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Arkady’s work on control problems with incomplete
information

In myriads of Arkady’s scientific interests control problems with incomplete
information were prominent throughout his career.

«The problem of constructing optimal closed-loop control strategies under
uncertainty is one of the key problems of the mathematical control theory. Its solution
would give a new impetus to the theory’s development and create the foundation for
its new applications.» Arkady Kryazhimskiy (2013)
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Arkady’s work on control problems with incomplete
information

Program packages method

An innovative approach for solving control problems with incomplete information
about states of the dynamic system developed by Arkady Kryazhimskiy and Yurii
Osipov

Yu. S. Osipov. Control Packages: An Approach to Solution of Positional Control
Problems with Incomplete Information. Usp. Mat. Nauk 61:4 (2006), 25–76.
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139–157.
A. V. Kryazhimskiy, Yu. S. Osipov. On the solvability of problems of guaranteeing
control for partially observable linear dynamical systems. Proc. Steklov Inst. Math., 277
(2012), 144–159
A. V. Kryazhimskiy, N. V. Strelkovskii. An open-loop criterion for the solvability of a
closed-loop guidance problem with incomplete information. Linear control systems.
Trudy IMM UrO RAN, 20:3 (2014), 132–147.
A. V. Kryazhimskii, N. V. Strelkovskii. A problem of guaranteed closed-loop guidance
by a fixed time for a linear control system with incomplete information. Program
solvability criterion. Trudy IMM UrO RAN, 20:4 (2014), 168–177 3 / 22



Guaranteed positional guidance problem at pre-defined time

The case for linear systems and finite initial states set was studied by Arkady
in 2012-2014.

ẋ(t) = A(t)x(t) + B(t)u(t) + c(t), t0 ≤ t ≤ ϑ (1)

Open-loop control (program) u(·) is
measurable.
u(t) ∈ P ⊂ Rr , P is a convex compact set
x(t0) = x0 ∈ X0 ⊂ Rn, X0 is a finite set
x(ϑ) ∈ M ⊂ Rn, M is a closed and convex
set

Observed signal y(t) = Q(t)x(t), Q(·) ∈
Rq×n is left piecewise continuous

Problem statement
Based on the given arbitrary ε > 0 choose a closed-loop control strategy with
memory, whatever the system’s initial state x0 from the set X0, the system’s
motion x(·) corresponding to the chosen closed-loop strategy and starting at the time
t0 from the state x0 reaches the state x(ϑ) belonging to the ε-neighbourhood of the
target set M at the time ϑ. 4 / 22



Homogeneous signals

Homogeneous system, corresponding to (1)

ẋ(t) = A(t)x(t)

For each x0 ∈ X0 its solution is given by the Cauchy formula:

x(t) = F (t, t0)x0; F (t, s) (t, s ∈ [t0, ϑ]) is the fundamental matrix.

Homogeneous signal, corresponding to an admissible initial state x0 ∈ X0:

gx0 (t) = Q(t)F (t, t0)x0 (t ∈ [t0, ϑ], x0 ∈ X0).

Let G = {gx0 (·)|x0 ∈ X0} be the set of all homogeneous signals and let X0(τ |g(·)) be
the set of all admissible initial states x0 ∈ X0, corresponding to the homogeneous
signal g(·) ∈ G till time point τ ∈ [t0, ϑ]:

X0(τ |g(·)) = {x0 ∈ X0 : g(·)|[t0,τ ] = gx0 (·)|[t0,τ ]}.

Method milestone

These terms were introduced in [Kryazhimskiy, Osipov (2012)].
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Package guidance problem

Program package is an open-loop
controls family (ux0 (·))x0∈X0 , satisfying
non-anticipatory condition: for any
homogeneous signal g(·), any time τ ∈
(t0, ϑ] and any admissible initial states
x ′0, x

′′
0 ∈ X0(τ |g(·)) the equality ux′0 (t) =

ux′′0 (t) holds for almost all t ∈ [t0, τ ].

