Gupta et al. (2009), Ebtehaj et al. (2010), Efstratiadis and Koutsoyiannis (2010), Andréassian et al. (2012), Gharari
t al. (2013) and Zhan et al. (2013). In addition, changes in time of some catchment features (e.g., land use change and
anagement, operational rules of reservoirs, changes in groundwater level) are reflected in the model input data, and might

lso lead to lack of model robustness. For example, Fenicia et al. (2009) showed the major role of changes in land use
anagement and forest age on the catchments’ behavior.

To assess the model’s robustness under highly variable climate conditions the standard split-sample test, used to calibrate
he model in one period and test the model in another period, is not sufficient enough. Klemeš (1986) proposed a more
owerful test, the so called differential split-sample test, where calibration and validation periods are chosen to represent
arkedly different hydro-meteorological conditions of the catchment. This differential split-sample test should be applied
henever a model is to be used to simulate flows in a basin under conditions different from those corresponding to the

vailable flow record (Klemeš, 1986). A robust model should demonstrate its ability to perform equally well in the selected
alibration and validation periods. Studies that performed a differential split-sample test are relatively scarce, because most
odels fail this test (Seibert, 2003). The studies of Refsgaard and Knudsen (1996), Donnelly-Makowecki and Moore (1999),

u (1999), Seibert (2003), Wilby (2005) and Chiew et al. (2009) all applied a differential split-sample test. Most of these
tudies found a decrease in model performance due to the sensitivity of the model parameters in relation to different climate
onditions. More recently, Merz et al. (2011) found in a test for 273 Austrian catchments that the parameters controlling
now and soil moisture were strongly influenced by climatic conditions. Vaze et al. (2010) and Coron et al. (2012) conducted
tudies with four and three hydrological models, respectively, on southeastern Australian catchments. They also found a
trong climate influence in their models. According to Li et al. (2012) dry periods contain more information for model
alibration compared to wet periods, when they investigated the transposability of model parameters for dry and wet
onditions.

For successful streamflow predictions the model should be forced with accurate precipitation data (Beven, 2004). The
mpact of precipitation input on model performance is well documented in error analyses (Kavetski et al., 2003, 2006), as a
unction of catchment size (Moulin et al., 2009), raingauge density (Bárdossy and Das, 2008) or using various geostatistical

ethods (Sun et al., 2000). However, model robustness problems due to incorrect estimations of precipitation amounts are
arely reported in hydrological modelling, while it is well known that such errors might have a significant effect on the final
alues of model parameters (Oudin et al., 2006).

Considering the importance of the precipitation input on the reliability of model predictions, it is extremely challenging to
erform reliable applications of hydrological models in ungauged or data-scarse areas. For Africa, “ground truth” precipitation

s very sparse and, therefore remote sensing can be an ideal technique for obtaining time series of precipitation to be used
s input data for hydrological modelling studies. Applications of satellite-based rainfall estimates (SRFE) for hydrological
odeling are well documented (for e.g., Thiemig et al., 2013; Artan et al., 2007; Behrangi et al., 2011; Gourley et al., 2011;

tisen and Sandholt, 2010; Cohen Liechti et al., 2012), observing large differences in parameter values obtained from different
ainfall inputs (Bitew and Gebremichael, 2011). However, most of these studies perform the standard split-sample test and do
ot discuss the robustness of the obtained model parameters and how the model structure compensate for the precipitation

naccuracy, and moreover if they are transposable to time periods other than the single validation period.
The aim of this study is to determine the robustness of the fully distributed LISFLOOD hydrological model by using dif-

erent precipitation estimates as model input. To achieve this aim, this research focuses on five main research questions: (i)
ow accurate are the different precipitation data sets for streamflow simulations? (ii) What is the effect of uncertain input
ata (precipitation) on the estimates of model parameters? (iii) How will the model parameters obtained by calibration
ompensate for precipitation inaccuracy? (iv) Can a different source of precipitation overcome robustness problems? (v)
s a single calibration parameter set sufficient for hydrological forecasting or climate scenario modelling? These research
uestions are answered performing a differential split-sample test to calibrate the LISFLOOD hydrological model using dif-

erent precipitation sources, to show differences in model parameters and to ensure a minimum standard for operational
alidation of this simulation model. Southern Africa is selected as a case study because of its highly inter and intra-annual
ydrological variability, mainly due to rainfall patterns characterized by events of short duration and high intensities. There-

ore, the precipitation estimates might present large differences with ground observations, i.e., they can be highly inaccurate.
he corresponding differences in streamflow bias and variability will allow us to assess differences in model’s behavior and
obustness of model parameters.
The paper is organized as follows. Section 2 presents the precipitation estimates and other hydrological model data used
n this research, providing a description of the sensitivity analysis, calibration procedure and climate characteristics during
he hydrological simulations. Section 3 contains a description of the calibration and validation results of the differential split-
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sample test, while Section 4 gives a description of the model parameters, their robustness and uncertainty. The conclusions
are finally presented in Section 5.

2. Methodology

2.1. Hydrological model

LISFLOOD is a GIS-based spatially-distributed hydrological rainfall-runoff model (De Roo et al., 2000; Van Der Knijff et al.,
2010; Burek et al., 2013). Driven by meteorological forcing data, LISFLOOD calculates a complete water balance at a daily
time step and every grid-cell defined in the model domain. Processes simulated for each grid cell include snowmelt, soil
freezing, surface runoff, infiltration into the soil, preferential flow, redistribution of soil moisture within the soil profile,
drainage of water to the groundwater system, groundwater storage, and groundwater base flow. Runoff produced for every
grid cell is routed through the river network using a kinematic wave approach. Lakes, reservoirs and retention areas or
polders can be simulated by giving their location, size and in- and outflow boundary conditions. LISFLOOD is currently
used for studies dealing with water resources (Mubareka et al., 2013; Sepulcre-Canto et al., 2012), climate change impact
assessment (Dankers and Feyen, 2008, 2009; Feyen et al., 2009; Rojas et al., 2012), flash flood forecasting (Alfieri et al., 2012)
and flood forecasting for Europe (Bartholmes et al., 2009; Pappenberger et al., 2011; Ramos et al., 2007; De Roo et al., 2011;
Thielen et al., 2009) and recently for Africa (Thiemig et al., 2015).

