Incentivizing Resilience in Financial Networks

Matt V. Leduc
(joint with Stefan Thurner)

September, 2016
Financial Risk and Network Theory Conference
University of Cambridge
Introduction

- **Systemic Risk (SR):**
 - Property of systems of interconnected components:

 Failure of a single entity (or small set of entities) can result in a cascade of failures jeopardizing the whole system.
Systemic Risk (SR):

- Property of systems of interconnected components:

 Failure of a single entity (or small set of entities) can result in a cascade of failures jeopardizing the whole system.

- This happens in financial (i.e. interbank) systems:

 ⇒ Failure to manage systemic risk (SR) can be extremely costly for society (e.g. financial crisis of 2007-2008)
Systemic Risk (SR):

- Property of systems of interconnected components:

 Failure of a single entity (or small set of entities) can result in a cascade of failures jeopardizing the whole system.

- This happens in financial (i.e. interbank) systems:

 \Rightarrow Failure to manage systemic risk (SR) can be extremely costly for society (e.g. financial crisis of 2007-2008)

- Regulations proposed fail to address the fact that SR is a network property (BASEL III. e.g. Tobin taxes, capital requirements)
Insolvency Cascades in Networks

- A financial network is really a network of exposures.
A financial network is really a network of exposures.

where A_{ij} is the net exposure of bank i to bank j.
A financial network is really a network of exposures.

where A_{ij} is the net exposure of bank j to bank i.
A financial network is really a network of exposures.

where A_{ij} is the net exposure of bank j to bank i.
A financial network is really a network of exposures.

where A_{ij} is the net exposure of bank j to bank i.
A financial network is really a network of exposures.

where A_{ij} is the net exposure of bank j to bank i.
Insolvency Cascades in Networks

- A financial network is really a network of exposures.

where A_{ij} is the net exposure of bank j to bank i.
A financial network at time t is a pair (\bar{A}_t, \vec{E}_t)
- \bar{A}_t: adjacency matrix of a weighted, directed network
- \vec{E}_t: vector of equities of institutions in the network
A financial network at time t is a pair (\bar{A}_t, \vec{E}_t)

- \bar{A}_t: adjacency matrix of a weighted, directed network
- \vec{E}_t: vector of equities of institutions in the network

The systemic impact of bank i at time t:

$$SI^i(\bar{A}_t, \vec{E}_t) = \sum_{j \neq i} \mathbb{1}_{\{j \text{ fails | } i \text{ fails}\}} E^j_t.$$

→ Total value of financial system lost as a result of bankruptcy of bank i
Quantifying Systemic Risk

- A financial network at time t is a pair (\bar{A}_t, \vec{E}_t)
 - \bar{A}_t: adjacency matrix of a weighted, directed network
 - \vec{E}_t: vector of equities of institutions in the network

- The systemic impact of bank i at time t:
 \[
 SI^i(\bar{A}_t, \vec{E}_t) = \sum_{j \neq i} 1\{j \text{ fails} \mid i \text{ fails}\} E^j_t.
 \]

 → Total value of financial system lost as a result of bankruptcy of bank i

- An algorithm can compute $1\{j \text{ fails} \mid i \text{ fails}\}$
 → à la DebtRank (Battiston et al. (2012), Thurner and Poledna (2013))
Quantifying Systemic Risk

- Expected Systemic Loss:

\[
ESL(\vec{A}_t, \vec{E}_t) = \sum_{j=1}^{n} \mathbb{P}\{j \text{ defaults}\} \cdot SI^j(\vec{A}_t, \vec{E}_t)
\]

- Different topologies have different effects on size of insolvency cascades (e.g. Boss et al. (2004), Gai & Kapadia (2010), Amini et al. (2013), Poledna et al. (2015))

- Expected Systemic Loss:

\[
ESL(\bar{A}_t, \bar{E}_t) = \sum_{j=1}^{n} P\{j \text{ defaults}\} \cdot SI^j(\bar{A}_t, \bar{E}_t)
\]

- Different topologies have different effects on size of insolvency cascades (e.g. Boss et al. (2004), Gai & Kapadia (2010), Amini et al. (2013), Poledna et al. (2015))

- Some work focuses on minimizing \(ESL(\bar{A}_t, \bar{E}_t) \), given a certain topology (e.g. by injecting capital in a certain set of banks)

- Less work focuses on controlling the network topology (e.g. Poledna & Thurner (2016))
Question: How can we control formation of a financial network?