Program package (ux0 (·))x0∈X0 is guiding, if for all x0 ∈ X0 holds x(ϑ|x0, ux0 (·)) ∈ M.
Package guidance problem is solvable, if a guiding program package exists.

Theorem 1 (Osipov, Kryazhimskiy, 2006)

The problem of positional guidance is solvable if and only if the problem of package
guidance is solvable.
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Homogeneous signals splitting
For an arbitrary homogeneous signal g(·) let

G0(g(·)) =
{
g̃(·) ∈ G : lim

ζ→+0
(g̃(t0 + ζ)− g(t0 + ζ)) = 0

}
be the set of initially compatible homogeneous signals
and let

τ1(g(·)) = max

{
τ ∈ [t0, ϑ] : max

g̃(·)∈G0(g(·))
max

t∈[t0,τ ]
|g̃(t)− g(t)| = 0

}
be its first splitting moment.

For each i = 1, 2, . . . let

Gi (g(·)) =
{
g̃(·) ∈ Gi−1(g(·)) : lim

ζ→+0
(g̃(τi (g(·)) + ζ)− g(τi (g(·)) + ζ)) = 0

}
be the set of all homogeneous signals from Gi−1(g(·)) equal to g(·) in the right-sided
neighbourhood of the time-point τi (g(·)) and let

τi+1(g(·)) = max

{
τ ∈ (τi (g(·)), ϑ] : max

g̃(·)∈Gi (g(·))
max

t∈[τi (g(·)),τ ]
|g̃(t)− g(t)| = 0

}
be the (i + 1)-th splitting moment of the homogeneous signal g(·).
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Initial states set clustering

Let
T (g(·)) = {τj(g(·)) : j = 1, . . . , kg(·)}

be the set of all splitting moments of the homogeneous signal g(·) and let

T =
⋃

g(·)∈G

T (g(·))

be the set of all splitting moments of all homogeneous signals. T is finite and
|T | ≤ |X0|. Let us represent this set as T = {τ1, . . . , τK}, where
t0 < τ1 < . . . < τK = ϑ.

Lemma 2 (Kryazhimskiy (2013))

Programs family (ux0
(·))x0∈X0 is a program package if and only if for any

homogeneous signal g(·), any time τ ∈ T (g(·)) and any initial states
x ′0, x

′′
0 ∈ X0(τ |g(·)) equality ux′0 (t) = ux′′0 (t) holds for almost all t ∈ [t0, τ ].
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Initial states set clustering

For every k = 1, . . . ,K let the set

X0(τk) = {X0(τk |g(·)) : g(·) ∈ G}

be the cluster position at the time-point τk , and let each its element X0j(τk),
j = 1, . . . , J(τk) be a cluster of initial states at this time-point; J(τk) is the number
of clusters in the cluster position X0(τk), k = 1, . . . ,K .

Lemma 3 (Kryazhimskiy (2013))

Open-loop control family (ux0
(·))x0∈X0 is a program package if and only if for any

k = 1, . . . ,K , any X0j(τk) ∈ X0(τk), j = 1, . . . , J(τk) and arbitrary initial states
x ′0, x

′′
0 ∈ X0j(τk) the equality ux′0 (t) = ux′′0 (t) holds for almost all t ∈ (τk−1, τk ] in

case k > 1 and for almost all t ∈ [t0, τ1] in case k = 1.
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Extended space

Arkady proposed to use a special Euclidean space. Let Rh (h = 1, 2, . . .) be a

finite-dimensional Euclidean space of all families (rx0 )x0∈X0 from Rh with a scalar
product 〈·, ·〉Rh defined as

〈r ′, r ′′〉Rh = 〈(r ′x0
)x0∈X0 , (r

′′
x0

)x0∈X0〉Rh =
∑
x0∈X0

〈r ′x0
, r ′′x0
〉Rh ((r ′x0

)x0∈X0 , (r
′′
x0

)x0∈X0 ∈ Rh).