Spatially variable input parameters and variables were obtained from different databases. Soil properties were derived
from the Harmonized World Soil Database (HWSD). Forest fraction and land use cover were obtained from the Global Land
Cover 2000 (GLC2000) dataset (Bartholomé et al., 2003). In addition to land cover, the vegetative properties were obtained
from the VGT4AFRICA Project. A more detailed description of the static input maps for Africa is given by (Bódis, 2009). Water
use information from the Global Crop Water Model (GCWM – Siebert and Döll, 2008, 2010) is dynamically coupled with
LISFLOOD. It is assumed that water is subtracted solely from the streamflow and not from internal storages.

The drainage network of the African river basins were obtained using a sequence of upscaling operations performed on
the river network derived from a Shuttle Radar Topography Mission (SRTM; Jarvis et al., 2008) elevation model with spatial
resolution of 90 m.  With the upscaling from a fine towards a coarser scale the accuracy of the drainage network data can
be lost and manual corrections should be applied. However, in the current pan-African setup we  applied a new algorithm
developed by Wu et al. (2011) for automatic upscaling of river networks, which successfully addresses most of the upscaling
issues.

Meteorological forcing data for the pan-African domain of the LISFLOOD model were obtained from the ERA-Interim
reanalysis dataset (Simmons et al., 2007). Gridded data products of ERA-Interim include a large variety of surface and
upper-air parameters. Here we retrieved 3-hourly or daily estimates of wind speed, minimum and maximum temperature,
dewpoint temperature, and solar and thermal radiation at a grid of 0.25◦ from the original Gaussian reduced grid (about
0.7◦). Afterwards, the Penman-Monteith formula was used to compute potential evapotranspiration, evaporation rates for
open water and bare soil surfaces, to be used as input data for the hydrological model. The current pan-African setup of
LISFLOOD uses a 0.1◦ grid, which means that all the datasets were re-sampled to 0.1◦ of spatial resolution.

2.2. Data

2.2.1. Precipitation sources
The precipitation products used in this work are the National Aeronautics and Space Administration (NASA) Tropical

Rainfall Measuring Mission (TRMM)  3B42 version 6 (hereafter 3B42V6) and the latest version 7 (3B42V7), the National
Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center morphing technique version 1.0 (CMORPHV1.0),
ERA-Interim precipitation corrected using the Global Precipitation Climatology Project (GPCP) dataset (ERAIGPCP), the Global
Satellite Mapping of Precipitation moving vector with Kalman filter (GSMaP), The Precipitation Estimation from Remotely
Sensed Information Using Neural Networks product (PERSIANN) and The NOAA African Precipitation Estimation Algorithm
(RFE 2.0). A brief description of each product is given below.

The TRMM 3B42V6 product has been produced since 1998 and the estimates are produced in four stages (Huffman
et al., 2007): (1) the microwave estimates (TMI, AMSR-E, SSM/I and AMSU-B) precipitation are calibrated and combined,
(2) infrared (IR) precipitation estimates are created using the calibrated microwave precipitation, (3) the microwave and
IR estimates are combined, and (4) rescaling to monthly data is applied using monthly gauge data. The latest version, the
3B42V7, is a reprocessed version of 3B42V6 with changes in the algorithm and includes additional datasets (Huffman et al.,
2010; Huffman and Bolvin, 2012). Both 3B42V6 and 3B42V7 product estimates are available approximately 2 months after
observation, but are more accurate and suitable for research compared to the near-real-time products (Huffman et al., 2007,
2010). They are released on a 0.25◦ by 0.25◦ grid at a 3-hourly temporal resolution and cover all latitudes between 50◦N and
50◦S.
The main inputs for the CMORPHV1.0 are the combined IR and microwave estimates. The passive microwave estimates
are interpolated using atmospheric motion vectors from two  successive IR images at 30-min intervals (Joyce et al., 2004).
The final product includes the raw, satellite only precipitation estimates as well as bias corrected and gauge-satellite blended
precipitation products. The original product has a very high spatial resolution: 8 km grid and half-hourly time step. However,
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Fig. 1. Elevation map  of Southern Africa including the four headwaters with the outlets marked as black dots.

oth radar and satellite precipitation datasets are gridded to the 0.25◦ grid and aggregated to a 3-h time step to ensure
ommon spatial and temporal scales in a global belt extending from 60◦N to 60◦S.

The ERAIGPCP is estimated by the numerical model based on temperature and humidity information derived from assim-
lated observations originating from passive microwave and in situ measurements (Dee et al., 2011). Balsamo et al. (2010)
eported on systematic biases in the ERA-Interim precipitation data. To correct for these biases, the ERA-Interim precipitation
s corrected using the GPCP dataset. Details of the rescaling method can be found in Balsamo et al. (2010).

The main data sources for the GSMaP algorithm are TRMM/TMI, Aqua/AMSR-E, DMSP/SSMI, and IR data. In addition to
hese, AMSU-B’s are included in the GSMaP product. The algorithm uses the Kalman filter to retrieve the precipitation rate
Ushio et al., 2009) and refines the precipitation at each 0.1◦ pixel using the relation between the IR brightness temperature
nd surface precipitation rates.

PERSIANN is developed with artificial neural networks estimating precipitation rates using IR. The accuracy is improved
ith adjustments in the network parameters using precipitation estimates from microwave and ground rain rates where

vailable (Hsu et al., 1997).
The RFE2.0 product (Herman et al., 1997) is based on a combination of passive microwave and IR precipitation estimates.

aily rain gauge station data from Global Telecommunication System (GTS) records is used for bias correction. The spatial
esolution corresponds to a 0.1◦ grid which extends from 40◦N to 40◦S and 20◦W to 55◦E.

For this study, each precipitation source is resampled (nearest neighbor algorithm) onto a 0.1◦ common grid, from July
001 until June 2010 at a daily time step to drive the LISFLOOD hydrological model.