Assume network is formed dynamically by interbank loans.
Question: How can we control formation of a financial network?

Assume network is formed dynamically by interbank loans.
Question: How can we control formation of a financial network?

Assume network is formed dynamically by interbank loans

→ Then we can match lenders to borrowers.
Controlling Formation of a Financial Network

Question: How can we control formation of a financial network?

Assume network is formed dynamically by interbank loans → Then we can match lenders to borrowers.
Question: How can we control formation of a financial network?

Assume network is formed dynamically by interbank loans.

→ Then we can match lenders to borrowers.
Different transactions have different impacts on systemic risk (Poledna & Thurner 2016)

High ‘systemic risk’ loan: Bank 12 inherits the high systemic impact $SI^4(A_t, \vec{E}_t)$ of bank 4
Different transactions have different impacts on systemic risk (Poledna & Thurner 2016)

High ‘systemic risk’ loan: Bank 12 inherits the high systemic impact $SI^4(A_t, E_t)$ of bank 4
Different transactions have different impacts on systemic risk (Poledna & Thurner 2016)

Low ‘systemic risk’ loan: Bank 12 does not inherit any systemic systemic impact of bank 1 (here $SI^1(\bar{A}_t, \bar{E}_t) = 0$)
Different transactions have different impacts on systemic risk (Poledna & Thurner 2016)

Low ‘systemic risk’ loan: Bank 12 does not inherit any systemic systemic impact of bank 1 (here $SI^1(\bar{A}_t, \bar{E}_t) = 0$)
Matching markets: Designed to resolve a range of complex economic problems

- Example 1: Students to Schools (Roth, 1984, 1999)
- Example 2: Kidney donors to receivers (Roth et al., 2003)
- Example 3: Online matching platforms (e.g. Airbnb, Uber)

→ We need an equilibrium concept based on stable matchings (Gale & Shapley (1962))
Simple model of a credit system

At each discrete time $t \in \{0, 1, 2, \ldots [T]\}$, each bank $i \in \mathcal{N}$ receives a liquidity shock ϵ^i_t

$$
\epsilon^i_t = \begin{cases}
+1 & \text{with prob. } y/2 \quad \text{(bank } i \text{ in supply of liquidity)} \\
-1 & \text{with prob. } y/2 \quad \text{(bank } i \text{ in demand of liquidity)} \\
0 & \text{with prob. } 1 - y
\end{cases}
$$

where $y \in [0, 1]$.
Simple model of a credit system

At each discrete time \(t \in \{0, 1, 2, \ldots \lceil T \rceil \} \), each bank \(i \in \mathcal{N} \) receives a liquidity shock \(\epsilon^i_t \)

\[
\epsilon^i_t = \begin{cases}
+1 & \text{with prob. } y/2 \quad \text{(bank } i \text{ in supply of liquidity)} \\
-1 & \text{with prob. } y/2 \quad \text{(bank } i \text{ in demand of liquidity)} \\
0 & \text{with prob. } 1 - y
\end{cases}
\]

where \(y \in [0, 1] \).

Induces a set of lenders and a set of borrowers:
Simple bilateral contracts

- Each borrower j has an exogenous failure probability ρ_j and a reservation rate \bar{r}_j.
- Each lender has an exogenous baseline lending rate r_i and adds a (fair) risk premium $h_i(\rho_j)$:

$$r_{ij} = r_i + h_i(\rho_j)$$

Any borrower j prefers borrowing from lenders with lower rates (up to a maximal rate) if $r_{1j} < r_{2j} < r_{3j} < \bar{r}_j < r_{4j}$ → Preference list $P_j = 1, 2, 3$. Risk premium makes lenders indifferent as to who they lend to.
Simple bilateral contracts