For each non-empty set E ⊂ Rh (h = 1, 2, . . .) let us define its lower
ρ−(·|E) : Rh 7→ R and upper support functions ρ+(·|E) : Rh 7→ R:

ρ−((lx0 )x0∈X0 |E) = inf
(ex0

)x0∈X0
∈E
〈(lx0 )x0∈X0 , (ex0 )x0∈X0〉Rh ((lx0 )x0∈X0 ∈ Rh),

ρ+((lx0 )x0∈X0 |E) = sup
(ex0

)x0∈X0
∈E
〈(lx0 )x0∈X0 , (ex0 )x0∈X0〉Rh ((lx0 )x0∈X0 ∈ Rh)
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Extended open-loop control control

Let P ⊂ Rm be the set of all families (ux0 )x0∈X0 of vectors from P.
Extended open-loop control control is a measurable function
t 7→ (ux0 (t))x0∈X0 : [t0, ϑ] 7→ P.
Let us identify arbitrary programs family (ux0

(·))x0∈X0 and an extended open-loop
control t 7→ (ux0 (t))x0∈X0 .

For each k = 1, . . . ,K let Pk be an extended admissible control set on (τk−1, τk ]
in case k > 1 and on [t0, τ1] in case k = 1 as a set of all vector families
(ux0 )x0∈X0 ∈ P such that, for each cluster X0j(τk) ∈ X0(τk), j = 1, . . . , J(τk) and any
x ′0, x

′′
0 ∈ X0j(τk) holds ux′0 = ux′′0 .

Extended open-loop control control (ux0
(·))x0∈X0 is admissible, if for each

k = 1, . . . ,K holds (ux0 (t))x0∈X0 ∈ Pk for almost all t ∈ (τk−1, τk ] in case k > 1 and
for almost all t ∈ [t0, τ1] in case k = 1;

Lemma 4 (Kryazhimskiy (2013))

Extended open-loop control control (ux0
(·))x0∈X0 is a control package if and only if it

is admissible.
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Homogeneous signals, cluster positions and extended
open-loop control controls

Homogeneous signals splitting Initial states set clustering

Extended open-loop control control
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Extended problem of program guidance

Extended system (in the space Rn):{
ẋx0 (t) = A(t)xx0 (t) + B(t)ux0 (t) + c(t)

xx0 (t0) = x0

(x0 ∈ X0)

Extended target setM is the set of all families (xx0 )x0∈X0 ∈ Rn such, that xx0 ∈ M
for all x0 ∈ X0.

An admissible extended open-loop control (ux0 (·))x0∈X0 is guiding the extended
system, if (x(ϑ|x0, ux0 (·)))x0∈X0 ∈M.

The extended problem of open-loop guidance is solvable, if there exists an
admissible extended open-loop control which is guiding the extended system.

Attainability set of the extended system at the time ϑ:
A = {(x(ϑ|x0, ux0 (·)))x0∈X0 : (ux0

(·))x0∈X0 ∈ Uext}, where Uext is the set of all
admissible extended open-loop control controls.
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Solvability criterion

Theorem 5 (Kryazhimskiy, Strelkovskii (2014))

1) The package guidance problem is solvable if and only if the extended problem of
open-loop guidance is solvable. 2) An admissible extended open-loop control is a
guiding program package if and only if it is guiding extended system.

Arkady’s original solution scheme:
Guaranteed 

positional guidance 

problem

Package guidance 

problem
Extended open-loop 

control guidance 

problem

Let us denote D(t) = BT(t)FT(ϑ, t) (t ∈ [t0, ϑ]) and set the function p(·, ·) : Rn × X0 7→ R:

p(l , x0) = 〈l ,F (ϑ, t0)x0〉Rn +

〈
l ,

ϑ∫
t0

F (ϑ, t)c(t)dt

〉
Rn

(l ∈ Rn, x0 ∈ X0).