.2.2. Observed streamflow
The climate of the Southern African region is characterized as highly variable, both temporally and spatially. Many rivers

ass through different climate zones from tropical to extremely arid, and the streamflow regimes are amongst the most
ariable in the world (Gorgens and Hughes, 1982). Water resource management is of high importance for South Africa to
aintain reliable water supplies at times of water stress. Therefore, all major rivers are being regulated to some degree

Walmsley et al., 1999).
Four headwaters were selected (Fig. 1) for the most important rivers in Southern Africa, trying to exclude the unnatural

ow regimes downstream as much as possible. Daily streamflow records were collected from 4 gauging stations (Fig. 1),
rovided by the Department of Water Affairs in South Africa (www.dwaf.gov.za), for the period July 2001 until June 2010.

.3. Selection of study area
As described in Section 2.2.2, four headwaters in Southern Africa with near-undisturbed hydrological regime were
elected for analysis. However, man-made reservoirs exist in both regions A2 and A3, but their small regulation capac-
ty have little impact on streamflow amount, as observed in the flow duration curves (not shown here). The locations of

http://www.dwaf.gov.za


116 B. Bisselink et al. / Journal of Hydrology: Regional Studies 8 (2016) 112–129

Table 1
Physiographic characteristics for the study area. The characteristics are calculated based on the ERA-Interim for evapotranspiration (PET) and temperature
(TA),  and ERA-interim corrected with GPCP for the precipitation (P).

Type Variable A1 A2 A3 A4

Station Name Roodewal Oranjedraai Tugela Ferry Overvloed
River Kraai Orange Tugela White Mfolozi
Catchment Orange Orange Tugela Mfolozi

Topography Area (km2) 8667 24960 12987 3917
Elevation (m)  1848 2297 1291 1047

Climate HI (−) 0.56 0.70 0.67 0.69
P  (mm  year−1) 748 832 875 876
PET  (mm  year−1) 1342 1186 1310 1267

CORR (−) 0.29 0.47 0.49 0.53
TA  (◦C) 12.6 10.5 16.8 17.0
Q  (m3s−1) 23.4 105.6 43.4 5.8

the headwaters are shown in Fig. 1, while Table 1 lists the climatic and topographical attributes of the selected catchments.
The four headwaters are located in or on the Eastern plains of the Drakensberg mountain range where the most important
rivers originate. The size of the headwaters range from about 3917 km2 for A4 to about 24960 km2 for A2, and the average
elevation ranges from 1047 (A4) to 2297 (A1) meters a.s.l. (see Table 1).

According to the calculated humidity index (HI = P/PET), the climate in the selected headwaters is sub-humid with an
average annual precipitation (P) ranging from 748 (A1) to 876 (A4) mm yr−1 (according to ERAIGPCP). The average annual
evapotranspiration (PET) ranges from 1186 (A1) to 1342 (A4) mm yr−1. The Pearson product-moment correlation coefficient
(CORR) between monthly moisture (P) and energy availability (PET) ranges from 0.29 to 0.53 showing a good positive
correlation in A2, A3 and A4 (> 0.4) which, according to Petersen et al. (2012), represents areas with a strong seasonal
precipitation regime. Precipitation occurs mainly during the summer months (i.e. October to March) and the major sources
of rainfall during summer are thunderstorms, orographically induced storms (Tyson et al., 1976), and occasionally tropical
cyclones (Dyson and Van Heerden, 2001; Reason and Keibel, 2004). Although these systems may  result in devastating floods,
they are an important source of water to supply the increasing water demand in this area. The average annual temperature
(TA) ranges from about 10.5 ◦C in the mountainous areas (A2) to 17 ◦C in the headwater with the lowest elevation (A4). The
average monthly streamflow (Q) ranges from 5.8 (A4) up to 105.6 m3 s−1 (A2), but the high rainfall variability results in large
fluctuations of the streamflow regime.

2.4. Sensitivity analysis

Before using a calibration procedure to obtain parameter values for the hydrological model, we identified parameters
with the highest influence in simulated streamflow. In the current LISFLOOD version, experience of the model development
team suggests the following parameters to be calibrated. The Upper Zone Time Constant (UZTC) and Lower Zone Time
Constant (LZTC) reflect the residence time of water in the upper and lower groundwater zone, respectively. As such, they
control the amount and timing of outflow from the groundwater reservoir. The Groundwater Percolation Value (GwPV)
controls the flow from the upper and lower groundwater zone. The Ground Water Loss Fraction (GwLoss) is the rate of flow
out of the lower groundwater zone, expressed as a fraction of the inflow, GwPV. The Xinanjiang parameter (b Xinan) is an
empirical shape parameter in the Xinanjiang model (Zhao and Liu, 1995) that is used to simulate infiltration. It controls the
fraction of saturated area within a grid cell that is contributing to runoff; hence it is inversely related to infiltration. The
Power Preferential Flow Parameter (PPrefFlow) is also an empirical shape parameter of the function describing the flow that
bypasses the soil-matrix and drains directly to the groundwater. The Channel Manning parameter (CCM) is a multiplier that
is applied to the Manning’s roughness maps of the channel system. The higher the value the more friction the water will
experience and resulting in a lower specific streamflow. The evaporation input does not have a large spatial variation and
is subject to errors in Southern Africa (Hughes, 2006; Hughes et al., 2010). Moreover, there are large differences between
actual evaporation estimates partially dependent on precipitation (Trambauer et al., 2014). To partially consider uncertainties
on the magnitude of the evaporation, related to the different precipitation sources, a multiplier to the evaporation input
(CalEvap) is also calibrated. In addition, for catchments with upstream reservoirs (A2 and A3, with 2 reservoirs each) a set
of four reservoir parameters are included to describe the inflow and outflow streamflows. Finally, the twelve parameters
selected for the global sensitivity analyses are listed in Table 2.

The variance-based method of Sobol (Sobol’, 2007) was selected as a global sensitivity analysis technique to identify the
relevant model parameters. Here, the Sobol’s algorithm proposed by Saltelli et al. (2010) is used to quantify the first- and
total-order indices of each model parameter described in the previous section. The first-order sensitivity index (Si) measures
the direct contribution of each model parameter to the total model output variance. By definition, the sum of the first-order

indices of each single calibration parameter is smaller or equal to 1. The first-order index provides a measure of the direct
importance of each parameter, and the larger the first-order sensitivity index the more important the parameter. On the
other hand, the total-order sensitivity index (Sti) is a measure of the total effect of each parameter, i.e., its direct effect and
all the interactions with other parameters. If the first-order sensitivity index is equal to the total-order sensitivity index for
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Table  2
LISFLOOD calibration parameters with both upper and lower bound.