- Each borrower j has an exogenous failure probability ρ_j and a reservation rate \bar{r}_j.
- Each lender has an exogenous baseline lending rate r_i and adds a (fair) risk premium $h_i(\rho_j)$:

$$r_{ij} = r_i + h_i(\rho_j)$$

- Any borrower j prefers borrowing from lenders with lower rates (up to a maximal rate).
 If $r_{1j} < r_{2j} < r_{3j} < \bar{r}_j < r_{4j}$
 \[\rightarrow\] Preference list $P^j_\beta = 1, 2, 3$.
Simple bilateral contracts

- Each borrower j has an exogenous failure probability ρ_j and a reservation rate \bar{r}_j.
- Each lenders has an exogenous baseline lending rate r_i and adds a (fair) risk premium $h_i(\rho_j)$:
 \[r_{ij} = r_i + h_i(\rho_j) \]
- Any borrower j prefers borrowing from lenders with lower rates (up to a maximal rate)
 If $r_{1j} < r_{2j} < r_{3j} < \bar{r}_j < r_{4j}$
 \[\rightarrow \text{Preference list } P^j_\beta = 1, 2, 3. \]
- Risk premium makes lenders indifferent as to who they lend to
Let \(P = \{ P_5^\beta, P_6^\beta, P_7^\beta, \ldots \} \) be the set of all preference lists

We call the triplet \((\mathcal{L}_t, \mathcal{B}_t, P)\) a market for liquidity at time \(t \).
Two-sided matching

Let \(P = \{ P_5^\beta, P_6^\beta, P_7^\beta, \ldots \} \) be the set of all preference lists.

We call the triplet \((\mathcal{L}_t, \mathcal{B}_t, P)\) a market for liquidity at time \(t \).

Outcome at each \(t \), is a matching \(\mu_t \):

\[
\mu_t(1) = 7, \quad \mu_t(2) = 8, \quad \text{etc}...
\]
Equilibrium Concept: Stable Matching

Definition (Stable Matching)

A matching μ^*_t is stable if:

(I) No set of borrowers $\vec{b} \in B_t$ could agree to swap their counter-parties.

(II) The lending rates are below the borrowers’ reservation rates (i.e. $r_{ij} \leq \bar{r}_j$)

→ In words: No bank could benefit from behaving differently
Lemma (Equilibrium Multiplicity under Bilateral Contracting)

Any matching μ_t such that the lending rates are below the borrowers' reservation rates (i.e. $r_{ij} < \bar{r}_j$) is stable.

- Many networks can emerge in equilibrium!
 - Results from borrowers having **homogenous** preferences
 (the all prefer the lender i with lowest baseline rate r_i)

- How to compare the different equilibrium matchings?
 - Need a notion of efficiency.
An equilibrium matching $\mu_{t}^{*,eff}$ is systemic risk-efficient if it minimizes systemic risk given a certain transaction volume ν:

$$\mu_{t}^{*,eff} \in \arg\min_{\mu_{t}^{*}: Vol(\mu_{t}^{*})=\nu} ESL(\vec{A}^{*}, \vec{E}_{t}).$$
Revisiting the toy example

Systemic Risk Efficient Equilibrium
Revisiting the toy example

Systemic Risk *Inefficient* Equilibrium

High ‘systemic risk’ loan
Question: Can we select a systemic risk-efficient matching that is sustained as a *unique* equilibrium?

Answer: Yes, by creating *heterogeneous* preferences by means of a transaction-specific tax.

\[T = \{ \tau_{ij} \} \]

\[\tau_{ij} \geq 0 \]

is a mark-up applied to the interest rate paid by bank \(j \) when it borrows from bank \(i \):

\[r_{Tij} = r_i + h_i(\rho_j) + \tau_{ij} \]

→ Idea introduced in Poledna & Thurner (2016)

Each borrower can now prefer a different lender.
Question: Can we select a systemic risk-efficient matching that is sustained as a *unique* equilibrium?

Answer: Yes, by creating *heterogeneous* preferences by means of a transaction-specific tax.

- \(\mathcal{T} = \{\tau_{ij}\} \): a matrix of transaction-specific taxes, \(i \in \mathcal{L}_t \) and \(j \in \mathcal{B}_t \)
- \(\tau_{ij} \geq 0 \) is a mark-up applied to the interest rate paid by bank \(j \) when it borrows from bank \(i \):

\[
 r_{ij}^T = r_i + h_i(\rho_j) + \tau_{ij}
\]
Question: Can we select a systemic risk-efficient matching that is sustained as a *unique* equilibrium?