Let us set
γ((lx0 )x0∈X0

) = ρ−
(
(lx0 )x0∈X0

|A
)
− ρ+

(
(lx0 )x0∈X0

|M
)

=

=
∑

x0∈X0

p(lx0 , x0)−
∑

x0∈X0

ρ+(lx0 |M) +
K∑

k=1

τk∫
τk−1

∑
X0j (τk )∈X0(τk )

ρ−

 ∑
x0∈X0j (τk )

D(t)lx0

∣∣P
dt.
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Solvability criterion

Let L be a compact set in Rn, containing an
image of the unit sphere Sn — for some positive
r1 and r2 ≥ r1 for each l ∈ Sn there is r ∈
[r1, r2], for which r l ∈ L.

Theorem 6 (Kryazhimskiy, Strelkovskii (2014))

Each of the three problems – (i) the extended
open-loop control guidance problem, (ii) the
package guidance problem and (iii) the
guaranteed positional guidance problem – is
solvable if and only if

max
(lx0

)x0∈X0
∈L
γ((lx0)x0∈X0) ≤ 0. (2)
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Construction of the guiding program package

Assuming that the solvability criterion (2) is satisfied, let us introduce the function
γ̂(·, ·) : Rn × [0, 1] 7→ R:

γ̂((lx0 )x0∈X0
, a) =

∑
x0∈X0

〈lx0 ,F (ϑ, t0)x0〉Rn +

〈
lx0 ,

ϑ∫
t0

F (ϑ, t)c(t)dt

〉
Rn

−
∑

x0∈X0

ρ+(lx0 |M)−

−
K∑

k=1

τk∫
τk−1

∑
X0j (τk )∈X0(τk )

ρ−

 ∑
x0∈X0j (τk )

D(t)lx0

∣∣aP
dt. (3)

Program package (u0
x0

(·))x0∈X0
is zero-valued, if u0

x0
(t) = 0 for almost all t ∈ [t0, ϑ], x0 ∈ X0.

Lemma 7 (Kryazhimskiy (2014))

If the solvability criterion (2) holds and
zero-valued program package is not guiding the
extended system, then exists a∗ ∈ (0, 1] such,
that

max
(lx0

)x0∈X0
∈L

γ̂((lx0 )x0∈X0
, a∗) = 0. (4)
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Construction of the guiding program package
For each program package (ux0(·))x0∈X0 , arbitrary cluster X0j(τk) ∈ X (τk),
j = 1, . . . , J(τk), k = 1, . . . ,K and arbitrary t ∈ [τk−1, τk) let us denote uX0j (τk )(t) program
values ux0(t), which are equal for all x0 ∈ X0j(τk).
Let (l∗x0)x0∈X0 be the maximizer of the left handside of (4). Cluster X0j(τk) is regular, if∑

x0∈X0j (τk )

D(t)l∗x0 6= 0, t ∈ [τk−1, τk).

Otherwise the cluster is singular.

Theorem 8 (Kryazhimskiy (2014))

Let P be a strcitly convex compact set, containing the zero vector; condition (4) holds and
the program package (u∗x0

(·))x0∈X0 satisfies the condition
u∗x0

(t) ∈ a∗P (x0 ∈ X0, t ∈ [t0, ϑ]). Let the clusters X0j(τk) ∈ X0(τk), k = 1, . . . ,K ,
j = 1, . . . , J(τk) be regular, and for each of them the following equality holds〈

D(t)
∑

x0∈X0j (τk )

l∗x0 , u
∗
X0j (τk )(t)

〉
Rm

= ρ−

D(t)
∑

x0∈X0j (τk )

l∗x0

∣∣∣∣∣∣ a∗P
 (t ∈ [τk−1, τk)).

