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Abstract	22	

	23	

Sea-level	 change	 (SLC)	 is	 a	 much-studied	 topic	 in	 the	 area	 of	 climate	 research,	24	

integrating	a	range	of	climate	science	disciplines,	and	is	expected	to	impact	coastal	25	

communities	 around	 the	 world.	 As	 a	 result,	 this	 field	 is	 rapidly	 moving	 and	 the	26	

knowledge	and	understanding	of	processes	 contributing	 to	SLC	 is	 increasing.	Here,	27	

we	discuss	noteworthy	 recent	developments	 in	 the	projection	of	SLC	contributions	28	

and	 in	 the	 global	 mean	 and	 regional	 sea-level	 projections.	 For	 the	 Greenland	 ice	29	

sheet	contribution	to	SLC,	earlier	estimates	have	been	confirmed	in	recent	research,	30	

but	 part	 of	 the	 source	 of	 this	 contribution	 has	 shifted	 from	 dynamics	 to	 surface	31	

melting.	New	insights	into	dynamic	discharge	processes	and	the	onset	of	marine	ice-32	

sheet	 instability	 bring	 the	 estimated	 Antarctic	 contribution	 to	 SLC	 at	 0.3-0.4	m	 by	33	

2100.	The	contribution	from	both	 ice	sheets	 is	projected	to	 increase	 in	the	coming	34	

centuries	 to	 millennia.	 Recent	 updates	 of	 the	 global	 glacier	 outline	 database	 and	35	

new	 global	 glacier	 models	 have	 led	 to	 slightly	 lower	 projections	 for	 the	 glacier	36	

contribution	to	SLC	(in	the	order	of	0.12-0.13	m	by	2100),	but	still	project	the	glaciers	37	

to	be	an	important	contribution.	For	global	mean	sea-level	projections,	the	focus	has	38	

shifted	 to	 better	 estimating	 the	 uncertainty	 distributions	 of	 the	 projection	 time	39	

series,	 which	 may	 not	 necessarily	 follow	 a	 normal	 distribution.	 Instead,	 recent	40	

studies	use	 skewed	distributions	with	 longer	 tails	 to	higher	uncertainties.	Regional	41	

projections	have	been	used	to	study	regional	uncertainty	distributions,	and	regional	42	

projections	are	 increasingly	being	applied	 to	specific	 regions,	 countries	and	coastal	43	

areas.		44	

	 	45	



1.	Introduction	46	

As	one	of	 the	most	well-known	 consequences	of	 climate	 change,	 sea-level	 change	47	

(SLC)	is	relevant	to	coastal	communities	and	stakeholders	around	the	world.	A	large	48	

number	of	the	world’s	population	(~10%	[McGranahan	et	al.,	2007])	lives	and	works	49	

near	 the	 coast	 and	 depends	 on	 the	 ocean	 as	 their	 primary	 source	 of	 food	 and	50	

livelihood.	An	 increase	 in	mean	sea	 level	 can	 increase	 the	 impacts	of	 storm	surges	51	

and	the	risk	of	 flooding	events	 in	coastal	zones	 [Wong	et	al.,	2013].	To	make	well-52	

informed	decisions	about	protective	or	adaptive	measures,	it	is	crucial	that	decision	53	

makers	are	provided	with	the	best	possible	projections	of	SLC.	Projecting	future	SLC	54	

and	 understanding	 the	 physical	 processes	 that	 contribute	 to	 SLC	 is	 therefore	 an	55	

important	and	rapidly	evolving	research	topic.		56	

	57	

SLC	 is	 a	 result	 of	 changes	 in	 many	 different	 parts	 of	 the	 climate	 system	 and	 can	58	

therefore	 be	 seen	 as	 an	 integrative	measure	 of	 climate	 change.	 Over	 90%	 of	 the	59	

energy	that	is	stored	in	the	climate	system	ends	up	in	the	ocean	[Rhein	et	al.,	2013],	60	

causing	thermal	expansion	and	sea-level	rise.	In	addition,	ice	sheets	and	glaciers	lose	61	

mass	due	to	increasing	temperatures	(both	atmospheric	and	in	the	ocean	[Vaughan	62	

et	 al.,	 2013])	 and	 reservoirs	 of	 water	 on	 land	 change	 due	 to	 human	 intervention	63	

[Church	et	al.,	2013],	which	not	only	changes	the	amount	of	water	in	the	oceans,	but	64	

also	the	Earth’s	gravitational	field.	The	solid	Earth	also	responds	to	the	redistribution	65	

of	mass	on	the	Earth	surface	both	for	present-day	and	for	distant	past	(Last	Glacial	66	

Maximum,	 ~20,000	 years	 ago)	 mass	 variations,	 changing	 the	 height	 of	 the	 ocean	67	

floor.	In	the	past	century,	global	mean	sea	level	has	already	increased	by	19	±	2	cm	68	

(1901-2010,	[Church	et	al.,	2013]),	a	rise	that	is	expected	to	continue	and	accelerate	69	

in	the	coming	centuries.		70	

	71	

The	Intergovernmental	Panel	on	Climate	Change	Fifth	Assessment	Report		(IPCC	AR5)	72	

chapter	 on	 Sea	 Level	 Rise	 [Church	 et	 al.,	 2013]	 presented	 a	 comprehensive	73	

assessment	of	papers	up	to	the	IPCC	working	group	1	cut-off	date	of	March	2013.	In	74	

the	chapter,	important	strides	were	made	compared	to	the	IPCC	Fourth	Assessment	75	

report	(AR4)	by	progress	in	closing	the	20th	century	sea-level	budget,	the	addition	of	76	

an	assessment	of	the	ice-sheet	dynamical	contribution	to	SLC	and	by	making	regional	77	



sea-level	 projections	 for	 the	 21st	 century.	 However,	 a	 lot	 of	 research	 has	 been	78	

completed	since	IPCC	AR5	and	the	lead	authors	of	the	chapter	on	SLC	have	recently	79	

published	an	update	of	their	work	[Clark	et	al.,	2015].	Here,	we	also	focus	on	work	80	

that	has	been	published	since	AR5	and	aim	to	complement	the	review	by	Clark	et	al.	81	

[2015]	by	 including	more	 recent	publications	 for	 the	different	 contributions	where	82	

available	 and	by	presenting	overviews	of	 research	on	 the	 terrestrial	water	 storage	83	

(TWS)	contribution	and	the	Mediterranean	region,	which	were	not	discussed	in	Clark	84	

et	al.	 [2015].	The	case	of	the	Mediterranean	 is	chosen	because	 it	 is	an	area	that	 is	85	

vulnerable	to	SLC	due	to	the	high	population	densities	around	the	basin,	and	a	lot	of	86	

sea-level	research	is	done	specifically	for	this	region.		87	

	88	

First	we	 present	 an	 overview	of	 recent	work	 on	 contributions	 to	 SLC	 due	 to	mass	89	

changes	of	glaciers	and	ice	sheets	(Section	2)	and	TWS	changes	(Section	3).	Then,	we	90	

will	 discuss	 global	 mean	 sea-level	 projections	 and	 new	 ways	 to	 treat	 the	91	

uncertainties	thereof	(Section	4).	Recent	advances	 in	and	uses	of	regional	sea-level	92	

projections	 are	 presented	 in	 Section	 5.	 Thermal	 expansion	 and	 dynamical	 ocean	93	

fields	are	not	discussed	in	a	separate	section	but	are	included	in	Sections	4	and	5,	as	94	

the	most	up-to-date	projections	are	based	on	climate	model	output	which	has	not	95	

changed	since	IPCC	AR5.	Finally,	Section	6	presents	research	on	sea-level	projections	96	

in	the	Mediterranean	region.		97	

	 	98	



2.	Land	ice	mass	change	projections		99	

	100	

2.1	Ice	Sheet	projections	101	

The	ice	sheets	on	Greenland	and	Antarctica	are	by	far	the	largest	potential	source	of	102	

future	 SLC,	 storing	 approximately	 65	 m	 sea-level	 equivalent	 (SLE,	 Vaughan	 et	 al.	103	

[2013],	Clark	et	al.	 [2015]).	Both	 ice	 sheets	have	 increasingly	 lost	mass	 in	 the	past	104	

decades	[Rignot	et	al.,	2011]	and	are	expected	to	dominate	the	sea-level	budget	on	105	

the	long	term	[Church	et	al.,	2013].		106	

	107	

Greenland	 Mass	 loss	 from	 Greenland	 is	 controlled	 by	 changes	 in	 surface	 mass	108	

balance	(SMB)	and	dynamic	discharge,	including	the	effects	of	basal	lubrication	and	109	

ocean	 warming.	 IPCC	 AR5	 [Church	 et	 al.,	 2013]	 estimated	 that	 Greenland	 would	110	

contribute	 between	 0.04	 -	 0.10	 m	 for	 RCP2.6	 (Representative	 Concentration	111	

Pathway,	Moss	et	al.,	[2010])	scenario	and	0.07	-	0.21	m	for	RCP8.5	by	the	end	of	this	112	

century.	 For	 the	 lower	 emission	 scenarios,	 surface	melting	 and	 dynamic	 discharge	113	

were	expected	to	contribute	equally	to	the	overall	mass	loss.	For	emission	scenario	114	

RCP8.5,	 the	mass	 balance	was	 projected	 to	 be	 dominated	by	 increased	melting	 at	115	

the	surface.		116	

	117	

If	a	certain	threshold	is	passed,	the	feedback	between	the	lowering	surface	elevation	118	

and	increasing	surface	melting	can	lead	to	additional	ice	loss	and	eventually	even	the	119	

complete	loss	of	the	Greenland	Ice	Sheet	[Ridley	et	al.,	2010;	Robinson	et	al.,	2012].	120	

Edwards	et	al.	[2014]	found	that	this	positive	feedback	might	be	less	significant	for	121	

this	century	than	previously	expected.	They	estimate	the	surface	elevation	feedback	122	

to	account	for	at	most	an	additional	6.9	%	ice	loss	from	Greenland	as	opposed	to	the	123	

15	%	estimated	 in	AR5.	Other	recent	studies	confirm	the	conclusion	from	AR5	that	124	

basal	 lubrication	 will	 likely	 not	 have	 a	 significant	 effect	 on	 Greenland	 mass	 loss	125	

within	this	century	[Shannon	et	al.,	2013].		126	

	127	

Based	 on	 a	 higher-order	 ice-sheet	 model	 driven	 by	 temperature	 changes	 from	128	

Atmosphere-Ocean	 Global	 Climate	 Model	 (AOGCM)	 results,	 Fürst	 et	 al.	 [2015]	129	

project	 a	Greenland	 contribution	 of	 0.01–0.17	m	 to	 SLC	within	 the	 21st	 century	 in	130	



response	to	both	atmospheric	and	oceanic	warming.	In	contrast	to	previous	studies,	131	

they	conclude	that	future	ice	loss	will	be	dominated	by	surface	melting	rather	than	132	

dynamic	 discharge	 because	 the	marine	 ice	margin	will	 retreat	 over	 time,	 reducing	133	

the	contact	area	between	ice	and	ocean	water	and	thus	limiting	dynamic	discharge.	134	

For	 the	 two	 lower	 emission	 scenarios,	 RCP2.6	 and	 RCP4.5,	 simulations	 yield	 a	135	

contribution	 to	 SLC	 between	 0.03	 and	 0.32	 m	 by	 2300	 (Figure	 1).	 These	 new	136	

projections	thus	fall	within	the	AR5	likely	ranges	but	with	a	higher	contribution	from	137	

surface	melting	as	opposed	to	dynamic	discharge	[Clark	et	al.,	2015].		138	

	139	

Antarctica	The	mass	balance	of	the	Antarctic	Ice	Sheet	is	determined	by	changes	in	140	

the	SMB	as	well	as	changes	of	the	 ice	flux	across	the	grounding	 line	resulting	from	141	

enhanced	 basal	 sliding,	 calving	 or	 sub-shelf	 melting.	 Since	 surface	 melting	 will	142	

remain	 negligible	 within	 the	 21st	 century	 [Vizcaino	 et	 al.,	 2010;	Huybrechts	 et	 al.,	143	

2011],	the	SMB	is	predominantly	determined	by	snow	accumulation.	Evidence	from	144	

paleo	 data	 and	 projections	 from	 global	 and	 regional	 climate	 models	 show	 that	145	

snowfall	 in	 Antarctica	 is	 very	 likely	 to	 increase	 with	 future	 atmospheric	 warming	146	

[Frieler	et	al.,	2015].	The	resulting	mass	gain	might	however	be	compensated	or	even	147	

overcompensated	by	dynamic	effects	[Winkelmann	et	al.,	2012].		148	

	149	

In	AR5,	the	overall	contribution	of	Antarctica	to	SLC	was	estimated	to	range	from	-150	

0.04	to	0.16	m	for	RCP2.6	and	-0.08	to	0.14	m	for	RCP8.5	by	2100	compared	to	1986-151	

2005	[Church	et	al.,	2013].	The	SLC	arising	from	rapid	dynamics	was	projected	to	be	-152	

0.02	to	0.19	m,	deduced	from	a	combination	of	model	results,	expert	judgement	and	153	

statistical	 extrapolation	of	 current	 trends.	Due	 to	 insufficient	understanding	of	 the	154	

underlying	 processes,	 scenario-dependence	 for	 rapid	 dynamics	 could	 not	 be	155	

established	in	IPCC	AR5.		156	

	157	

Significant	progress	has	been	made	since	then	to	understand	the	dynamic	processes	158	

and	 quantify	 their	 effect	 on	 Antarctic	 ice	 loss	 for	 the	 21st	 century	 and	 beyond.	159	

Pollard	et	al.	[2015]	found	that	crevasse-induced	ice	shelf	loss	can	lead	to	the	onset	160	

of	 rapid	 ice	discharge	 from	several	Antarctic	drainage	basins.	Based	on	 the	 results	161	

from	the	SeaRISE	model	 intercomparison	project	 [Nowicki	et	al.,	2013],	Levermann	162	



et	 al.	 [2014]	 developed	 a	 probabilistic	 approach	 to	 estimate	 the	 future	 sea-level	163	

contribution	 from	 Antarctica,	 combining	 uncertainty	 in	 the	 climatic	 boundary	164	

conditions,	the	oceanic	response	and	the	 ice-sheet	response.	The	results,	based	on	165	

linear	 response	 theory,	 correspond	with	 the	 recently	observed	mass	 loss	 from	 the	166	

Antarctic	Ice	Sheet	[Shepherd	et	al.,	2012].	Levermann	et	al.	[2014]	find	that	the	90%	167	

uncertainty	associated	with	 the	contribution	 from	Antarctica	 reaches	up	 to	0.23	m	168	

(median	0.07	m;	90%	0.0-0.23	m)	by	2100	for	RCP2.6	and	up	to	0.37	m	(median	0.09	169	

m;	90%	0.01-0.37	m)	for	RCP8.5	(Figure	2).		170	

	171	

IPCC	 AR5	 concluded	 that	 the	 collapse	 of	 marine	 ice	 sheet	 basins	 could	 cause	172	

additional	SLC	above	the	likely	range	of	‘up	to	several	tenths	of	a	meter’	[Church	et	173	

al.,	2013],	but	the	timing	could	not	be	quantified.	The	mechanism	underlying	such	a	174	

potential	collapse	is	the	marine	ice	sheet	instability	(MISI,	Weertman,	1974;	Mercer,	175	

1978):	 several	 Antarctic	 basins	 are	 partly	 grounded	 below	 sea	 level,	 on	 bedrock	176	

generally	sloping	downwards	towards	the	interior	of	the	ice	sheet.	If	the	grounding	177	

line	retreats	into	such	an	area,	it	could	become	unstable.		178	

	179	

Shortly	 after	 the	 release	 of	 AR5,	 several	 studies	 were	 published	 showing	 with	180	

increasing	 certainty	 that	 parts	 of	 West	 Antarctica	 might	 in	 fact	 already	 be	181	

undergoing	unstable	grounding	line	retreat	[Favier	et	al.,	2014;	Joughin	et	al.,	2014;	182	

Rignot	et	al.,	2014].	The	retreat	was	most	 likely	caused	by	warm	circumpolar	deep	183	

water	 reaching	 the	 ice	 shelf	 cavities	 in	 recent	 years	 –	 whether	 this	 process	 was	184	

influenced	by	anthropogenic	climate	change	is	not	yet	clear.	185	

	186	

Using	 a	 process-based	 statistical	 approach,	 Ritz	 et	 al.	 [2015]	 derived	 probability	187	

estimates	for	exceeding	particular	thresholds	in	the	marine	basins	of	Antarctica	as	a	188	

function	 of	 time	 if	 MISI	 is	 triggered.	 Their	 results	 suggest	 that	 particularly	 in	 the	189	

Amundsen	Sea	Sector,	large	and	rapid	ice	loss	due	to	the	marine	ice	sheet	instability	190	

could	 be	 initiated	within	 this	 century.	 By	 2100,	 the	 total	 ice	 loss	 from	 such	 rapid	191	

dynamics	 is	 estimated	 to	 contribute	 up	 to	 0.3	 m	 to	 global	 SLC,	 quantifying	 and	192	

narrowing	down	the	IPCC	AR5	estimates,	and	0.72	m	by	2200	(95%	quantiles).	Large	193	



uncertainties	remain,	especially	with	respect	to	the	effect	of	basal	sliding	on	the	ice	194	

flux	[Ritz	et	al.,	2015].	195	

	196	

These	advances	made	 in	estimating	both	the	gradual	response	to	oceanic	warming	197	

as	well	as	the	possibly	abrupt	onset	of	self-sustained	grounding	line	retreat,	can	be	198	

consolidated	into	a	new	uncertainty	range	for	Antarctic	ice	loss.	It	contains	the	IPCC	199	

likely	 range	 but	 leads	 to	 an	 overall	 larger	 spread	 for	 the	 21st	 century	 sea-level	200	

projections.		201	

	202	

However,	 a	 recent	 paper	 by	 Pollard	 and	 Deconto	 [2016]	 includes	 a	 number	 of	203	

processes	in	their	model	simulation	that	were	not	included	in	models	before,	such	as	204	

the	 hydrofracturing	 of	 Antarctic	 ice	 shelves	 due	 to	 atmospheric	 warming	 and	205	

subsequent	 ice	 cliff	 instabilities.	 The	 model	 is	 found	 to	 be	 in	 relatively	 good	206	

agreement	with	geological	estimates	of	the	Pliocene	(~three	million	years	ago)	and	207	

the	last	interglacial	(130,000-115,000	years	ago).	Depending	on	the	geologic	criteria	208	

used,	 they	 find	possible	contributions	up	 to	1.05	±	0.30	m	 (1σ)	by	2100	under	 the	209	

RCP8.5	 scenario.	 This	means	 that	 the	possibility	 of	 1	m	SLC	 from	 the	Antarctic	 ice	210	

sheet	still	cannot	be	excluded.		211	

	212	

Long-term	projections	Sea	level	will	continue	to	rise	well	beyond	2100,	even	under	213	

strong	 mitigation	 scenarios	 [Church	 et	 al.,	 2013].	 Due	 to	 the	 long	 lifetime	 of	214	

anthropogenic	 CO2	 in	 the	 atmosphere	 and	 the	 consequent	 slow	 decline	 of	215	

temperatures,	greenhouse	gas	emissions	within	 this	century	can	 induce	a	sea-level	216	

commitment	of	 several	meters	 for	 the	next	millennia	 [Levermann	et	al.,	2013].	On	217	

these	 time-scales	 the	Greenland	 Ice	 Sheet	 shows	 critical	 threshold	 behaviour	with	218	

respect	to	atmospheric	warming	due	to	the	surface-elevation	feedback	[Ridley	et	al.,	219	

2010;	Robinson	et	al.,	2012].		220	

	221	

Long-term	projections	from	different	process-based	model	simulations	are	now	also	222	

available	for	the	Antarctic	Ice	Sheet	[Golledge	et	al.,	2015;	Winkelmann	et	al.,	2015].	223	

Since	 several	 ice	 basins	 in	 Antarctica	 are	 potentially	 pre-conditioned	 to	 become	224	

subject	to	MISI,	the	response	of	the	ice	sheet	to	global	warming	might	also	be	highly	225	



non-linear.	Golledge	et	al.	[2015]	find	that	the	irreversible	retreat	of	major	Antarctic	226	

drainage	basins	can	only	be	avoided	if	greenhouse	gas	emissions	do	not	exceed	the	227	

RCP2.6	 level.	 Winkelmann	 et	 al.	 [2015]	 studied	 the	 evolution	 of	 Antarctica	 on	228	

millennial	timescales	and	show	that	the	West	Antarctic	ice	sheet	becomes	unstable	229	

after	600	to	800	GtC	of	additional	carbon	emissions.	They	further	conclude	that,	on	a	230	

multi-millennial	 timescale,	 Antarctica	 could	 become	 essentially	 ice-free	 for	 a	231	

scenario	 in	which	all	available	 fossil	 carbon	resources	are	combusted	 (10,000	GtC).	232	

These	new	studies	suggest	that	the	rate	of	SLC	for	higher	emission	scenarios	could	233	

reach	values	of	up	to	a	few	meters	per	century	beyond	2100.		 	234	



	235	
Figure	1:	Projected	global	mean	sea-level	contribution	(cm)	from	the	Greenland	Ice	236	

Sheet	(surface	mass	balance	and	dynamics)	using	a	three-dimensional	ice	flow	model	237	

driven	by	output	from	10	atmosphere-ocean	general	circulation	models	(a)	for	four	238	

RCP	climate	scenarios	over	the	21st	century	and	(b)	for	two	RCP	climate	scenarios	239	

until	2300		(reproduced	from	Fürst	et	al.	[2015]).	The	shaded	area	indicates	the	240	

ensemble	mean	±	1	σ,	while	the	vertical	bars	show	the	spread	(±	2	σ)	at	the	end	of	241	

2100	and	2300	respectively.		242	

	243	
Figure	2:	Projected	sea-level	contribution	(m)	from	the	Antarctic	Ice	Sheet	in	the	21st	244	

century.	(a)	Uncertainty	range	including	climate,	ocean	and	ice-dynamic	uncertainty	245	

for	the	year	2100	(top:	thick	line	is	66%	range,	thin	line	is	90%	range).	Different	246	

colours	represent	different	climate	scenarios	used	to	drive	three	Antarctic	Ice	Sheet	247	

models.	(b)	Time-series	of	future	SLC	from	Antarctica	(median,	66%	and	90%	248	

uncertainty	ranges)	(reproduced	from	Levermann	et	al.	[2014]).	249	

	 	250	



2.2	Glacier	projections		251	

Glacier	mass	loss	constituted	a	large	contributor	to	20th	century	SLC	[Gregory	et	al.,	252	

2013].	Despite	accelerating	mass	loss	of	the	ice	sheets	[Shepherd	et	al.,	2012],	glacier	253	

mass	loss	continues	to	be	a	main	component	of	SLC	[Church	et	al.,	2011]	and	is	likely	254	

to	remain	an	important	factor	in	the	21st	century.	The	AR5	evaluation	of	projected	255	

glacier	mass	loss	in	2081-2100	relative	to	1986-2005	ranges	from	0.04	to	0.23	m	at	256	

2100,	based	on	the	results	of	four	process-based	models	across	different	forcing	257	

scenarios	[Church	et	al.,	2013].	258	

	259	

There	are	five	glacier	models	operating	on	a	global	scale	which	have	published	260	

projections	of	glacier	mass	change	under	the	RCP	scenarios	[Marzeion	et	al.,	2012;	261	

Hirabayashi	et	al.,	2013;	Radić	et	al.,	2014;	Slangen	et	al.,	2014;	Huss	and	Hock,	262	

2015]	and	one	study	which	uses	the	SRES	scenarios	to	drive	their	glacier	model	263	

[Giesen	and	Oerlemans,	2013].	They	all	combine	a	glacier	surface	mass	balance	264	

model	with	a	model	that	accounts	for	the	response	of	glacier	geometry	to	changes	in	265	

glacier	mass.	The	calculation	of	both	the	glacier	mass	balance	and	geometry	change	266	

varies	across	the	different	models.	All	models	except	Huss	and	Hock	[2015]	were	267	

used	in	IPCC	AR5,	but	some	have	been	updated	since,	as	will	be	detailed	below.	268	

	269	

Slangen	et	al.	[2012,	2014]	calculate	the	glacier	mass	balance	from	the	sensitivity	of	270	

the	surface	mass	balance	to	temperature	change	and	changes	in	precipitation.	This	271	

sensitivity	is	parameterized	by	relations	that	are	calibrated	on	more	detailed	model	272	

studies	for	12	individual	glaciers	[Zuo	and	Oerlemans,	1997].	The	initial	areas	of	the	273	

glaciers	are	based	on	WGI-XF	(World	Glacier	Inventory,	extended	format,	Cogley	274	

[2009])	and	the	glacier	volumes	are	based	on	volume	area	scaling.	The	glacier	275	

projections	are	forced	by	14	models	from	the	CMIP5	database	[Taylor	et	al.,	2012a]	276	

for	each	of	the	RCP4.5	and	RCP8.5	scenarios.	277	

	278	

Radić	et	al.	[2014]	and	Marzeion	et	al.	[2012]	both	use	an	approach	in	which	279	

accumulation	and	ablation	are	modelled	explicitly.	Accumulation	is	calculated	by	280	

summing	the	solid	precipitation	over	the	glacier	characterized	by	an	area	distribution	281	

over	elevation.	Ablation	is	calculated	with	a	temperature-index	method	in	both	282	



studies.	Following	Radić	and	Hock	[2011],	Radić	et	al.	[2014]	calculate	the	surface	283	

mass	balance	for	each	glacier	at	different	elevation	bands,	whereas	Marzeion	et	al.	284	

[2012]	calculate	melt	from	the	temperature	at	the	glacier-tongue	elevation	only.	285	

Both	studies	use	mass	balance	observations	to	calibrate	the	modelled	glacier	mass	286	

balance.	In	order	to	account	for	glacier	retreat	to	higher	elevations	and	thus	allow	287	

for	new	equilibrium	in	a	different	climate,	Radić	et	al.	[2014]	remove,	or	add	in	case	288	

of	modelled	mass	gain,	mass	in	the	lowest	elevation	bins	of	the	modelled	glaciers,	289	

based	on	volume	area	scaling.	Marzeion	et	al.	[2012]	combine	volume-length	scaling	290	

with	the	mean	slope	of	the	glacier	surface	to	let	the	glacier	terminus	retreat	to	291	

higher	elevations,	or	advance	to	lower	elevations.	They	also	include	a	response	time	292	

between	volume	changes	on	the	one	hand,	and	length	and	area	changes	on	the	293	

other.	Their	model	is	validated	against	in-situ	and	geodetic	mass	balance	294	

observations	of	individual	glaciers.	Marzeion	et	al.	[2012]	do	not	model	peripheral	295	

glaciers	(PGs)	in	Antarctica	explicitly,	but	apply	the	global	mean	specific	mass	296	

balance	rate	as	a	rough	approximation.	297	

	298	

The	results	of	Radić	et	al.	[2014]	shown	in	Figure	3	are	from	projections	that	are	299	

forced	by	14	models	from	the	CMIP5	database	for	each	of	the	RCP4.5	and	RCP8.5	300	

scenarios.	The	results	of	Marzeion	et	al.	[2012]	were	updated	based	on	a	more	301	

recent	version	of	the	Randolph	Glacier	Inventory	(RGI).	Their	projections	were	forced	302	

by	13	CMIP5	models	for	the	RCP2.6	scenario,	15	models	for	RCP4.5,	11	models	for	303	

RCP6.0	and	15	models	for	RCP8.5.	304	

	305	

Huss	and	Hock	[2015]	use	a	temperature-index	model	to	calculate	mass	changes	for	306	

every	individual	glacier,	but	their	model	approach	is	different	from	the	earlier	307	

models	discussed	above	concerning	a	few	points.	They	do	not	use	volume-area	or	308	

volume	length	scaling.	Instead	they	derive	the	initial	glacier	volume	following	Huss	309	

and	Farinotti	[2012].	This	method	provides	ice	thickness,	and	therefore	glacier	310	

volume	and	glacier	bed	elevation,	distributed	over	10	m	elevation	intervals	for	every	311	

glacier.	Glacier	geometry	changes	due	to	changes	in	calculated	glacier	mass	are	312	

distributed	over	the	glacier	elevation	following	the	parameterization	of	Huss	et	al.	313	

[2010].	Furthermore,	Huss	and	Hock	[2015]	explicitly	compute	mass	loss	through	314	



calving	using	the	simple	model	of	Oerlemans	and	Nick	[2005]	that	describes	the	315	

calving	rate	as	a	linear	function	of	the	height	of	the	calving	front.	Finally,	they	316	

subtract	the	mass	loss	of	glacier	ice	below	sea	level,	which	does	not	contribute	to	317	

SLC,	from	the	total	of	calculated	glacier	mass	loss	in	their	calculation	of	the	glacier	318	

contribution	to	SLC	(note	that	for	comparability,	the	loss	of	ice	below	sea	level	is	also	319	

included	in	their	numbers	shown	in	Figure	3).	For	calibration,	Huss	and	Hock	[2015]	320	

assume	that	mean	specific	balance	rate	of	each	individual	glacier	should	equal	the	321	

observed	region-wide	mean	specific	balance	rate	[Gardner	et	al.,	2013]	within	a	322	

range	of	±0.1	m	w.e.a-1.		The	model	is	validated	against	in-situ	and	geodetic	mass	323	

balance	observations,	as	well	as	observed	area	changes	and	calving	rates,	for	324	

individual	glaciers.	The	results	of	Huss	and	Hock	[2015]	used	here	are	from	325	

projections	that	are	forced	by	12	models	from	the	CMIP5	database	for	the	RCP2.6	326	

scenario	and	14	models	for	the	RCP4.5	and	RCP8.5	scenarios.	327	

	328	

Hirabayashi	et	al.	[2013]	use	a	grid-based	approach	to	modeling	glacier	mass	change.	329	

Within	each	0.5	x	0.5	degree	grid	cell,	individual	glaciers	are	lumped	together	as	one	330	

glacier,	while	applying	sub-gridscale	elevation	bands	preserves	the	vertical	elevation	331	

distribution	of	the	ice	area	within	each	grid	cell.	Their	model	was	calibrated	against	332	

the	observations	of	Dyurgerov	and	Meier	[2005]	and	does	not	cover	PGs	on	333	

Greenland	or	Antarctica.	The	projections	used	here	are	forced	by	10	models	from	334	

the	CMIP5	database	for	the	RCP8.5	scenario	only.	335	

	336	

In	each	of	the	five	global	studies	described	above,	the	mass	balance	is	calculated	337	

with	a	temperature-index	model.	Giesen	and	Oerlemans	[2013]	apply	a	more	338	

complex	surface	mass	balance	model	that	besides	the	dependence	of	glacier	mass	339	

balance	on	temperature	and	precipitation	also	includes	incoming	solar	radiation	in	340	

the	calculation	of	ablation.	They	calibrate	this	model	to	89	glaciers	with	in-situ	341	

observations	of	winter	and	summer	mass	balance	and	then	upscale	the	results	to	all	342	

glaciers.	Their	projections	for	the	21st	century	are	based	on	an	ensemble	of	CMIP3	343	

model	runs	for	scenario	A1B.	They	find	a	significant	effect	of	projected	decrease	in	344	

incoming	solar	radiation	in	the	Arctic	region	on	the	projected	sea-level	contribution.	345	

The	21st	century	global	glacier	mass	loss	found	in	Giesen	and	Oerlemans	[2013]	is	346	



significantly	less	than	in	other	studies	[Marzeion	et	al.,	2012;	Radić	et	al.,	2014;	347	

Slangen	et	al.,	2014]	for	comparable	RCPs.	In	a	regional	study	of	future	surface	mass	348	

balance	with	the	high	resolution	regional	climate	model	MAR,	Lang	et	al.	[2015]	find	349	

significantly	less	mass	loss	for	Svalbard	than	Marzeion	et	al.	[2012]	and	Radić	et	al.	350	

[2014].	Suggested	explanations	for	this	discrepancy	are	the	coarse	resolution	of	the	351	

global	climate	models	that	were	used	to	force	the	global	glacier	models,	and	a	better	352	

representation	of	the	physical	processes	in	the	regional	climate	model	compared	to	353	

the	empirical	temperature-index	mass	balance	models.	Lang	et	al.	[2015]	also	find	a	354	

significant	reduction	of	the	incident	solar	radiation	due	to	increased	cloudiness,	355	

supporting	the	findings	of	Giesen	and	Oerlemans	[2013]	for	the	Arctic.	Huss	and	356	

Hock	[2015]	also	find	a	16-22%	lower	projected	glacier	mass	loss	when	they	include	357	

incoming	solar	radiation	(assumed	to	be	constant	in	time)	in	a	sensitivity	experiment	358	

with	their	glacier	mass	balance	model.	359	

	360	

Figure	3	shows	the	projected	glacier	mass	loss	from	the	5	global	studies	under	RCP	361	

scenarios.	They	all	show	a	large	spread	in	the	projected	global	glacier	mass	loss	362	

within	the	ensemble	of	different	climate	model	runs	for	the	same	scenario.	The	363	

ensemble	standard	deviation	within	each	scenario	is	comparable	to	the	differences	364	

between	the	ensembles	means	of	different	scenarios.	Also	the	differences	between	365	

the	different	glacier	models,	but	identical	scenarios,	are	of	comparable	magnitude.	366	

The	exception	is	the	projection	of	Hirabayashi	et	al.	[2013],	which	for	the	RCP8.5	367	

scenario	projects	glacier	mass	loss	comparable	to	the	other	models’	projections	for	368	

RCP2.6.	369	

	370	

Updates	of	 existing	projections	 [Marzeion	et	al.,	 2012]	 and	new	models	 [Huss	and	371	

Hock,	 2015]	 published	 after	 the	 IPCC	 AR5	 have	 generally	 lead	 to	 slightly	 lower	372	

projected	 mass	 losses	 (Table	 1).	 For	 the	 RCP8.5	 scenario	 for	 instance,	 IPCC	 AR5	373	

projected	a	contribution	of	16	±	7	cm,	while	Huss	and	Hock	[2015]	and	the	updated	374	

Marzeion	et	al.	[2012]	present	projections	around	12.5	cm	for	the	same	scenario.		In	375	

the	 case	 of	Marzeion	 et	 al.	 [2012]	 this	 is	 attributable	 to	 updates	 of	 the	 RGI;	 it	 is	376	

unclear	 for	Huss	and	Hock	 [2015]	since	no	previous	estimate	existed.	On	the	other	377	

hand,	the	results	of	Slangen	et	al.	[2012,	2014]	are	very	similar	to	Radić	et	al.	[2014].	378	



The	 results	 of	Giesen	 and	Oerlemans	 [2013]	 and	 Lang	 et	 al.	 [2015]	 suggest	 that	 a	379	

projected	decrease	in	Arctic	incoming	solar	radiation	could	lead	to	a	lower	projected	380	

mass	 loss	 than	 is	 given	 by	 the	 temperature	 index	 models.	 However,	 a	 direct	381	

comparison	 of	 the	 individual	 studies	 is	 complicated	 through	 the	 differing	382	

compositions	 of	 the	 ensembles	 used	 for	 forcing	 the	 glacier	 models.	 Therefore,	 a	383	

coordinated	 glacier	 model	 intercomparison	 is	 currently	 underway	 to	 better	384	

understand	the	causes	of	the	model	and	ensemble	spread.	385	

	 	386	



	387	
Figure	 3:	 Projected	 global	mean	 sea-level	 contribution	 from	glacier	mass	 loss.	 Left	388	

panel:	 Percentage	 of	 glacier	 mass	 remaining	 (%),	 ensemble	 mean	 (lines)	 and	 1	 σ	389	

spread	 (shading),	 dashed	 lines	 excluding,	 full	 lines	 including	 peripheral	 glaciers	 on	390	

Greenland	 and	 Antarctica.	 Right	 panel:	 glacier	 contribution	 to	 SLC	 by	 2100	 (mm),	391	

ensemble	mean	 and	 1	 ensemble	 standard	 deviation	 in	 2100;	 thick	 lines	 including,	392	

thin	lines	excluding	peripheral	glaciers.	All	numbers	are	relative	to	2010.		393	

Table	1:	Projected	glacier	contributions	to	SLC	for	2010-2100	(mm,	ensemble	mean	±	1	σ),	394	

for	four	different	RCP	scenarios,	peripheral	glaciers	excluded	(numbers	in	brackets	include	395	

peripheral	glaciers).		396	

Study	 RCP2.6	 RCP4.5	 RCP6.0	 RCP8.5	

[Hirabayashi	et	al.,	2013]	 -	 -	 -	 73	±	14	

[Huss	and	Hock,	2015]	 67	±	25	

(93	±	26)	

90	±	29	

(123	±	30)	

-	 126	±	31	

(178	±	33)	

[Marzeion	et	al.,	2012,	upd]	 82	±	19	

(115	±	28)	

94	±	23	

(132	±	32)	

96	±	22	

(136	±	31)	

124	±	25	

(175	±	35)	

[Radić	et	al.,	2014]	 -	 122	±	36	

(155	±	41)	

-	 167	±	38	

(216	±	44)	



[Slangen	 and	 van	 de	 Wal,	

2011,	upd]	

-	 123	±	30	

(153	±	39)	

-	 168	±	32	

(212	±	42)	

	 	397	



3.	Terrestrial	water	storage	change	projections	398	

Terrestrial	water	 storage	 (TWS)	 change	 can	 result	 in	a	positive	 contribution	 to	SLC	399	

due	 to	 a	 net	 transfer	 of	 water	 from	 long-term	 groundwater	 storage	 to	 the	 active	400	

hydrological	 cycle	 and	 eventually	 to	 ocean	 storage	 [Gornitz,	 1995;	 Taylor	 et	 al.,	401	

2012b].	Other	 terrestrial	 components	potentially	 contributing	 to	SLC	 include	water	402	

impoundment	behind	dams	 (which	 can	 cause	 sea-level	 fall),	 drainage	of	endorheic	403	

lakes	(mostly	from	the	Aral	Sea)	and	wetlands,	deforestation,	and	changes	in	natural	404	

water	 storage	 (soil	 moisture,	 groundwater,	 permafrost	 and	 snow).	 Natural	 TWS	405	

change	mostly	varies	with	decadal	climate	variation	with	no	significant	trend.		406	

	407	

Chao	et	al.	[2008]	found	that	the	volume	of	water	accumulated	in	dams	up	to	2010	is	408	

equivalent	 to	 a	 sea-level	 fall	 of	 ~30	 mm.	 However,	 Lettenmaier	 and	 Milly	 [2009]	409	

indicated	that	the	volume	of	silt	accumulated	in	dams	should	be	removed	from	the	410	

estimate,	which	 is	 equal	 to	 ~4	mm	 less	 sea-level	 fall.	 Indeed,	 silting-up	 of	 existing	411	

dams	 may	 already	 be,	 or	 in	 coming	 decades	 may	 become,	 a	 larger	 effect	 on	412	

impoundment	than	construction	of	new	dam	capacity	[Wisser	et	al.,	2013].	413	

	414	

Using	a	global	hydrological	model,	Wada	et	al.,	2012	estimated	that	the	contribution	415	

of	 groundwater	 depletion	 (GWD)	 to	 SLC	 increased	 from	 0.035	 ±	 0.009	mm	 yr-1	 in	416	

1900	to	0.57	±	0.09	mm	yr-1	in	2000	(Figure	4).	These	figures	were	recently	revised	to	417	

lower	values	in	Wada	et	al.	[2016],	who	found	a	sea-level	contribution	of	0.12	±	0.04	418	

mm	 yr-1	 for	 the	 period	 1993-2010	 using	 a	 coupled	 climate-hydrological	 model.	 A	419	

volume-based	study	by	Konikow	 [2011]	also	found	slightly	 lower	values	than	Wada	420	

et	 al.	 [2012]	 using	 direct	 groundwater	 observations,	 calibrated	 groundwater	421	

modelling,	 GRACE	 satellite	 data,	 and	 partly	 extrapolation	 for	 some	 regions.	 Also	422	

combining	 hydrological	 modelling	 with	 information	 from	 well	 observations	 and	423	

GRACE	satellites,	Döll	et	al.	[2014]	estimated	the	SLC	contribution	of	GWD	was	0.31	424	

mm	yr-1	during	2000-2009.	Another	study	 [Pokhrel	et	al.,	2012]	used	an	 integrated	425	

water	 resources	assessment	model	 to	estimate	all	 changes	 in	TWS.	However,	 their	426	

estimate	is	likely	to	overestimate	the	GWD	contribution,	because	the	model	did	not	427	

account	for	any	physical	constraints	on	the	amount	of	groundwater	pumping.		428	

	429	



Satellite	observations	have	opened	a	path	to	monitor	groundwater	storage	changes	430	

in	 data	 scarce	 regions	 [Famiglietti,	 2014].	 Since	 its	 launch	 in	 2002,	 the	 GRACE	431	

satellite	has	been	increasingly	employed	to	quantify	GWD	at	regional	scales	[Rodell	432	

et	 al.,	 2009;	 Famiglietti	 et	 al.,	 2011].	 GWD	 can	 be	 assessed	 after	 subtracting	433	

remaining	 TWS	 changes	 from	GRACE-derived	 total	 TWS	 changes.	 However,	 coarse	434	

spatial	 resolution	 and	 noise	 contamination	 inherent	 in	 GRACE	 data	 hinder	 their	435	

global	application	in	estimating	GWD	[Longuevergne	et	al.,	2010].	436	

	437	

Future	projections	of	the	GWD	contribution	to	SLC	are	subject	to	large	uncertainties	438	

due	 to	 the	 combination	 of	 climate	 projections	 from	 AOGCMs	 with	 future	 socio-439	

economic	 and	 land	 use	 scenarios	 that	 are	 inherently	 uncertain.	 The	 TWS	440	

contribution	 to	 SLC	 is	 projected	 to	 be	 38.7	 ±	 12.9	 mm,	 based	 on	 CMIP3	 climate	441	

model	 output	 [Wada	 et	 al.,	 2012;	 Church	 et	 al.,	 2013].	 Since	 IPCC	 AR5,	 the	442	

groundwater	model	simulation	has	been	updated,	based	on	the	latest	CMIP5	climate	443	

and	 IPCC	 AR5	 socio-economic	 datasets	 (see	 Figure	 5	 for	 the	 latest	 projection	 of	444	

human	water	consumption	from	[Wada	and	Bierkens,	2014]),	but	does	not	provide	445	

the	 GWD	 contribution	 to	 SLC	 yet.	 The	 existing	 21st	 century	 projections	 indicate	446	

increasing	GWD	caused	by	 (1)	 increasing	water	demand	due	 to	population	growth	447	

and	 	 (2)	an	 increased	evaporation	 is	projected	 in	 irrigated	areas	due	 to	changes	 in	448	

precipitation	 variability	 and	 higher	 temperatures.	 Groundwater	 depletion	 will	 be	449	

limited	 by	 decreasing	 surface	 water	 availability	 and	 groundwater	 recharge,	 which	450	

may	cause	groundwater	resources	to	become	exhausted	at	some	time	in	the	coming	451	

century	[Gleeson	et	al.,	2015].	 	452	



453	
Figure	4:	Historical	and	projected	terrestrial	water	contributions	to	SLC	for	a	range	of	454	

processes.	 (a)	yearly	rates	for	1900-2100	(mm	yr-1)	and	(b)	cumulative	contribution	455	

to	SLC	wrt	1900	(mm).		Bars	indicate	1	σ	standard	deviation.	Blue	band	in	(a)	is	based	456	

on	 10,000	 Monte	 Carlo	 realisations	 from	 5	 future	 projections	 of	 groundwater	457	
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depletion,	 individual	 projections	 and	 uncertainties	 shown	 in	 (b)	 (from	Wada	 et	 al.	458	

[2012]).	459	

	460	

461	
Figure	5:	(a)	Projected	global	human	water	consumption	in	2099	(million	m3	yr-1)	and	462	

(b)	 the	 relative	 change	 (%)	 between	 2010	 and	 2099	 (From	 Wada	 and	 Bierkens	463	

[2014]).		464	

	 	465	
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4.	Global	mean	sea-level	projections	466	

Before	we	discuss	total	global	mean	sea-level	projections,	we	briefly	discuss	thermal	467	

expansion,	as	this	is	one	of	the	most	important	contributors	to	global	mean	sea-level	468	

change.	 The	 majority	 of	 the	 net	 energy	 increase	 in	 the	 Earth’s	 climate	 system	 is	469	

stored	in	the	ocean,	increasing	the	ocean	heat	content,	which	leads	to	warming	and	470	

expansion	of	the	ocean	water.	The	resulting	global	mean	thermosteric	SLC	by	2100	is	471	

projected	to	be	0.14	m	(±	0.04	m)	for	the	RCP2.6	scenario,	up	to	0.27	m	(±	0.06	m)	472	

for	the	RCP8.5	scenario	in	IPCC	AR5	[Church	et	al.,	2013].	New	results	are	expected	473	

when	the	output	of	the	sixth	Climate	Modelling	Intercomparison	project	is	released	474	

from	2017	onwards.	475	

	476	

Although	 the	 focus	 in	 sea-level	 science	 is	 gradually	 moving	 towards	 regional	 SLC	477	

projections,	as	this	is	more	relevant	for	coastal	adaptation,	there	are	still	lessons	to	478	

be	learnt	from	the	global	mean	SLC.	The	signal-to-noise	ratio	is	smaller	in	the	global	479	

mean,	 allowing	 a	 focus	 on	 long-term	 changes	 rather	 than	 local,	 short-term	480	

variability.	 As	 a	 result,	 it	 can	 be	 used	 to	 focus	 on	 narrowing	 uncertainties	 in	 the	481	

projections.		482	

	483	

A	 notable	 development	 in	 global	mean	 sea-level	 projections	 since	 IPCC	AR5	 is	 the	484	

use	 of	 a	 probabilistic	 approach	 to	 explore	 uncertainties	 in	 sea-level	 projections	485	

beyond	 the	 likely	 range	 [Jevrejeva	 et	 al.,	 2014;	 Kopp	 et	 al.,	 2014;	Grinsted	 et	 al.,	486	

2015].	In	this	approach,	the	projections	(as	presented	in	IPCC	AR5)	are	blended	with	487	

expert	assessments	of	the	Greenland	and	Antarctic	ice	sheet	contributions	[Bamber	488	

and	Aspinall,	2013]	or	expert	assessments	of	total	SLC	[Horton	et	al.,	2014].	Expert	489	

assessments	 of,	 for	 instance,	 the	 potential	 contribution	 from	 ice	 sheets	 can	 be	 a	490	

useful	 tool	 to	 assess	 the	 uncertainty	 ranges,	 because	 the	 ice	 sheet	 experts	 know	491	

which	 particular	 physical	 processes	 (e.g.	 calving,	 ice	 sheet-ocean	 interaction)	 are	492	

insufficiently	 represented	 in	 their	 ice	 sheet	 models.	 One	 should	 keep	 in	 mind	493	

however	 that	 the	 current	 changes	 in	 the	 climate	 system	 are	 unprecedented	 and	494	

estimates	based	on	intuition,	such	as	expert	assessments,	should	therefore	be	used	495	

with	care.	496	

	497	



Figure	 6	 demonstrates	 the	 difference	 between	 the	 conventional	 and	 probabilistic	498	

approaches	 for	 global	 sea-level	 projections.	 Probabilistic	 projections	 allow	 the	499	

selection	 of	 specific	 probability	 levels	 to	 estimate	 low-probability/high-risk	 SLC	500	

projections,	which	by	definition	are	unlikely	to	be	reached,	but	cannot	be	ruled	out	501	

given	paleoclimate	proxy	information	and	the	limitations	in	process	based	modelling	502	

[Jevrejeva	et	al.,	2014].	They	also	allow	for	the	use	of	probability	distributions	that	503	

do	not	follow	a	Gaussian	distribution,	such	as	skewed	probability	distributions	with	a	504	

longer	tail	to	high	SLC	projections	(Figure	6).	505	

	506	

In	 addition	 to	 the	 studies	 focusing	 on	 uncertainties	 in	 the	 global	 mean,	 a	 new	507	

application	of	the	semi-empirical	approach	was	published	recently	by	Mengel	et	al.	508	

[2016].	Semi-empirical	models	were	developed	after	IPCC	AR4	to	offer	an	alternative	509	

to	more	complicated	physical	models	of	SLC.	They	are	based	on	the	assumption	that	510	

sea	level	in	the	future	will	respond	to	imposed	climate	forcing	as	it	has	in	the	past,	511	

which	may	not	hold	if	potentially	non-linear	physical	processes,	such	as	marine	ice-512	

sheet	instability	or	thermal	expansion,	do	not	scale	in	the	future	as	they	have	in	the	513	

past.	Mengel	et	al.	 [2016]	calibrate	the	semi-empirical	model	for	each	contribution	514	

separately,	 such	 that	 the	 timescales	 of	 each	 contribution	 are	 considered	 in	 the	515	

calibration	of	the	model.	Their	projected	global	mean	SLC	by	2100	is	84.5	cm	(57.4-516	

131.2	cm;	median,	5th	and	95th	percentile)	under	the	RCP8.5	scenario.	This	brings	the	517	

semi-empirical	models	closer	to	the	process-based	IPCC	AR5	estimates	of	74	cm	(52-518	

98	cm)	than	other,	larger,	semi-empirical	estimates	at	the	time	of	IPCC	AR5	[Church	519	

et	al.,	2013,	Table	13.6].	520	

	 	521	



	522	

	523	
Figure	6:	Projected	global	mean	sea-level	rise	by	2100	relative	to	2000	for	the	RCP8.5	524	

scenario	and	uncertainty	(m).	Dark	orange	represents	the	mean	(black	line)	and	likely	525	

range	from	IPCC	AR5	[Church	et	al.,	2013],	 light	orange	represents	the	probabilistic	526	

uncertainties	 from	 Jevrejeva	et	al.	 [2014].	The	vertical	dotted	black	 line	 represents	527	

the	95%	probability	estimate	of	sea-level	rise	in	2100	(1.8	m).	(from	Jevrejeva	et	al.	528	

[2014])	529	

	 	530	



5.	Regional	sea-level	projections	531	

Regional	 SLC	 can	 deviate	 substantially	 from	 the	 global	 mean	 due	 to	 a	 number	 of	532	

processes.	 Firstly,	 oceanic	 and	 atmospheric	 circulation	 changes	 and	 heat	 and	 salt	533	

redistribution	 in	 the	ocean	change	 the	density	of	 the	water	as	well	 as	 redistribute	534	

mass	within	the	oceans	[Yin	et	al.,	2010;	Yin,	2012].	Secondly,	any	redistribution	of	535	

mass	 between	 ocean	 and	 land,	 such	 as	 land	 ice	mass	 change	 or	 TWS,	 affects	 the	536	

gravitational	 field	 of	 the	 earth	 and	 causes	 visco-elastic	 deformation	 of	 the	 Earth’s	537	

crust,	 the	combination	of	which	 results	 in	distinct	 sea-level	patterns	 referred	 to	as	538	

‘fingerprints’	 [Farrell	 and	 Clark,	 1976;	Mitrovica	 et	 al.,	 2001].	 Thirdly,	 regional	 sea	539	

level	 can	be	 influenced	by	 vertical	 land	motion,	 such	as	 tectonic	 activity	or	Glacial	540	

Isostatic	Adjustment	(GIA).	GIA	is	the	present-day	viscous	deformation	of	the	Earth’s	541	

crust	as	a	result	of	ice	melt	after	the	Last	Glacial	Maximum,	which	in	turn	also	affects	542	

the	 gravitational	 field	 [Peltier,	 2004].	 GIA	 can	 have	 large	 local	 effects,	 while	 on	 a	543	

global	mean	scale	the	effect	is	negligible.		544	

	545	

IPCC	 AR5	 [Church	 et	 al.,	 2013]	 adopted	 the	 approach	 from	 Slangen	 et	 al.	 [2012,	546	

2014]	to	compute	regional	sea-level	projections	by	combining	climate	model	results	547	

for	 thermal	 expansion	 and	 circulation	 changes	 with	 offline	 models	 to	 compute	548	

gravitational	 fingerprints	 as	 a	 result	 of	mass	 change	and	GIA.	Using	 this	 approach,	549	

both	IPCC	AR5	and	Slangen	et	al.	[2014]	project	regional	sea-level	values	up	to	20%	550	

larger	than	the	global	mean	in	equatorial	regions	(Figure	7),	while	close	to	regions	of	551	

ice	mass	loss	the	values	can	be	as	small	as	50%	of	the	global	mean,	mainly	as	a	result	552	

of	 the	 gravitational	 effect.	 The	 meridional	 dipole	 in	 the	 Southern	 Ocean	 and	 the	553	

dipole	 in	 the	North	Atlantic	are	associated	with	 the	 response	of	dynamic	 sea	 level	554	

(DSL)	to	increasing	greenhouse	gas	forcing	[Bilbao	et	al.,	2015;	Slangen	et	al.,	2015],	555	

through	wind	stress	and	surface	heat	flux	changes	[Bouttes	and	Gregory,	2014].		556	

	557	

Carson	et	al.	[2015]	used	the	regional	projections	from	Slangen	et	al.	[2014]	to	study	558	

coastal	SLC	and	found	that	coastal	deviations	from	the	global	mean	by	2100	can	be	559	

up	to	20	cm.	The	same	regional	sea-level	projections	were	also	used	for	a	number	of	560	

national	assessments,	such	as	Simpson	et	al.	[2014]	in	Norway	and	Han	et	al.	[2014,	561	

2015]	in	Canada,	where	the	global	GIA	model	estimates	were	corrected	or	replaced	562	



by	 more	 accurate	 local	 GIA	 models	 or	 GPS	 measurements.	 Other	 regional	563	

assessments	were	done	 in	e.g.	Australia	 [CSIRO	and	Bureau	of	Meteorology,	 2015;	564	

Mcinnes	 et	 al.,	 2015]	 and	 the	Netherlands	 [Vries	 et	 al.,	 2014],	which	 build	 on	 the	565	

IPCC-type	regional	sea-level	projections.	However,	to	really	make	a	step	forward	 in	566	

these	 national	 assessments,	 finer	 grid	 resolutions	will	 be	 required	 to	 improve	 the	567	

model	representation	of	ocean	dynamical	processes.		568	

	569	

Using	 a	 probabilistic	 approach,	 Kopp	 et	 al.	 [2014]	 combined	 climate	 model	570	

information	with	 an	 expert	 elicitation	 of	 the	 ice	 sheet	 contributions	 [Bamber	 and	571	

Aspinall,	 2013]	 to	 provide	 complete	 probability	 distributions	 of	 regional	 SLC	572	

projections.	While	 the	mean	SLC	 is	 similar	 to	 IPCC	AR5,	Kopp	et	al.	 [2014]	present	573	

high-end	 estimates	 which	 can	 be	 of	 particular	 interest	 and	 relevance	 for	 coastal	574	

management	 purposes.	 Following	 onto	 this,	 Little	 et	 al.	 [2015a]	 combined	575	

probability	distributions	with	statistical	models	to	estimate	coastal	flooding	risk	due	576	

to	 storm	 surges	 and	 SLC.	 They	 found	 that	 the	 risk	 of	 floods	 at	 the	 US	 East	 coast	577	

substantially	increases	as	a	result	of	SLC	and	changes	in	the	frequency	and	intensity	578	

of	tropical	cyclones.	However,	these	results	were	based	on	SLC	from	climate	models	579	

only	and	do	not	include	the	SLC	as	a	result	of	land-ice	melt	or	TWS,	which	could	lead	580	

to	even	larger	flood	risks.		581	

	582	

To	 study	 the	 sources	 of	 uncertainty	 in	 sea	 level	 from	 climate	models,	 Little	 et	 al.	583	

[2015b]	decomposed	 the	uncertainty	 into	 several	 components:	model	 uncertainty,	584	

internal	 variability,	 scenario	 uncertainty	 and	 a	 model-scenario	 interaction	585	

component.	They	found	that	in	the	global	mean,	model	uncertainty	is	the	dominant	586	

term	in	the	variance,	whereas	the	variance	due	to	scenario	uncertainty	increases	in	587	

the	21st	century	and	variance	due	to	internal	variability	is	initially	large	but	decreases	588	

quickly.	Locally,	the	contribution	of	each	source	of	uncertainty	can	be	very	different,	589	

depending	 on	 the	 local	 magnitude	 of	 internal	 variability	 versus	 the	 response	 to	590	

external	 climate	 forcings.	 Both	 Hu	 and	 Deser	 [2013]	 and	 Bordbar	 et	 al.	 [2015]	591	

showed	that	internal	variability	in	some	locations	can	even	be	sufficiently	large	to	be	592	

the	main	source	of	uncertainty	all	through	the	21st	century.	As	a	result	of	the	large	593	

internal	variability,	the	time	of	emergence	of	SLC	for	DSL	only	[Lyu	et	al.,	2014,	their	594	



Figure	2a]	is	beyond	2100	for	over	80%	of	the	ocean	area.	The	area	with	an	emerging	595	

signal	increases	significantly	(to	almost	100%	by	2080)	when	thermal	expansion,	land	596	

ice,	GIA	and	GWD	are	included.	For	a	further	discussion	of	literature	on	the	effect	of	597	

unforced	variability	on	sea	level	and	detection	and	attribution	of	SLC,	see	Han	et	al.	598	

and	Marcos	et	al.	in	this	issue,	respectively.		599	

	600	

The	effect	of	 freshwater	 input	 into	 the	ocean	as	a	 result	of	 land	 ice	mass	 loss	has	601	

been	 discussed	 in	 a	 number	 of	 studies,	 which	 have	 produced	 climate	 projections	602	

with	 integrated	 realistic	 estimates	 for	 glacier	 and	 ice	 sheet	 melt	 water	 runoff	603	

[Howard	 et	 al.,	 2014;	 Agarwal	 et	 al.,	 2015;	 Lenaerts	 et	 al.,	 2015].	 The	 first	 two	604	

studies	focus	on	the	impact	of	the	freshwater	forcing	on	DSL	and	find,	using	different	605	

models	and	different	scenario’s,	that	the	impact	is	small	(in	the	order	of	several	cm)	606	

compared	to	the	total	SLC	projected	for	the	21st	century.	However,	both	Howard	et	607	

al.	 [2014]	and	Lenaerts	et	al.	 [2015]	 find	 that	adding	 ice	 sheet	 freshwater	 forcings	608	

leads	 to	 a	 slight	 weakening	 of	 the	 Atlantic	 Meridional	 Overturning	 Circulation,	609	

indicating	that	it	is	important	to	include	the	freshwater	forcing	in	climate	models.		610	

	 	611	



	612	

	613	
Figure	 7:	 Relative	 regional	 sea-level	 anomaly	 from	 the	 global	 mean	 change	 (over	614	

1986-2005	and	2081-2100,	%),	based	on	the	CMIP5-RCP4.5	scenario.	(From	Slangen	615	

et	al.	[2014]).		616	

	 	617	



6.	Mediterranean	sea-level	projections	618	

The	Mediterranean	 is	a	semi-enclosed	basin,	 linked	to	the	open	ocean	through	the	619	

strait	 of	 Gibraltar.	 The	 high	 population	 density	 at	 the	 coast	 makes	 this	 basin	620	

particularly	 vulnerable	 to	 future	 SLC.	 Mediterranean	 sea	 level	 is	 influenced	 by	621	

various	 complex	 processes	 such	 as	mass	 fluctuations	 (e.g.	 additional	water	 input),	622	

variation	 in	 the	 density	 structure	 (steric	 effect),	 changes	 in	 circulation,	 waves,	623	

atmospheric	 pressure	 variations	 and	 changes	 in	 the	 hydrographic	 conditions	 of	624	

incoming	Atlantic	water.	These	different	components	contribute	to	SLC	at	different	625	

time	scales,	from	daily	to	interdecadal.		626	

	627	

So	far,	global	climate	modelling	attempts	to	assess	future	SLC	in	the	Mediterranean	628	

did	not	deliver	a	consistent	signal.	Marcos	and	Tsimplis	[2008]	used	projections	from	629	

IPCC	models	to	assess	the	 interannual	variation	of	steric	sea	 level	averaged	for	the	630	

Mediterranean,	under	the	SRES	A1B	scenario,	and	found	that	global	models	do	not	631	

agree	 on	 a	 trend.	 Indeed,	 their	 coarse	 resolution	 does	 not	 enable	 an	 accurate	632	

representation	 of	 important	 small-scale	 processes	 acting	 in	 the	 Mediterranean	633	

region,	which	are	important	to	represent	the	water	masses	of	the	basin	accurately.	634	

Additionally,	AOGCM’s	have	difficulties	to	simulate	a	reasonable	water	exchange	at	635	

Gibraltar,	which	 strongly	 influences	 the	 circulation	 and	 the	 changes	 in	 sea	 level	 in	636	

the	Mediterranean	Sea.		637	

	638	

High	resolution	regional	climate	modelling	is	thus	needed	to	answer	the	question	of	639	

ongoing	Mediterranean	 SLC	 [Calafat	 et	 al.,	 2012].	 In	 addition	 to	 the	 thermosteric	640	

component,	 the	contribution	 from	changes	 in	salinity	has	 to	be	taken	 into	account	641	

for	the	Mediterranean,	since	climate	projections	predict	that	the	basin	will	become	642	

saltier	 in	 the	 future.	 Jordà	 and	 Gomis	 [2013]	 underlined	 that	 the	 saltening	 of	 the	643	

Mediterranean	 has	 two	 counteracting	 effects	 on	 sea	 level.	 Firstly,	 the	 halosteric	644	

effect	 leads	 to	contraction	of	 the	water	and	thus	a	sea-level	 fall	 (-0.10	mm	yr-1	 for	645	

1960-2000).	In	contrast,	the	addition	of	salt	to	the	basin	in	terms	of	mass	leads	to	a	646	

sea-level	 rise	 (+0.12	 mm	 yr-1	 for	 1960-2000).	 As	 a	 simplification,	 these	 two	647	

contradicting	 effects	 can	 be	 neglected	 and	 Mediterranean	 mean	 SLC	 can	 be	648	

restricted	to	its	thermosteric	component.		649	



	650	

Two	 recent	 studies	 have	 analysed	 Mediterranean	 SLC	 in	 future	 scenarios	 with	651	

regional	models.	Carillo	et	al.	[2012]	projected	a	thermosteric	sea-level	rise	from	5	to	652	

7	cm	by	2050	(vs.	1951-2000)	for	the	A1B	scenario.	With	a	6-member	ensemble	of	653	

scenario	simulations,	Adloff	et	al.	[2015]	found	a	larger	sea-level	rise	of	10-20	cm	in	654	

2050	 and	 45-60	 cm	 in	 2099	 (with	 respect	 to	 1961-1990).	 In	 both	 studies,	 a	 large	655	

source	of	uncertainty	is	attributed	to	the	hydrographic	characteristics	of	the	Atlantic	656	

boundary	conditions	prescribed	in	the	Mediterranean	model.	Using	the	ensemble	of	657	

Adloff	 et	 al.	 [2015],	 Figure	 8	 shows	 the	 comparison	 of	 the	 spread	 of	 thermosteric	658	

sea-level	 response	 of	 the	Mediterranean	 linked	 to	 (1)	 the	 choice	 of	 hydrographic	659	

conditions	 of	 Atlantic	 waters	 prescribed	 at	 the	 western	 boundary	 of	 the	660	

Mediterranean,	 and	 (2)	 the	 choice	 of	 the	 socio-economic	 scenario.	 These	 results	661	

confirm	 how	 much	 the	 Mediterranean	 response	 in	 the	 future	 is	 driven	 by	 the	662	

Atlantic	 behaviour	 and	 raises	 the	 importance	 of	 the	 dataset	 (mostly	 AOGCM-663	

derived)	 used	 to	 force	 the	 regional	model	 at	 the	 boundary	 with	 the	 open	 ocean.		664	

Keeping	in	mind	that	the	range	of	changes	in	near-Atlantic	hydrography	explored	in	665	

the	 study	 by	 Adloff	 et	 al.	 [2015]	 is	 much	 smaller	 than	 the	 spread	 among	 CMIP	666	

models,	it	only	gives	a	lower	bound	for	the	range	of	uncertainties	in	Mediterranean	667	

sea-level	projections.	668	

	669	

In	 comparison	 to	 the	 significant	 progress	 at	 the	 global	 scale,	 the	 advances	 at	 the	670	

Mediterranean	 scale	 remain	 small	 in	 terms	 of	 sea-level	 representation	 in	 regional	671	

ocean	 models.	 There	 is	 a	 significant	 lack	 of	 regional	 studies	 dealing	 with	672	

Mediterranean	sea	level,	for	hindcast	periods	as	well	as	for	projections,	and	none	of	673	

them	 account	 for	 a	 proper	 Atlantic	 sea-level	 signal.	 The	 next	 step	 would	 be	 to	674	

include	 this	 missing	 feature	 and	 prescribe	 the	 complete	 sea-level	 signal	 at	 the	675	

Atlantic	western	boundary	 of	Mediterranean	 regional	models.	 This	would	 allow	 to	676	

account	 for	 the	 correct	 evolution	 of	 the	 Atlantic	 ocean,	 which	 pilots	 part	 of	 the	677	

Mediterranean	behaviour.	678	

	679	



	680	
Figure	8:	Cumulative	thermosteric	sea	level	change	w.r.t.	1961-1990	(cm),	averaged	681	

over	 the	 Mediterranean	 Sea	 from	 the	 6-member	 ensemble	 scenario	 simulations	682	

from	 Adloff	 et	 al.	 [2015].	 In	 blue	 the	 uncertainties	 linked	 to	 the	 choice	 of	 the	683	

prescribed	hydrographic	 conditions	of	Atlantic	waters	west	of	Gibraltar,	 in	 red	 the	684	

uncertainties	linked	to	the	choice	of	the	socio-economic	scenario.	685	

	 	686	



7.	Synthesis	687	

The	field	of	sea-level	research	and	all	of	its	contributions	is	moving	quickly,	and	a	lot	688	

of	work	has	been	done	since	IPCC	AR5.	Here,	we	have	reviewed	recent	literature	of	689	

projected	sea-level	contributions	of	ice	sheets,	glaciers	and	terrestrial	water	storage	690	

to	sea-level	change.	Furthermore,	we	discussed	recent	advances	 in	global,	 regional	691	

and	Mediterranean	sea-level	projections.	We	did	not	discuss	contributions	that	have	692	

seen	little	progress	since	IPCC	AR5,	most	notably	the	thermal	expansion	and	ocean	693	

dynamics	 components.	 However,	 these	 components	 are	 expected	 to	 be	 updated	694	

once	the	new	model	runs	of	the	sixth	phase	of	the	Climate	Model	Intercomparison	695	

Project	(CMIP6)	become	available.		696	

	697	

The	most	recent	sea-level	projections	for	the	Greenland	ice	sheet	of	0.01-0.17	m	by	698	

2100	largely	fall	within	the	IPCC	AR5	likely	range	for	the	21st	century.	However,	the	699	

contribution	of	surface	melting	is	larger	and	the	contribution	of	dynamic	discharge	is	700	

smaller	than	in	IPCC	AR5.	Most	projections	for	the	Antarctic	Ice	Sheet	since	IPCC	AR5	701	

limit	 the	 sea-level	 contribution	 to	 0.3	m	 by	 the	 end	 of	 this	 century	 as	 a	 result	 of	702	

dynamic	 discharge	 and	 the	 potential	 onset	 of	 the	 marine	 ice-sheet	 instability.	 All	703	

processes	 combined,	 the	 90%	 uncertainty	 of	 the	 Antarctic	 contribution	 to	 SLC	704	

reaches	 up	 to	 0.37	 m	 by	 2100	 under	 the	 RCP8.5	 scenario.	 However,	 a	 recent	705	

publication	challenges	this	and	projects	changes	of	well	over	1	m	by	2100	under	the	706	

RCP8.5	 scenario.	 All	 publications	 project	 that	 the	 bulk	 of	 SLC	 from	Greenland	 and	707	

Antarctica	will	 however	 occur	 after	 2100	 and	might	 surpass	 several	meters	within	708	

the	next	centuries	to	millennia.		709	

	710	

Glacier	mass	loss	has	been	one	of	the	main	contributors	to	sea-level	rise	in	the	20th	711	

century	and	is	expected	to	remain	an	important	contributor	in	the	next	century.	The	712	

latest	findings,	based	on	updates	of	glacier	outlines	used	in	existing	projections	and	713	

also	 new	glacier	models,	 project	 slightly	 lower	 contributions	 to	 sea-level	 rise	 from	714	

glaciers	 compared	 to	 IPCC	 AR5:	 from	 projections	 around	 ~0.16	 m	 in	 IPCC	 AR5	 to	715	

~0.12-0.13	m	for	the	RCP8.5	scenario	in	more	recent	publications.		716	

	717	



The	 sea-level	 contribution	 of	 changes	 in	 terrestrial	 water	 storage	 (TWS)	 has	 been	718	

difficult	 to	 estimate	 from	 observations	 in	 the	 past,	 but	 satellite	 observations	 now	719	

allow	for	better	monitoring	of	changes	in	land	water	storage.	Groundwater	depletion	720	

is	 projected	 to	 increase	 due	 to	 growing	 water	 demand	 as	 a	 result	 of	 population	721	

growth	and	increasing	evaporation.	The	projected	contribution	of	TWS	is	38.7	±	12.9	722	

mm	for	the	period	2010-2100	(ensemble	mean	±	1	σ).	723	

	724	

In	 projecting	 global	 mean	 SLC,	 the	 focus	 has	 turned	 towards	 providing	 better	725	

uncertainty	 estimates	 by	 using	 probabilistic	 methods	 and	 skewed	 uncertainty	726	

distributions.	 This	 may	 lead	 to	 better	 estimates	 of	 the	 low-probability/high-risk	727	

events	 in	 a	 changing	 climate.	 So	 far,	 these	 improved	 uncertainty	 distributions	 are	728	

based	 on	 expert	 elicitations,	 but	 as	 models	 evolve	 hopefully	 the	 uncertainty	729	

estimates	will	be	based	on	modelling	of	physical	processes	in	the	near	future.		730	

	731	

Although	significant	advances	have	been	made	in	recent	years	in	projecting	regional	732	

SLC,	 there	 are	 still	 a	 number	 of	 challenges	 that	 remain.	 The	 modelling	 and	733	

understanding	 of	 the	 ocean	 dynamical	 processes	 and	 incorporation	 of	 freshwater	734	

forcing	as	a	result	of	ice	sheet	melt	in	climate	models	is	an	on-going	process.	Ideally,	735	

the	surface	mass	balance	modelling	of	the	ice	sheets	and	glaciers	would	become	part	736	

of	the	AOGCM’s	to	obtain	consistent	results	and	include	feedbacks	between	the	ice	737	

sheets	and	glaciers	with	the	rest	of	the	climate	system.		738	

	739	

Ideally,	 sea-level	 change	 should	 be	 estimated	 on	 a	 national	 level,	 which	 is	 what	740	

coastal	planners	are	interested	in,	but	the	spatial	resolution	of	the	current	sea-level	741	

projections	 is	 still	 relatively	 coarse.	 To	 provide	 decision	 makers	 with	 better	 local	742	

estimates,	models	will	need	to	use	finer	grid	resolutions	to	account	for	local	effects,	743	

such	 as	 coastal	 evolution	 and	 sediment	 transport.	 The	 increasing	 number	 of	 GPS	744	

measurements	is	also	useful	for	local	cases,	as	they	give	better	estimates	of	vertical	745	

land	 motion,	 which	 can	 be	 large	 locally.	 In	 addition,	 new	 approaches	 now	 offer	746	

possibilities	to	link	changes	in	flood	risk	and	sea-level	extremes	to	regional	SLC.		747	

	748	



Recent	 regional	 modelling	 studies	 in	 the	 Mediterranean	 have	 pointed	 out	 the	749	

relevance	of	the	Atlantic	signal,	which	largely	contributes	to	the	Mediterranean	sea-750	

level	 variability	and	 represents	one	of	 the	main	 sources	of	uncertainty	 in	 sea-level	751	

projections	 of	 the	 basin.	 On-going	 regional	 simulations	 are	 starting	 to	 tackle	 this	752	

issue	and	show	that	the	prescription	of	sea-level	information	from	the	near-Atlantic	753	

at	 the	 lateral	 boundary	 significantly	 improves	 the	 Mediterranean	 sea-level	754	

representation	 at	 basin-scale	 for	 hindcast	 periods.	 This	 will	 be	 added	 in	 future	755	

scenario	simulations	of	the	Mediterranean	Sea.	756	

	 	757	
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