Parameter Unit Min  Max

UZTC days 5 40
LZTC  days 50 2500
GwPV  mm day−1 0.5 2
GwLoss – 0.01 0.70
b Xinan – 0.01 1
PPrefFlow – 1 4
CCM  – 0.1 15
CalEvap
rnlim
rflim
rnormq
rndq

–
–
–
m3 s−1

m3 s−1

0.8
0.10*

0.81*

0.1*

12*

1.2
0.80*

1.0*

20*

1200*

*Ranges are reservoir dependent and only used for region A2 and A3 in the global sensitivity analysis.
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ig. 2. Barplots of the sensitivity indices with respect to the calibration parameters for each precipitation source based on the period 2002–2006. For each
recipitation source, two  bars are displayed: the left one is for first-order sensitivity indices and the right one is for the total-order sensitivity indices.

 given parameter, it means that this parameter does not interact with the other parameters. Conversely, if the first-order
ensitivity index is lower than the total-order sensitivity index, it indicates strong interactions between this parameter and
ther parameters (high complexity model). Note that the sum of the total-order sensitivity indices may  be larger than 1
because some effects are counted more than once in the sum).

The Sobol’s method was used to identify the most important parameters when the LISFLOOD model was  forced with

ach one of the seven SRFE described in Section 2.2.1. The evaluation of both the first- and total-order sensitivity indices
s shown in Fig. 2. For region A1 (Fig. 2a), the most sensitive parameters are related to infiltration (PPrefFlow, b Xinan),
roundwater processes (GwLoss) and evaporation (CalEvap). Both GwLoss and b Xinan are clearly the most important
ariables for every precipitation source. The parameter PPrefFlow is found to have a very weak direct influence, but a high
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interaction with the other parameters. For region A2 (Fig. 2b), the most influential parameter is GwLoss for most of the
SRFEs, except for the RFE2.0 precipitation product. GwLoss explains by itself more than 50% of the model output variance.
Several precipitation products led to model parameters highly related amongst them (i.e., they are not independent), as
shown by the height difference of the vertical bars representing the sum of all first-order sensitivity indices: 50% or more.
For region A3 (Fig. 2c), only three parameters (GwLoss, PPrefFlow and CalEvap) are influential for the model output variance.
The interaction between the parameters is variable, with weak interaction for CMORPHV1.0 and strong interaction for
RFE2.0. Fig. 2d shows similar results for region A4, but with a stronger direct influence and a weaker interaction amongst
those three parameters. Note that the parameters related to the reservoirs (regions A2 and A3) are of no importance at
all for the model output variance. The aforementioned results show that only parameters related to evaporation (CalEvap),
infiltration (PPrefFlow) and groundwater processes (GwLoss) are the most important for the next calibration step. The strong
interactions observed amongst them clearly indicate that trying to optimize one parameter at a time would be inefficient.
Although an independent calibration of only the most important parameters could be attempted, we  calibrated jointly the
8 parameters (UZTC, LZTC, GwPV, GwLoss, b Xinan, PPrefFlow, CCM and CalEvap). The parameters to be calibrated and their
respective physically-reasonable ranges are listed in Table 2. The parameters related to the reservoirs are neglected in the
calibration procedure as they were not identified as important during the global sensitivity step.

2.5. Calibration procedure

The open source hydroPSO R package v0.3-3 (Zambrano-Bigiarini, 2013; Zambrano-Bigiarini and Rojas, 2013) was used
for calibrating the LISFLOOD model in the four selected catchments. hydroPSO is a new global optimisation/calibration tool
based on the Particle Swarm Optimisation (PSO) algorithm. hydroPSO is an effective and efficient calibration tool, as shown
in recent applications with different hydrological and environmental models (Thiemig et al., 2013; Brauer et al., 2014a,b;
Abdelaziz and Zambrano-Bigiarini, 2014; Silal et al., 2015). More details about hydroPSO can be found in Zambrano-Bigiarini
and Rojas (2013) and Zambrano-Bigiarini et al. (2013).

The differential split-sample test was performed over two  time periods of four years (Jul 2002–Jun 2006 and Jul 2006–Jun
2010), running the LISFLOOD model with a daily time step. For each model simulation a pre-run is performed to initialize the
groundwater storage and subsequently an additional warm-up period of six months is used to initialize the water storage
components of the model.

The objective function chosen to drive the optimization was  the modified Kling-Gupta efficiency (KGE′) between simulated
and observed streamflows (Kling et al., 2012), which was maximized towards an optimal value of 1.

KGE′ = 1 −
√
K + L + M,  (1)

where K is the correlation term

K = (r  − 1)2 (2)

L the bias term

L =
(

 ̌ − 1
)2

(3)

and M the variability term

M = (�  − 1)2 (4)

with r is the Pearson product-moment correlation coefficient,  ̌ is the bias ratio:

 ̌ = �s
�o

(5)

and � is the variability ratio:

� = CVs
CVo

=
�s
�s
�o
�o

(6)

where � is the mean streamflow (m3 s−1), CV is the coefficient of variation and � is the standard deviation of the streamflow
(m3 s−1), and the indices s and o represent simulated and observed streamflow, respectively. KGE′, r, ˇ, and � have their opti-
mum  at unity. The hydrological performance is classified as mentioned in Thiemig et al. (2013) and according Kling’s review
comment (2016): excellent (KGE′ ≥ 0.9), good (0.9 > KGE′ ≥ 0.75), intermediate (0.75 > KGE′ ≥ 0.5), poor (0.5 > KGE′ > 0.0) and
very poor (KGE′ ≤ 0.0). More information about KGE′ in relation to other objective functions can be found in Gupta et al.
(2009). Although the model was run with daily time steps, the results of the calibration are analyzed on a monthly basis.
2.6. Climate characteristics of 2002–2006 and 2006–2010

The calibration of LISFLOOD is carried out for each of the seven precipitation products described in Section 2.2.1, using
two calibration periods with highly different climate characteristics: 2002–2006 and 2006–2010. Fig. 3 summarizes the
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ig. 3. Barplots with the change in correlation (panels a, d, g, j), mean (panels b, e, h, k) and variation (panels e, f, i, l) between 2002–2006 and 2006–2010
or  each precipitation source and observed streamflow in each study area A1 (panels a, b, c), A2 (panels d, e, f), A3 (panels g, h, i), and A4 (panels j, k, l). The
alue  of 2002–2006 is the upper or lower value of the vertical bar accompanied with the black dot.

limate characteristics of each selected catchment, by showing the relation between monthly precipitation and observed
treamflow during the two calibration periods. Fig. 3 will be used as a guideline to explain the results which are presented
n the following section.