Then the program package (u∗x0
(·))x0∈X0 is guiding.
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Method of successive approximations. Stage 0

Arkady proposed to use this well-known method for numerical solution of the
extended open-loop control guidance problem.

Let c = F (ϑ, t0)x0 +
ϑ∫
t0

F (ϑ, t)c(t)dt (c ∈ Rn) be the terminal state of the

system’s motion under zero-valued control. Obviously c ∈ A, but c /∈ M.
Let us find the point

z̄ = arg min
z∈M
‖c − z‖Rn .

Let us create the zero approximation of the support vector l∗(0) = c−z̄
‖c−z̄‖Rn .

It is clear that γ̂(l∗(0), 0) > 0.
From the solvability criterion it follows that γ̂(l∗(0), 1) ≤ 0. Since γ̂(l∗(0), 0) > 0
and the function γ̂(·, ·) is continuous, such a∗(0) ∈ (0, 1] exists that
γ̂(l∗(0), a∗(0)) = 0. Let us find it:

a∗(0) =
‖c − z̄‖Rn

ϑ∫
t0

ρ−

(
D(t)l∗(0)

∣∣∣∣∣P
)
dt

.
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Method of successive approximations. Stage 0

Using the minimum condition let us derive the zero approximation of the guiding
control

u∗(0) ∈ a∗(0) Arg min
u∈P

〈
D(t)l∗(0), u

〉
Rm

(t ∈ [t0, ϑ)). (5)

assuming D(t)l∗(0) 6= 0, t ∈ [t0, ϑ).
Let us derive the zero approximation of the system’s motion value at the
moment ϑ:

x (0) = x(ϑ|x0, u
∗(0)(·)) = c +

ϑ∫
t0

F (ϑ, t)B(t)u∗(0)(t)dt

If x (0) ∈ M (or d(x (0),M) ≤ ε) then the algorithm ends with the output (5).
Otherwise assuming that z̄ (0) is the upper support vector of M for vector l∗(0),
namely,

z̄ (0) ∈ Arg max
z∈M
〈l∗(0), z〉Rn

the algorithm procceds to the Stage 1.
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Method of successive approximations. Stage 0
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Method of successive approximations. Stage i (i = 1, 2, . . .)

Let us find the vector l∗(i) such, that γ̂(l∗(i), a∗(i−1)) > 0.

From the solvability criterion it follows, that γ̂(l∗(i), 1) ≤ 0. Since γ̂(l∗(i), a∗(i−1)) > 0 and the
function γ̂(·, ·) is continuous, such a∗(i) ∈ (a∗(i−1), 1] exists that γ̂(l∗(i), a∗(i)) = 0. Let us find
it:

a∗(i) =
ρ+(l∗(i)|M)− 〈c, l∗(i)〉Rn

ϑ∫
t0

ρ−

(
D(t)l∗(i)

∣∣∣∣∣P
)
dt

.

Using the minimum condition let us derive the i-th approximation of the guiding control

u∗(i) ∈ a∗(i) Arg min
u∈P

〈
D(t)l∗(i), u

〉
Rm

(t ∈ [t0, ϑ)). (6)

assuming D(t)l∗(i) 6= 0, t ∈ [t0, ϑ).

Let us derive the i-th approximation of the system’s motion value at the moment ϑ:

x(i) = x(ϑ|x0, u
∗(i)(·)) = c +

ϑ∫
t0

F (ϑ, t)B(t)u∗(i)(t)dt

If x(i) ∈ M (or d(x(1),M) ≤ ε) then the algorithm ends with the output (6). Otherwise
assuming that z̄(i) is the upper support vector of M for vector l∗(i), namely,

z̄(i) ∈ Arg max
z∈M
〈l∗(i), z〉Rn

the algorithm procceds to the Stage (i + 1).
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Afterword

Dozens of great Arkady’s ideas which he had shared are waiting for us to be
implement...

«Ideas never die»
Wilhelm von Humboldt

Arkady Kryazhimskiy (1949 – 2014)


