Spatial and temporal uncertainty of crop yield aggregations

Porwollik V, Müller C, Elliott J, Chryssanthacopoulos J, Iizumi T, Ray DK, Ruane AC, Arneth A, et al. (2017). Spatial and temporal uncertainty of crop yield aggregations. European Journal of Agronomy 88: 10-21. DOI:10.1016/j.eja.2016.08.006.

[img] Text
2016-11-02a-Porwollik-Yield-Aggreg-Uncert--SUBMITTED--EURAGR5277R2.pdf - Accepted Version
Restricted to Repository staff only until October 2018.
Available under License Creative Commons Attribution Non-commercial.

Download (2MB)
Project: Land use change: assessing the net climate forcing, and options for climate change mitigation and adaptation (LUC4C, FP7 603542)

Abstract

The aggregation of simulated gridded crop yields to national or regional scale requires information on temporal and spatial patterns of crop-specific harvested areas. This analysis estimates the uncertainty of simulated gridded yield time series related to the aggregation with four different harvested area data sets. We compare aggregated yield time series from the Global Gridded Crop Model Intercomparison project for four crop types from 14 models at global, national, and regional scale to determine aggregation-driven differences in mean yields and temporal patterns as measures of uncertainty.

The quantity and spatial patterns of harvested areas differ for individual crops among the four data sets applied for the aggregation. Also simulated spatial yield patterns differ among the 14 models. These differences in harvested areas and simulated yield patterns lead to differences in aggregated productivity estimates, both in mean yield and in the temporal dynamics.

Among the four investigated crops, wheat yield (17% relative difference) is most affected by the uncertainty introduced by the aggregation at the global scale. The correlation of temporal patterns of global aggregated yield time series can be as low as for soybean (r = 0.28).

For the majority of countries, mean relative differences of nationally aggregated yields account for 10% or less. The spatial and temporal difference can be substantial higher for individual countries. Of the top-10 crop producers, aggregated national multi-annual mean relative difference of yields can be up to 67% (maize, South Africa), 43% (wheat, Pakistan), 51% (rice, Japan), and 427% (soybean, Bolivia). Correlations of differently aggregated yield time series can be as low as r = 0.56 (maize, India), r = 0.05 (wheat, Russia), r = 0.13 (rice, Vietnam), and r = −0.01 (soybean, Uruguay). The aggregation to sub-national scale in comparison to country scale shows that spatial uncertainties can cancel out in countries with large harvested areas per crop type. We conclude that the aggregation uncertainty can be substantial for crop productivity and production estimations in the context of food security, impact assessment, and model evaluation exercises.

Item Type: Article
Uncontrolled Keywords: Aggregation uncertainty; Global crop model; Crop yields; Gridded data; Harvested area
Research Programs: Ecosystems Services and Management (ESM)
Depositing User: Romeo Molina
Date Deposited: 03 Nov 2016 08:37
Last Modified: 29 Jun 2017 13:32
URI: http://pure.iiasa.ac.at/13915

Actions (login required)

View Item View Item

International Institute for Applied Systems Analysis (IIASA)
Schlossplatz 1, A-2361 Laxenburg, Austria
Phone: (+43 2236) 807 0 Fax:(+43 2236) 71 313