For region A1, the lowest correlation between the observed streamflow and precipitation is observed for CMORPHV1.0 in
002–2006 and PERSIANN in 2006–2010. The highest correlation between observed streamflow and precipitation is found
sing the 3B42V7 product for both calibration periods (Fig. 3a). The difference in the amount of observed streamflow (Q,
ig. 3b) between 2002–2006 and 2006–2010 is negligible whereas the streamflow in 2002–2006 is slightly lower compared
o 2006–2010. The difference in precipitation amount from different products is dispersed, with the CMORHPV1.0 as the
ettest and the RFE2.0 as the driest product for 2002–2006, while for 2006–2010 GSMaP is the wettest and RFE2.0 is the

riest. Note that the precipitation mean for the CMORPHV1.0, ERAIGPCP and PERSIANN products in 2002–2006 are larger
ompared to 2006–2010, which is in contrast with the observed streamflow which is larger in 2006–2010 compared to
002–2006. The variability of the observed streamflow is larger in 2002–2006 compared to 2006–2010 (Fig. 3c), which is
lso, but to a lesser extent, observed from the 3B42V6, CMORPHV1.0, 3B42V7, ERAIGPCP and RFE2.0 products. In contrast,
he variability from the GSMaP and the PERSIANN product is larger in 2006–2010 compared to 2002–2006.

For region A2, the distribution of the correlation, mean and variability between the precipitation products and observed
treamflow in 2002–2006 and 2006–2010 is quite similar as for region A1. The lowest correlation between the observed
treamflow and precipitation is again observed for CMORPHV1.0 in 2002–2006 and PERSIANN in 2006–2010. The highest
orrelation between observed streamflow and precipitation is found with the ERAIGPCP product for the 2002–2006 period
nd 3B42V7 for the 2006–2010 period (Fig. 3d). The amount of observed streamflow is higher for the 2006–2010 period
ompared to the 2002–2006 period (Fig. 3e). For the precipitation, the CMORPHV1.0 product is the wettest and the RFE2.0
roduct the driest out of all products for the 2002–2006 period. For 2006–2010, the GSMaP product is the wettest and
he RFE2.0 is the driest product. The variability of the observed streamflow is in 2002–2006 slightly larger compared to
006–2010 (Fig. 3f). The PERSIANN precipitation product has the largest variability in both periods but a contradicting
istribution compared to the observed streamflow between 2002–2006 and 2006–2010. The rest of the products have a
imilar precipitation variability distribution but a much lower value compared to the observed streamflow.

For region A3, the lowest correlation between the observed streamflow and precipitation is observed for CMORPHV1.0
n 2002–2006 and PERSIANN in 2006–2010. The highest correlation between observed streamflow and precipitation is

ound with the ERAIGPCP product for 2002–2006 and 3B42V7 for 2006–2010 (Fig. 3g). The amount of observed streamflow
s higher for the 2006–2010 period compared to the 2002–2006 period (Fig. 3h). For the precipitation, the CMORPHV1.0
roduct is the wettest and the RFE2.0 product the driest out of all products for the 2002–2006 period. For 2006–2010, the
B42V7 product is the wettest and the RFE2.0 is the driest product. The variability of the observed streamflow is larger in
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Fig. 4. Barplots of calibration results in terms of KGE′ in the two  periods of the differential split sample test: 2002–2006 and 2006–2010, for each precipitation
product. Panels a), b), c) and d) correspond to region A1, A2, A3 and A4, respectively.

2002–2006 compared to 2006–2010 (Fig. 3i). The PERSIANN precipitation product has the largest precipitation variability
in both periods, while ERAIGPCP has the lowest.

For region A4, the correlation between the observed streamflow and precipitation is quite similar for all precipitation
products for both calibration periods with a higher correlation for the 2002–2006 period (Fig. 3j). The difference in the amount
of observed streamflow between 2002–2006 and 2006–2010 is negligible (Fig. 3k). For precipitation, the CMORPHV1.0
product is the wettest and RFE2.0 is the driest for the 2002–2006 period. For 2006–2010, PERSIANN is the wettest and
RFE2.0 is the driest product. The variability of the observed streamflow is in 2002–2006 much lower compared to 2006–2010
(Fig. 3l). The PERSIANN precipitation product has the largest variability in both periods.

3. Results

3.1. Calibration

Fig. 4 shows the best values of KGE′ obtained in the two calibration periods of the differential split sample test: 2002–2006
and 2006–2010, when the LISFLOOD model is calibrated with every precipitation product for each study area. In addition,
taking into account that high values of K, L and M (Eqs. (2)–(4)) lead to low values of KGE′ (Eq. (1)), we  computed the relative
contributions of K, L, and M to the KGE′ values obtained in each calibration (100 · K, LorMK + L + M),  in order to identify the
limiting factor that prevents KGE′ to achieve an ideal value of 1.0. Fig. 5 shows the relative contribution of each limiting factor
to the KGE′ value: K, L, M (Eqs. (1)–(4)), which represent the impact of the linear correlation (r), bias (ˇ) and variability (�)
between simulated and observed streamflow on the calibration results.