Answer: Yes, by creating *heterogeneous* preferences by means of a transaction-specific tax.

- \(\mathcal{T} = \{\tau_{ij}\} \): a matrix of transaction-specific taxes, \(i \in \mathcal{L}_t \) and \(j \in \mathcal{B}_t \)
- \(\tau_{ij} \geq 0 \) is a mark-up applied to the interest rate paid by bank \(j \) when it borrows from bank \(i \):
 \[
 r_{ij}^T = r_i + h_i(\rho_j) + \tau_{ij}
 \]

→ Idea introduced in Poledna & Thurner (2016)

- Each borrower can now prefer a different lender
Equilibrium Selection and Uniqueness

Idea: leave desired matches untaxed and tax the undesired matches

![Diagram showing the selection process](image)
Idea: leave desired matches untaxed and tax the undesired matches

Low ‘systemic risk’ loan

\(T_{1,12} = 0 \)
\mathcal{T} re-orders the preferences of each borrower over the set of lenders

→ allows a regulator to create heterogeneous preferences, i.e. each borrower j can now have a different preference list P^j_β with optimal match on top.

Proposition (Systemic Risk under Systemic Risk Tax)

*For some desired volume ν, there exists \mathcal{T} such that μ^*_t is unique and systemic risk efficient. We call this \mathcal{T} a Systemic Risk Tax (SRT).*
A Tobin-like tax is a particular case of the SRT \mathcal{T}

- Borrowing rate under SRT \mathcal{T}:

\[r_{ij}^{\mathcal{T}} = r_i + h_i(\rho_j) + \tau_{ij} \]

where $\tau_{ij} = 0$ for desired matches and $\tau_{ij} > 0$ for undesired ones
A Tobin-like tax is a particular case of the SRT \mathcal{T}

- Borrowing rate under SRT \mathcal{T}:

 $$ r_{ij}^\mathcal{T} = r_i + h_i(\rho_j) + \tau_{ij} $$

 where $\tau_{ij} = 0$ for desired matches and $\tau_{ij} > 0$ for undesired ones

- Borrowing rate under Tobin-like tax:

 $$ r_{ij}^\kappa = r_i + h_i(\rho_j) + \kappa $$

 where $\kappa > 0$ for all matches.
SRT versus Tobin-like tax

A Tobin-like tax is a particular case of the SRT \mathcal{T}

- Borrowing rate under SRT \mathcal{T}:

$$r_{ij}^{\mathcal{T}} = r_i + h_i(\rho_j) + \tau_{ij}$$

where $\tau_{ij} = 0$ for desired matches and $\tau_{ij} > 0$ for undesired ones

- Borrowing rate under Tobin-like tax:

$$r_{ij}^{\kappa} = r_i + h_i(\rho_j) + \kappa$$

where $\kappa > 0$ for all matches.

→ Makes all transactions more costly, without re-ordering the borrowers’ preference lists.
→ Cannot select a particular systemic risk efficient equilibrium.
SRT versus Tobin-like Tax

Proposition (Tobin-like tax versus Systemic Risk Tax)

There always exists T such that $ESL(\bar{A}_t^*, T, \bar{E}_t) \leq ESL(\bar{A}_t^*, \kappa, \bar{E}_t)$ and $Vol(\mu_t^*, T) \geq Vol(\mu_t^*, \kappa)$

In words: SRT can achieve higher trading volume and lower systemic risk
Regulator’s Optimization Problem

Solve this problem on a dynamically evolving complex network:

- Banks receive liquidity shocks and trade that liquidity in the form of interbank loans
- At each t, regulator solve following one-period-ahead optimization problem

$$\hat{T} \in \arg\min_{T} ESL(\bar{A}_t^*, T, \vec{E}_t)$$

$\forall T: Vol(\mu_t^*, T) = \nu$

→ Optimize matching of lenders and borrowers, given a certain transaction volume
Regulator’s Optimization Problem

Expected systemic loss ($ billions)
- no tax
- Tobin-like tax
- SRT

Cumulative volume (# transactions)
- no tax
- Tobin-like tax
- SRT

Companion papers:
