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Highlights:

 BeWhere, a MILP optimization model, simulates energy systems in the Alpine Region.

 Power-to-gas and power-to-liquid enable large scale integration of renewables.

 Power-to-gas and power-to-liquid allow decarbonizing diverse CO2–emitting sectors.

 Scenarios pertaining to the impact of carbon policy and fossil prices investigated.
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9 Abstract:

10 Large-scale deployment of renewable energy sources (RES) plays a central role in reducing CO2 emissions 

11 from energy supply systems, but intermittency from solar and wind technologies presents integration 

12 challenges. High temperature co-electrolysis of steam and CO2 in power-to-gas (PtG) and power-to-liquid 

13 (PtL) configurations could utilize excess intermittent electricity by converting it into chemical fuels. These 

14 can then be directly consumed in other sectors, such as transportation and heating, or used as power 

15 storage. Here, we investigate the impact of carbon policy and fossil fuel prices on the economic and 

16 engineering potential of PtG and PtL systems as storage for intermittent renewable electricity and as a 

17 source of low-carbon heating and transportation energy in the Alpine region. We employ a spatially and 

18 temporally explicit optimization approach of RES, PtG, PtL and fossil technologies in the electricity, 

19 heating, and transportation sectors, using the BeWhere model. Results indicate that large-scale 

20 deployment of PtG and PtL technologies for producing chemical fuels from excess intermittent electricity 

21 is feasible, particularly when incentivized by carbon prices. Depending on carbon and fossil fuel price, 

22 0.15−15 million tonnes/year of captured CO2 can be used in the synthesis of the chemical fuels, 

23 displacing up to 11% of current fossil fuel use in transportation. By providing a physical link between the 
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24 electricity, transportation, and heating sectors, PtG and PtL technologies can enable greater integration 

25 of RES into the energy supply chain globally.  

26 Keywords: Renewable energy; power-to-gas; power-to-liquid; energy systems optimization; spatial and 

27 temporal modelling.

28 1. Introduction

29 In order to mitigate climate change and reduce GHG emissions, several technologies are being developed 

30 and deployed. Notably, carbon capture and sequestration (CCS) is being developed as a post-combustion 

31 remedy for fossil fuel based energy processes [1], and for bio-energy processes (in the so-called BECCS 

32 configuration) in the context of negative emissions [2–4]. Other mitigation techniques include 

33 substitution of fossil fuels with carbon-free or low-carbon energy technologies (such as solar, wind, 

34 geothermal, hydro, biomass etc.). Decarbonization of the energy sector by increasing the share of 

35 renewables is an essential step towards the deployment of low-carbon and sustainable energy systems. 

36 However, power generated from renewable energy sources (RES), in particular from solar and wind, is 

37 affected by the intermittency of resources. In addition to intermittency, the temporal and spatial 

38 mismatch between availability of resources (wind and insolation) and energy demand (consumers) 

39 creates further challenges. As a result, large-scale deployment of solar and wind technologies could 

40 impact the reliability of power systems. Large-scale storage systems, such as batteries, compressed-air, 

41 flywheel and pumped-hydro, could help even out this supply-demand mismatch. Moreover, most RES 

42 produce electricity, which means that they can either displace fossil fuel usage in the electricity sector or 

43 power electrified transportation vehicles. This could limit the role of most RES in economy-wide 

44 decarbonization of energy supply systems, which emit CO2 from a wide range of sources outside of the 

45 electricity sector. 

46 The main focus of this work is to examine the impacts of temporal and spatial intermittency of RES on 

47 power dispatch systems and how excess intermittent electricity can be captured via power-to-gas and 

48 power-to-liquid (PtG and PtL) processes for use in other energy sectors (such as transportation and 

49 heating). In this regard, the PtG and PtL technologies can offer benefits that would make it a useful 

50 addition to conventional storage technologies. 
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51 Here, we investigate the impact of carbon policy and fossil fuel prices on the economic and engineering 

52 potential of PtG and PtL systems as storage for intermittent renewable electricity and as a source of low-

53 carbon heating and transportation energy in the Alpine region. The Alpine region is a pertinent study 

54 region as it has the potential for diverse RES generation, including biomass, solar, wind and hydropower, 

55 and is subject to the European Union’s CO2 emissions regulations. Despite several reports examining the 