The calibration results for A1 (Fig. 4a) were deemed to be satisfactory (intermediate or good) for the simulations with
products 3B42V6, 3B42V7, ERAIGPCP and RFE2.0 in both calibration periods. On the other hand, calibration results for the
CMORPHV1.0 and PERSIANN were poor for the period 2002–2006 calibration but intermediate for 2006–2010. The opposite

was true for simulations forced by the GSMaP product. Fig. 5a shows with vertical bars the relative contribution of K, L and
M to the KGE′, making clear that the poor performance of model simulations forced by CMORPHV1.0 and PERSIANN during
2002–2006 was mainly due to a poor correlation between simulated and observed streamflow (high K value). These findings
are in agreement with the results of Fig. 3a, where both CMORPHV1.0 and PERSIANN presented the lowest correlation with
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ig. 5. Barplots with the relative contribution (in %) of the correlation (K), bias (L) and variability (M)  which prevent the KGE to achieve an optimum
alue  of 1.0. For each precipitation product, K, L and M were computed in the two  calibration periods of the differential split sample test: 2002–2006 and
006–2010. Panels a), b), c) and d) correspond to region A1, A2, A3 and A4, respectively.

bserved streamflow during 2002–2006. However, this relation is not always valid as the model performance for 2006–2010
ith PERSIANN is reasonably good in spite of PERSIANN having the lowest correlation with the observed streamflow out

f all precipitation products. On the other hand, Fig. 4a shows that simulations forced by GSMaP were the worst for the
006–2010 period, which was mainly due to the high relative contribution of the bias term L (Fig. 5a). The previous result is in
greement with the fact that GSMaP was the wettest precipitation product during that period (see Fig. 3b). Calibration results
or A2 (Fig. 4b) are intermediate or good for the simulations driven by products 3B42V6, 3B42V7, ERAIGPCP, GSMaP and
FE2.0 for both calibration periods. The poor performance of the CMORPHV1.0 and PERSIANN simulations in the 2002–2006
eriod was caused by a low correlation between observed and simulated streamflow (Fig. 5b). Fig. 3d shows also low
orrelations between precipitation and observed streamflow in 2002–2006, for both CMORPHV1.0 and PERSIANN. Fig. 5b
hows that the poor performance of the PERSIANN simulations in 2006–2010 was the low correlation between observed and
imulated streamflow, possibly related to the poorest correlation between precipitation and observed streamflow obtained
y PERSIANN out of all products in 2006–2010 (Fig. 3e).

The calibration results for A3 (Fig. 4c) are satisfactory (excellent, intermediate or good) for the 3B42V6, 3B42V7, CMOR-
HV1.0, ERAIGPCP and RFE2.0 simulations for both calibration periods. The results of the GSMaP and PERSIANN simulations
ere intermediate in 2002–2006 and poor for the 2006–2010 period, mainly due to the weak correlation between simulated

nd observed streamflow (Fig. 5c). The previous result is possibly due to the low correlation between GSMaP and PERSIANN
recipitation and the observed streamflow, which were the poorest out of all products in 2006–2010 (Fig. 3g).

In region A4 (Fig. 4d), the calibration results for the 2002–2006 period were intermediate or good only for the 3B42V6,
B42V7 and ERAIGPCP products. The poor results obtained with CMORPHV1.0, GSMaP, PERSIANN and RFE2.0 products were
ainly caused by the difference in the variability term (M in Eqs. (1) and (4)) between simulated and observed streamflow,
hich is apparently related to high variability of those precipitation products (Fig. 3l). The CMORPHV1.0, GSMaP, PERSIANN

nd RFE2.0 are matching the variability of the streamflow more closely compared to the three remaining products. Con-

roversially, high precipitation variability of these four precipitation products results in streamflow overestimation due to
verestimation of both rainfall amount and duration. The calibration results of the simulations forced by ERAIGPCP and
ERSIANN in 2006–2010 were poor due to the contribution of correlation (K term in Eqs. (1) and (2)) and bias (L term in Eqs.
1) and (3)) between simulated and observed streamflow, respectively. This is in agreement with Fig. 3j, where the corre-
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′ ′ ′ ′
Fig. 6. Barplots of the validation results in terms of the variation of KGE (�KGE = KGE calibration run 2002–2006 (2006–2010) minus KGE validation run
2002–2006 (2006–2010) with optimum parameter values obtained from 2006–2010 (2002–2006)) in the two periods of the differential split sample test
for  each precipitation product. Panels a), b), c) and d) corresponds to region A1, A2, A3 and A4, respectively.

lation between ERAIGPCP precipitation and observed streamflow is the lowest, and with Fig. 3k where the mean monthly
precipitation of PERSIANN is highest out of all products.

3.2. Robustness of model parameters

In order to test the robustness of the model parameters obtained in each calibration period, all the “optimum” parameter
sets were validated on an independent time period with a different climatological regime, as explained in Section 2.6, for
each headwater and precipitation product. In particular, when using the differential split-sample approach, the performance
of model parameters obtained during the calibration in 2002–2006 (2006–2010) was  compared against the performance
of a validation run obtained with model parameters calibrated in the other time period 2006–2010 (2002–2006). Fig. 6
shows the KGE′ values of the validation period run in 2002–2006 (2006–2010) using the optimum parameter set obtained
during the calibration run in 2006–2010 (2002–2006) with the latter reference (�KGE′ = KGE′

CAL − KGE′
VAL). On the other

hand, Fig. 7 shows for every precipitation product, study area and calibration period, the relative contribution of K, L and
M to the obtained KGE′ of the validation run. Model parameters obtained during calibration are considered robust if the
model performs equally well in the validation run using model parameters derived in a different precipitation regime, i.e.,
the �KGE′ should be small. Note that in a small number of cases the KGE′ values obtained during the validation run are
higher than the KGE′ values obtained during the calibration run in the same period (e.g., PERSIANN in A4). This is due to the
aggregation from daily to monthly values to compute the KGE′.

Fig. 6a shows that “optimum” parameter sets obtained for almost all the products in the study area A1 were deemed robust,
as shown by the small value of �KGE′. The only exception was the run driven by the ERAIGPCP precipitation, which showed
an important reduction in model performance when running the model in 2002–2006 with parameters obtained for the
2006–2010 time period. The vertical bars in Fig. 7a show that the KGE′ in the 2002–2006 validation period for the ERAIGPCP

products is mainly limited by the bias (L) between simulated and observed streamflow. The comparison of observed and
simulated hydrographs (not shown here) reveals that the observed streamflow in the validation period 2002–2006 is slightly
lower compared to the calibration period 2006–2010. Controversially, the average ERAIGPCP precipitation in 2002–2006 is
wetter compared to 2006–2010, which results in an overestimation of the observed streamflow.
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Fig. 7. Barplots with the relative contribution (in %) of the correlation (K), bias (L) and variability (M) which prevent KGE′ to achieve an optimum value of
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.0.  For each precipitation product, K, L and M were computed in the two validation periods of the differential split sample test: 2002–2006 and 2006–2010.
anels  a), b), c) and d) correspond to region A1, A2, A3 and A4, respectively.

After the validation in region A2 (Fig. 6b) the model performance with the parameters forced with the 3B42V6, 3B42V7,
RAIGPCP and RFE2.0 products are deemed robust for both periods. Note that, in comparison with the calibration, the
ontribution of the bias (L) becomes a more pronounced variable in reducing the KGE′ in most of the products. This is even
ore pronounced in region A3 (Fig. 6c). In both calibration periods (Fig. 4c) the limiting factor is mostly dominated by the

orrelation (K) or variability (M), whereas in the validation the limiting factor is the bias (L) between simulated and observed
treamflow (Fig. 7c) sometimes resulting in large reductions of the KGE′. In Fig. 3h is found that the average precipitation of
he CMORPHV1.0, ERAIGPCP, PERSIANN and RFE2.0 products is higher in 2002–2006 compared to 2006–2010. However, the
pposite is true for the observed streamflow and consequently this result in bias issues and therefore a lack of robustness
etween calibration and validation. Calibrating these precipitation products in 2006–2010 (dry) and validating them in
002–2006 (wet) result in an overestimation of the observed streamflow as the average observed streamflow is lower
nd the average precipitation is higher in the validation period compared to the calibration period. The opposite is also
alid. Calibrating these precipitation products in 2002–2006 (wet) and validating them in 2006–2010 (dry) result in an
nderestimation of the observed streamflow as the average streamflow is higher and the average precipitation is lower in
he validation period compared to the calibration period.

The limiting factor for poor calibration results in region A4 was  mostly dominated by the variability term (M). However,
oor validation results are observed in Fig. 6d due to both the variability (M)  and bias (L) term as limiting factors (Fig. 7d).
nly the reduction in KGE′ of the validation of the ERAIGPCP simulations is low in both periods, but the calibration results

n 2006–2010 were already poor due to poor correlation between observed and simulated streamflow. For this reason, no
obust model parameters are found in region A4 no matter which precipitation product.

. “Optimum” parameter sets under highly variable climate conditions
As seen in Fig. 7 the bias (L) between observed and simulated streamflow is an important factor in the loss of model
erformance in the validation period. Apparently, the model parameters are compensating the bias between simulated and
bserved streamflow during the calibration but these model parameters fail to capture the observed streamflow during the
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Fig. 8. Barplots with the relative change (in %) in the magnitude of the best parameter set found in the 2002–2006 and 2006–2010 calibration periods,
whereas the value of 2002–2006 is the upper or lower value of the vertical bar accompanied with the black dot. The lower and upper bound values for the

parameters (Table 2) represent 0 and 100% respectively and only the parameters with a total-order sensitivity index larger than 0.1 are included (Fig. 2).

validation period. Compensation for correlation and variability failure between observed and simulated streamflow is less
pronounced as they are the dominant limiting factors in the calibration periods.

In Fig. 8 the length of the vertical bars show the relative change in the magnitude of the best parameter set found in the
two calibration periods. In general it can be observed that the “optimum” parameter sets differ significantly between the
calibration periods. Different values found for the optimum parameter sets in different time periods are a clear indication
of parametric uncertainty in the obtained model parameters (Beven, 1993).

For region A1 (Fig. 8a), the difference in the model parameters between the calibration periods is negligible for most
precipitation products except for RFE2.0. The model parameters GwLoss and CalEvap are reaching the upper values of the
calibration range for almost all precipitation products in both calibration periods. This means that the model parameters
are compensating the excess of rainfall by eliminating water both to deeper groundwater and by increasing the evaporation
rate to match the observed streamflow. Typically, these parameter values result in bias problems between simulated and
observed streamflow depending on whether one calibration period is drier or wetter compared to the other period. For
example, Fig. 8a shows that the optimum value for the GwLoss and CalEvap parameters were found in the upper boundary
of their calibration range, when LISFLOOD was calibrated with ERAIGPCP in 2006–2010. However, validating the previous
optimum parameter set during a wetter period (Fig. 3b) results consequently in an overestimation of the observed streamflow
(Fig. 5a). Although the results for both the calibration and validation in both periods for the RFE2.0 precipitation product
are satisfactory (Figs. 4 a and 6 a), the obtained model parameters are quite different. However, the range of the two most
sensitive parameters, GwLoss and b Xinan (Fig. 3a) is small.

For region A2 (Fig. 8b), large differences in the best parameters obtained in the two calibration periods are observed. As
seen in Fig. 2b the model performance is the most sensitive to the GwLoss parameter for most of the precipitation products.
A large variation in the GwLoss value between the two  calibration periods is needed to compensate for the precipitation
difference between the two periods, resulting mostly in a reduction in model performance in the independent validation

periods (Fig. 6b). The model parameter values from the PPrefflow and CalEvap are considerably different for the RFE2.0
product between the calibration periods while the model performance and robustness was judged to be good. Apparently,
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he high interaction between the model parameters forced with RFE2.0 produced good results even with a different set of
arameters.

The small reduction in KGE′ in the validation periods for the 3B42V6, 3B42V7 and ERAIGPCP precipitation products in
egion A3 is probably related to the low model parameter ranges of the most sensitive model parameters for these products
Fig. 8c). Moreover, these are also the products with small differences between the mean precipitation in both calibration
eriods and therefore compensation is hardly needed.

For region A4, the model parameters reach the upper boundaries of the parameter ranges to eliminate water to match the
bserved streamflow for the wetter CMORPHV1.0, GSMaP and PERSIANN products (Fig. 8d). Although the model parameter
anges for the 3B42V6, 3B42V7 and ERAIGPCP are relatively small, the model parameters were not capable to compensate
or the high variability of the streamflow and match the observed streamflow.

. Conclusion

In this study, we applied the differential split-sample test to investigate the robustness of model parameters of a fully
istributed hydrological model, by calibrating the model forced by seven satellite-based precipitation estimates. For model
alibration we used the modified Kling-Gupta efficiency (KGE′) as objective function, which allowed us to differentiate the
elative contribution of linear correlation (r), bias (ˇ) and variability (�) between the simulated and observed streamflow to
he obtained KGE′ value. We  selected four regions in Southern Africa with highly variable climate conditions, which resulted
n large precipitation differences between the seven precipitation products. Large discrepancies in terms of the r,  ̌ and �
etween the simulated and observed streamflow were observed when using SRFEs as model input. Following a differential
plit-sample approach to test the robustness of the best parameter sets of the LISFLOOD model, the observed streamflow time
eries were split in two periods with highly different climatic characteristic: 2002–2006 and 2006–2010, and then model
arameters obtained during calibration in one period were transferred to the other period to assess its performance. Thus,
wo optimized parameter sets were validated on two independent time periods, which is essential in highly variable climate
nd non-stationary conditions (Xu, 1999). From the results obtained in this work it can be concluded that a SRFE product
hich is accurate enough (in comparison to ground observations) can help to avoid future model robustness problems.

herefore, accurate precipitation estimates are essential for obtaining robust model parameters before extrapolating them
n time and space. However, this statement is catchment and time period specific, as the catchment behavior in highly
ariable climate is difficult to capture and on the limit of model’s capability. Therefore, hydrological analyses or predictions
hich are based on transferred model parameters in highly variable climate or non-stationary conditions should be taken
ith care. Note that reasons for the lack of model robustness can be multiple (see Introduction) and we  only take uncertain

recipitation estimates into account.
e  summarize our findings as follows:

The (lack of) model performance in terms of KGE′ differs substantially between model runs driven by the seven different
precipitation products and is partially reflected by their precipitation characteristics. A high positive correlation between
the upstream monthly precipitation estimate and the observed streamflow proved to be a good a priori indicator for
obtaining good model performance in a posterior calibration process, as long as the precipitation variability (CV) is not too
high. High precipitation variability often results in overestimation of the duration of the rainfall events and, therefore, an
overestimation of the total amounts as well (e.g., the r(P,Q) between PERSIANN and observed streamflow in region A4 for
2002–2006 is 0.56 (significant), but the CV of the precipitation has a value of 1.21 which result in a poor KGE′ of 0.24).
Model parameters related to infiltration (PPrefFlow and b Xinan) and water losses in terms of groundwater (GwLoss) and
evaporation (CalEvap) are the most sensitive parameters for the LISFLOOD model in Southern Africa. These parameters
are mostly important to compensate the biased precipitation inputs. Most likely, for wet precipitation products (e.g.,
CMORPHV1.0) the interaction between the model parameters is less important compared to dry products (e.g., RFE2.0).
To compensate the precipitation bias this parameters find their optimum value in the upper or lower bounds of their
calibration range. The sensitive model parameters of dry precipitation products interact much more with each other, as
the timing and shape of the hydrograph becomes important if compensating the precipitation bias is less dominant.
Parameter sets obtained during calibration compensate, up to a certain extent, the bias in the precipitation estimate to
match the observed steamflow, as the bias is hardly a limiting factor for the obtained KGE′ in the calibration process.
Therefore, to minimize the lack of model performance in the validation periods, the dry/wet trend of the precipitation
estimate should be in general agreement with the dry/wet trend of the observed streamflow.
The compensation of the precipitation characteristics between the calibration periods leads to different optimum param-
eter sets unless the model parameters reach the upper limits, which means that the catchments behavior is not captured
within the parameter ranges. This often happened if the simulated streamflow overestimates the observed streamflow
and the parameters GwLoss and CalEvap reach their upper limit to match the observed streamflow.

The CMORPHV1.0, GSMaP and PERSIANN products are – in general – not suitable to drive hydrological modeling studies in
the Southern African region with the LISFLOOD model as these products often have a poor correlation with the observed
streamflow and generate much more rainfall compared with the other products, which results in large differences between
simulated and observed streamflows. The best model performance is obtained with products which ingest gauge data for
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bias correction (3B42V6, 3B42V7, ERAIGPCP and RFE2.0 products) resulting in the best conditions in terms of the r,  ̌ and
� between simulated and observed streamflow.

• According to Vaze et al. (2010) and Li et al. (2012), models calibrated over dry periods perform better in wet periods than
the other way round. These findings might be true (not exhaustively verified here due to low sample size) because of
the common overestimation of observed streamflow in (semi-) arid areas in hydrological modelling (Vaze et al., 2010;
Gallart et al., 2007; Perrin et al., 2007; Lidén and Harlin, 2000; Gan et al., 1997; Hughes, 1997). However, these findings
do not rule out robust model parameters. According to our findings, model parameters obtained for dry catchments with
occasional rainfall events and therefore a high intra- and interannual variability in streamflow (e.g., A4) are not able to
capture the catchments’ behavior. This may  be due to the fact that the model parameters are highly influenced by a few
events and therefore have a higher risk for errors when transferred to a different period. Moreover, the spatial resolution
of the precipitation products might be too coarse (0.1 or 0.25◦) for an accurate detection of local heavy precipitation events
and, therefore, they do not capture well the volume and timing of the peak flows especially in a small catchment like region
A4.

• Different calibration periods related to precipitation or streamflow variability (wet/dry) result in different optimum param-
eters obtained in the calibration phase, which reflects the effect of non-stationarity conditions on the parameter estimates
(Beven, 1993). However, the parameter distribution tends to show more spread with “insensitive” model parameters com-
pared to “sensitive” parameters in the time periods used for calibration (Fig. 8). For this reason along with the interaction
between parameters, the model is able to produce good results with a different set of parameters, i.e. equifinality (Beven,
1993). Therefore, an estimation of parameter uncertainty and their lack of robustness would only make sense on “sensitive”
model parameters.

• The behavior of catchments in Southern Africa, but probably also in other areas with highly variable climate conditions
(e.g., Australia or the Iberian Peninsula) is difficult to capture using a single model parameter set for the whole simulation
period. Transposing these parameters to other time periods (scenarios in climate impact studies) or areas (in regionalization
studies) should be carried out with caution. We  agree with the conclusion of Vaze et al. (2010) that model parameters
obtained from a wet (dry) calibration period should be used for periods where a wetter (drier) future is predicted, which
does not mean that the parameters are robust.
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