56 role PtG and/or PtL might play in low-carbon energy systems (e.g., [5–9]), to the knowledge of the 

57 authors no prior work has used high-resolution energy planning models to assess PtG and PtL 

58 deployment. Prior analyses of PtG and PtL deployment typically assume a fixed level of RES integration 

59 (e.g., [6,10,11]) or evaluate these technologies using a techno-economic assessment, rather than 

60 systems analysis. In contrast, we evaluate PtG and PtL technologies using a high-resolution decision 

61 support model on a regional level. Specifically, we employ a spatially and temporally explicit optimization 

62 of RES, PtG, PtL, and fossil technologies in the electricity, heating, and transportation sectors. This work 

63 has broad relevance to efforts to introduce more renewable energy into the electricity sector, and the 

64 deep decarbonization of energy systems.

65 2. Power-to-gas and Power-to-liquid configurations

66 As discussed in the introduction, PtG could play a central role in enabling intermittent renewables to 

67 have a greater share of energy supply. Intermittent renewables generate electricity, and PtG and PtL 

68 processes can allow RES to produce fuels for other sectors such as transportation and heating. Figure 1 

69 illustrates the power balancing and long-term storage concepts investigated in this paper. In this process, 

70 the energy over-generated from the power system can be stored in gas/liquid fuels via electrochemical 

71 reduction of gas-phase H2O and CO2. The reduced gas, similar in composition to synthetic gas (otherwise 

72 known as syngas), can then be used for the synthesis of higher-quality transportation/gas fuels. 

73
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74

75 Figure 1. Schematics of the power balancing and long-term storage concept PtG and PtL, which can 

76 enhance renewable energy integration via use of excess intermittent electricity in the heating, 

77 transportation and power sectors.

78 2.1. Solid-oxide electrolysis cell

79 Electrolysis is central to the PtG and PtL concepts. Electrolysis is an electrochemical process in which a 

80 direct electric current is passed between two electrodes through an ionized medium (an electrolyte) to 

81 deposit positively and negatively charged ions onto their respective electrodes. Electrolyzers can be 

82 broadly classified into low- and high-temperature processes with conversion efficiencies ranging from 60 

83 to 80% of electricity stored as chemical energy in hydrogen or syngas [8,11,12].

84 High-temperature solid oxide electrolysis cells (SOECs) are gaining interest, as they can be operated at 

85 temperatures in the range of 700–1000°C, meaning that part of the energy required to electrochemically 

86 dissociate H2O (in the case of water electrolysis) or H2O(g) and CO2 (in the case of co-electrolysis) is 

87 supplied as heat energy, thereby minimizing energy input in the form of electricity [13]. Thus, the 

88 performance of high-temperature SOECs has the advantage of both thermodynamic efficiency and faster 

89 reaction rates [14,15]. The heat required can be externally supplied via heat exchangers in the case of a 

90 low current density operation, or it can be internally generated using the inevitable ohmic cell resistance 
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91 when the SOEC is operated at high current densities in order to maintain adequate production rates of 

92 H2 or syngas.

93 In this context, the high-temperature co-electrolysis of steam and CO2 (e.g., [13,16–24]) using SOECs can 

94 offer an attractive option for converting excess electricity into liquid/gas fuels that can be directly used 

95 in the transportation, heating or power sectors. Co-electrolysis adds flexibility to the energy supply chain 

96 by creating links among the different energy sectors. Furthermore, it allows large volumes of CO2 to be 

97 recycled, which can play a significant role in decarbonizing the energy supply system.

98 The co-electrolysis characteristic of SOECs is of substantial importance here. This is because co-

99 electrolysis generates products that can be readily upgraded into liquid/gas fuels with existing market 

100 infrastructure in a one-step process. In principle, syngas can be produced in a two-step process, 

101 electrolysis of H2O to produce H2 followed by conversion of H2-CO2 into syngas through a reverse shift 

102 water-gas reaction. In subsequent stages the syngas is catalytically upgraded into methane (the Sabatier 

103 process) or higher grade hydrocarbons [8,13]. In contrast, the co-electrolysis process reduces the process 

104 steps by directly depositing high quality syngas (mainly H2 and CO) on the cathode via simultaneous 

105 electrochemical reduction of H2O and CO2. In so doing, the gas deposited on the anode is pure O2, which 

106 could also bring additional value to the process. In this study, however, no revenue is considered from 

107 O2. Furthermore, the operation mode of SOECs can be altered to produce different types of syngas, for 

108 instance, by controlling the composition of the feed stream to the SOECs the quality of the syngas can be 

109 tailored to enhance catalytic conversion into synthetic fuels at later stages [14].

110 Recent development and performance improvements have demonstrated efficient co-electrolysis of 

111 H2O(g) and CO2 in SOECs. The ohmic resistance as well as the cell degradation rates and mechanisms are 

112 similar, as in the electrolysis of steam alone [17,21]. In the light of such SOEC developments, an overall 

113 conversion efficiency of 70% for PtL (the ratio of the calorific value of the liquid fuel produced, such as 

114 methanol, to power input) [6,25] and 80% for PtG (the ratio of the calorific value of methane produced 

115 to power input) [26] are possible. Unless stated otherwise, in this work an overall efficiency of 70% is 

116 assumed for both PtG and PtL technologies. This efficiency refers to the calorific value of the final 

117 product (liquid methanol in the case of PtL and methane gas in the case of PtG) and the power input to 

118 the process.
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119 3. BeWhere Alps model 

120 We use the BeWhere model, initially developed by IIASA and the Luleå University of Technology. 

121 BeWhere is a geographically explicit cost optimization model employing mixed integer linear 

122 programming (MILP), written in the General Algebraic Modeling System (GAMS) and using CPLEX as a 

123 solver. Earlier applications of the model were focused on planning and localization of bioenergy systems. 

124 So far, several researchers have demonstrated its application under different contexts. These include, for 

125 instance, methanol via biomass gasification [27–29], second generation biofuels on a EU scale [30,31], 

126 cost-effective CO2 emission reduction through bioenergy [32,33], and polygeneration in different 

127 locations [34–37]. 

128 The BeWhere Alps model is an enhanced version which includes other forms of RES in addition to 

129 biomass, namely solar, wind and hydropower. This work particularly focuses on the application of 

130 BeWhere to investigate the impact of carbon and fossil fuel prices, as well as the impact of temporal and 

131 spatial intermittency of RES, when planning coordinated decarbonization of the energy supply system in 

132 the Alpine Region. 

133 3.1. Set-up of the optimization model

134 The overall objective is to minimize the total cost of the complete energy supply chain including the cost 

135 of CO2 emissions, according to the following expression:

136  (1))costemissions(costfmin
c

CO
c

CO
c

chainsupply 
c

22 

137 The model satisfies different sets of constraints in relation to power generation mix: those that ensure 

138 the power demand is met at all hours in all the regions; those that ensure the share of fossil-based 

139 power is generated within the country in which it is used; and those that ensure prioritization of RES-

140 based power use. The first set of constraints satisfies power demand using the least expensive options 

141 based on generation and existing transmission availability. The second set of constraints prevents 

142 transmission of fossil-based power (from baseload coal and dispatchable natural gas plants). The third 

143 set of constraints prioritizes the use of RES-based power generation; that is, investment in RES only 

144 starts when it becomes feasible to directly satisfy power demand.
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145 The optimization procedure considers the transmission to be a direct power flow balance. There is no 

146 attempt to mimic the voltage phase shift, which is highly nonlinear. However, the power flow balance 

147 approximation is a reasonable representation for a high-voltage direct-current (HVDC) transmission 

148 network [38]. The use of an HVDC transmission instead of high-voltage alternating-current (HVAC) is 

149 because of the nonlinear nature of HVAC, which significantly complicates the optimization. However, the 

150 HVDC transmission can be thought of as an approximation of HVAC in terms of power flow because it 

151 includes electrical losses and describes transmission at a high level.

152 The objective function, (1), accounts for the total cost of generation, transmission and storage of an 

153 electric power system for a selected time frame. It is assumed that there is only one type of dispatchable 

154 generator (natural gas combined cycle) as the aim is to consider a high penetration- level and variable-

155 generation system. Cost optimization is superior to a load-matching optimization for real world 

156 applications, as cost is a primary driver of incorporation of variable generation into an electric power 

157 system.

158 Weather data are used for estimating the wind and solar photovoltaic (PV) power outputs, as discussed 

159 further in Sections 3.4.3. and 3.4.4. The natural gas plants are assumed to be back-up energy 

160 generation for when RES-based power cannot meet electrical demand. Our basic approach is to take 

161 the salient variables (wind speed, solar irradiance, etc.) from a numerical weather prediction model and 

162 process them through a model that mimics the behavior of a wind turbine and solar PV panels. The 

163 output takes into account the engineering constraints of the technologies as well as weather.

164 3.2. Carbon pricing and fossil fuel market scenarios 

165 Carbon pricing plays central role in enabling greater share of renewables in the energy system. In this 

166 work, the BeWhere model is used to investigate the influence of carbon policy (CO2 prices) and fossil fuel 

167 prices on the mix of energy supply. Fossil fuel prices often introduce a large degree of uncertainty into 

168 long-term planning of energy systems, while policies regarding CO2 emissions vary greatly among 

169 countries. Our approach encompasses this range of uncertainty through scenario analysis. With this in 

170 mind, the model is run over a range of 0−200 €/tonne of CO2 at an interval of 50 €/tonne. In turn, each 

171 interval is evaluated for different fossil fuels prices (base case, medium, high). The base case is assumed 
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172 at 100 €/tonne of CO2 and current market prices for fossil fuels. Table 1 introduces the scenarios 

173 considered in this study.

174 Table 1. Scenario matrix for carbon pricing and fossil fuel market factors 

Carbon pricing factors

Scenario zero low base-case medium high

base-case S{0, 1}a S{0.5, 1} S{1, 1} S{1.5, 1} S{2, 1}

medium S{0, 1.5} S{0.5, 1.5} S{1, 1.5} S{1.5, 1.5} S{2, 1.5}
Fossil fuel price 

factors (FFPs)
high S{0, 2} S{0.5, 2} S{1, 2} S{1.5, 2} S{2, 2}

175 aSet of factors denote Scenario {Carbon pricing factor, FFPs}

176 S{1, 1} represents base case scenario, €100/tCO2 and market prices for fossil at the reference time. 

177 S{1, 1.5} and S{1, 2} represent for base case carbon price and  FFPs 50 and 100% higher than the current 

178 market prices, respectively. 

179 S{1.5, 1} and S{2, 1} represent for base case FFPs and carbon prices 50 and 100 % higher than the base 

180 case, respectively.

181 S{1.5, 1.5}, S{1.5, 2}, S{2, 1.5} and S{2, 2} represent for scenarios where FFPs and carbon prices are 50 and 

182 100% higher than their base case values, simultaneously and alternately. These price sets illustrate 

183 realistic future scenarios as FFPs and carbon price are intrinsically related parameters. 

184 3.3. System boundaries and geographic resolution

185 The boundaries of the model are limited to the Alpine region, which includes parts of seven European 

186 nations, as shown in Figure 2. Liechtenstein is excluded from the analysis because of its small size. In the 

187 model, the entire Alpine region is divided into about 3,000 grid cells with a spatial resolution of 0.1 

188 degree (approximately 10x10 km). 

189 During the optimization process, each grid cell essentially represents demand area (in terms of heating 

190 and transportation), supply area (in terms of resource availability such as biomass, river catchment, 

191 insolation and wind) and potential locations for new power plant installation. 



ACCEPTED MANUSCRIPT

9

192

193 Figure 2. The Alpine region by country and the spatial grid cells used for energy demand and supply.

194 3.4. Supply chain

195 The energy supply chain considered in this study is comprised of different technologies and resources. 

196 The model includes biomass (for producing electricity, heat and biofuels), hydropower (existing plants 

197 and the potential for new installations), solar PV and wind. The data collection and processing methods 

198 for every resource considered are described in detail below. The costs of technologies are documented 

199 in Appendix A.

200 Common to all technologies are the different environmental protections in the Alpine Region, such as 

201 national parks and reserves, regional parks, United Nations Educational, Scientific and Cultural 

202 Organization (UNESCO) reserves and world heritage sites [39]. This limits resources and constrains 

203 facility locations. The different levels of protection are represented in the model according to their 

204 priority order (high, medium, low and no protection). Difficulties related to the harvesting of resources 

205 (e.g., biomass) and to the installation of power plants (e.g., combined heat and power plant (CHP), wind, 

206 solar and hydro) due to elevation and landscape profiles put further limitation on amount of energy that 

207 can be generated. As a result, locations beyond 2000 m in elevation (for a low environmental restriction 

208 scenario) and 1200 m (for a strict environmental protection scenario) are excluded from the analysis.  
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209 3.4.1 Bioenergy

210 Different biomass feedstocks (e.g., forest residue, agricultural residue) and conversion technologies (e.g., 

211 biomass steam turbines, combined heat and power, and integrated gasification combined cycle (bIGCC)) 

212 can be used for the production of bioenergy. In this work, the biomass feedstock refers to forest residue 

213 which is assumed to be converted into heat and power via bIGCC technology. Two bIGCC plant sizes with 

214 different heat-to-power output ratios are considered for biomass conversion. The details of the 

215 technologies and the associated costs are provided in Appendix A, Table A1.

216 The potential supply of biomass in each grid cell is estimated based on the share of net primary 

217 production that is forest and the annual increment of forest biomass. A brief description of the 

218 methodology can be found in [33,35,40]. Here, the annual biomass increment in each grid cell is explicitly 

219 introduced into the model. No distinction is made between different tree species. The available forest 

220 biomass is assumed to have a density of 500 kg/m3 (dry weight), with a heating value of 18.5 GJ/tonne 

221 (lower heating value (LHV) of dry feedstock) and a moisture content of 55%. Hourly energy production 

222 estimates are obtained by averaging the annual potential over the total number of hours in a year. 

223 In the model, forest residues can be transported to production plants in three ways: truck, train or boat. 

224 The data for the cost of transportation and related emissions used in the model are summarized in 

225 Appendix A, Table A2. The transportation cost is composed of fixed (to account for loading and 

226 unloading, independent of distance) and variable (to account for distance) cost components. A network 

227 map of roads and rails is used to estimate the distance between supply and production plants. Details on 

228 transport data processing can be found in [41].

229 3.4.2. Hydropower

230 Our representation of hydropower includes both existing capacities and the potential for new 

231 installations. Hydropower potential is estimated based on river catchment areas outside the protected 

232 regions of the Alps. Annual power production potentials are estimated based on river flow rates and 

233 mean head data acquired from [42]. In the model, hourly generation potential from hydropower is 

234 obtained by averaging the annual estimates over the total number of hours in a year. At this stage, 

235 seasonal variations in the amount of water are not considered. The costs assumed for new hydropower 

236 plants are documented in Appendix A, Table A3. 
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237 3.4.3. Solar energy 

238 The hourly capacity factors and capacity limits for solar energy are derived from high-resolution global 

239 climate reconstruction data. Solar insolation data are collected from an open access database developed 

240 at Princeton University [43]. Hourly solar insolation estimates from the year 2010 are processed at a 3-

241 hourly temporal resolution and a 0.25 degree spatial resolution.

242 In order to estimate solar power output from solar insolation, a conversion efficiency of 15% is assumed. 

243 Capacity factors for 2010 are taken as the ratio of derived power to maximum power output in the year 

244 2010, for each hour in each grid cell. Capacity limits are taken as the maximum power output in 2010. 

245 Data are projected for a 0.1 degree spatial resolution in order to match with the resolution used in this 

246 work, based on the grid cell with the largest overlap. The solar capacity factors are sampled for the same 

247 hours as demand, which is described in a subsequent section. The costs associated with the solar PV 

248 technology considered in this work are reported in Appendix A, Table A3.

249 3.4.4. Wind energy

250 Like solar, the hourly capacity factors, and capacity limits, for wind energy are derived from the high-

251 resolution global climate reconstruction data from Princeton University [43]. Hourly wind speed from the 

252 year 2010 is used. Wind speed estimates in areas with high surface roughness, like the Alps, are very 

253 uncertain. As such, derived capacity factors should be approached with caution.

254 The wind energy harvested per unit area which is swept by the turbine rotor is derived using the 

255 methodology of the Alpine windharvest Partnership Network [44]. To find the hourly energy output, a 

256 specific curve with maximum power of 450 W/m2 at a rated cut-out speed is assumed, based on the 

257 Austrian Wind Potential Analysis [45]. In order to derive power output in each grid cell, the wind turbines 

258 are assumed to be spaced 11 lengths apart. Capacity factor, capacity limits, sampling and interpolation 

259 methods are identical to those used in deriving solar inputs. Likewise, the costs associated with the 

260 assumed wind energy technology are reported in Appendix A, Table A3.

261 3.4.5 Natural gas and coal plants representation

262 In the model, any deficit in power supply is assumed to be balanced with dispatchable natural gas plants 

263 that mimic actual plant operations through a set of regulating ramping constraints. The ramping 
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264 constraints are implemented such that the aggregated output of the dispatchable natural gas plants in 

265 the Alps region reaches a maximum (90% of the demand in the region) or falls down to zero within 120 

266 minutes. Furthermore, the fossil model includes a coal fired base-load to cover 10% of the demand in 

267 each country in the region.

268 Moreover, the costs associated with fossil fuel based energy use are accounted in terms of the market 

269 values of the energy carriers, as reported in Table B1. Carbon emission intensities of fossil-based energy 

270 use represent actual figures for all countries that make up the Alps as summarized in Table C1.

271 3.5. Energy demand in the Alpine Region

272 3.5.1. Power demand in 2010

273 The hourly power demand for each country in the Alpine region is derived from the European Network 

274 of Transmission System Operators for Electricity (ENTSO-E). ENTSO-E reports historical demand at the 

275 country level†. The year 2010 is chosen, which is consistent with the estimates of wind and solar 

276 resources within the Alpine Region.

277 The hourly demand profiles to the portion of each country within the Alpine Region are scaled based on 

278 the fraction of the population living in the Alps. This assumes that per capita hourly demand is constant 

279 within a country. When data is unavailable in a specific hour, the data from the previous hour is used, or 

280 the same hour in the previous day, depending on data availability. 

281 To reduce computational complexity, the demand is sampled every three hours from the peak and 

282 median day in each month. This is consistent with sampling methods from previous high-resolution 

283 electricity sector planning models [46]. In total, 192 hours are sampled throughout the year 2010 (8 

† Available at https://www.entsoe.eu/data/data-portal/consumption/Pages/default.aspx
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284 hours/day, 2 days/month and 12 months/year). Figure 3 shows the profile of the power demand of the 

285 year 2010 for the sampled hours.

286

287 Figure 3. Aggregated hourly power demand of the Alpine Region in 2010 at the sampled hours.

288 To represent the entire year, the sampled days are weighted to represent multiple days by fixing peak 

289 days to represent one day of the month and median days to represent the remaining days in the month 

290 (i.e., days in a month minus one) [46,47]. Doing so ensures peak conditions are included in the power 

291 constraint while economic assessment is dominated by the typical demand profile, as peak demand 

292 occurrences are rare [47]. Accordingly, all samples (i.e. 8 samples per selected day) represent three 

293 hours each, peak days represent a day of the corresponding month and median days represent the 

294 remaining days in the month. This procedure is included in the model by means of a time-indexed 

295 weighting parameter.

296 3.5.2. District heating and transportation fuel demand

297 A distribution system for fossil, biofuels and gas/liquids is assumed to exist or be built within the demand 

298 areas. The demand in each area is estimated by introducing fuel consumption parameters for heating 

299 and transportation that are scaled by population. These parameters in turn refer to the fuel consumption 

300 data of the country to which the demand area belongs to. The data for carbon emission intensities in 

301 relation to fossil fuel use in the district heating and transportation sectors are summarized in Appendix C, 

302 Table C1. 
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303 Furthermore, the year is divided into three time periods of equal length so as to harmonize with seasonal 

304 variations in heating demand (e.g., [31]). Fuel demands per capita per unit time for heating and 

305 transportation for each country are summarized in Table 2. 

306 Table 2. Heat (seasonal, denoted by m) and transport fuel demand data used in this study [31]

Country Heat (GJ/capita/season) Transport (GJ/capita/year)

m1 m2 m3

Austria 12.1 1.7 0.8 16.4

France 49.0 26.0 6.7 114.6

Germany 163.3 86.6 22.4 192.2

Italy 16.3 2.4 1.1 67.1

Slovenia 39.4 5.7 2.7 69.5

Switzerland 13.4 7.1 1.8 40.5

307 3.6. CO2 sources in the Alpine Region

308 Other than water, a significant portion of the feed stream to the high-temperature SOECs is CO2. 

309 Preferably, CO2 should be attained at low cost, high purity and flow rates large enough to match 

310 electricity over-generation from the power sector at any given time and location. Different sources can 

311 be identified as potential CO2 providers. Commonly discussed sources include CO2 from fossil power 

312 plants, CO2 from biomass based CHPs and processes, CO2 from other industrial processes and CO2 from 

313 air. In this work, all types of power generation technologies that emit CO2 within the Alpine Region are 

314 analyzed. No classification is made on plant type or on how the CO2 is acquired. Direct air capture is 

315 excluded, as it is likely to be cost-prohibitive in the near-term [48]. 

316 Consequently, it is necessary to identify power plants that emit CO2 in the Alpine Region. These locations 

317 are identified from the Carbon Monitoring for Action (CARMA) database [49] by overlapping a 

318 geographic map of the Alpine Region and a location map of CO2 emitting industries in ArcGIS. A total of 

319 136 potential CO2 sources are identified within the region, see Figure 4. The CARMA database includes 

320 future projections for CO2 emissions from the industrial sites, which is used in this work to constrain 

321 production capacities of PtG and PtL plants.



ACCEPTED MANUSCRIPT

15

322 The identified CO2 sources are potential locations for PtG and PtL plants. Fixing the location of PtG/PtL 

323 plant simplifies the optimization. Transmitting excess electricity from the power grid via existing 

324 transmission lines is likely easier than transporting CO2 to locations along the power grid. 

325

326 Figure 4. Grid map of the identified CO2 sources in the Alpine Region.

327 4. Results and discussion

328 The results and discussions presented in this section are reflections of the 192 sampled hours and refer 

329 to the sets of prices for carbon and fossil fuels introduced in Table 1. All annual estimates are weighted 

330 according to the scheme described in Section 3.4. 

331 4.1. Power generation mix

332 Figures 5−7 present the evolution of the resulting power generation mix at the sampled hours for all sets 

333 of carbon prices and FFPs described in Section 3. It should be noted that the contribution of base-load 

334 coal plants (which provide 10% of the demand in each region) and existing hydropower plants (which 

335 provide about 18% of the total demand of the entire region) remains constant in all the cases. 

336 Consequently, the variations in carbon price and fossil market values mainly affect the contribution of 

337 intermittent RES (in this case solar and wind energy) and, to a much lesser extent, the contribution of 

338 new hydropower and biomass plants.
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339 For instance, at zero carbon price and base-case FFPs the power generation is dominated by natural gas 

340 with minor contributions from new hydropower (about 9%), biomass (1.3%) and wind energy (0.25%), 

341 Figure 5−S{0, 1}. When the carbon price was increased at an interval of 50 €/tonne CO2, the share of 

342 intermittent RES (particularly solar) progressively increases to 17% of the power demand at a carbon 

343 price of 200 €/tonne CO2 (Figure 5). On the other hand, when the FFPs are increased by 50 and 100% of 

344 their base case values and at zero carbon price, the contribution from solar gradually increases to 11% 

345 (Figure 6−S{0, 1.5}) and 16% (Figure 7−S{0, 2}) of the power demand, respectively. Furthermore, at FFPs 

346 50% higher than the base case and zero carbon price the contribution of solar is fully used in the power 

347 grid (Figure 6-S{0, 1.5}), whereas at FFPs 100% higher than the base case, periods when generation 

348 exceeds demand start to appear even at zero carbon price (Figure 7-S{0, 2}). In all the cases the 

349 contribution of wind energy is relatively small.

350
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351

352 Figure 5. Aggregated hourly power dispatch at the sampled hours for carbon prices in the range of 0−200 

353 €/tonne and base case FFPs. Over-generation—the power available for PtG and PtL—is represented by 

354 the area above the demand.
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355

356 Figure 6. Aggregated hourly power dispatch at the sampled hours for carbon prices in the range of 0−200 

357 €/tonne and at medium FFPs. Over-generation—the power available for PtG and PtL—is represented by 

358 the area above the demand.
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359

360 Figure 7. Aggregated hourly power dispatch at the sampled hours for carbon prices in the range of 0−200 

361 €/tonne and at high FFPs. Over-generation—the power available for PtG and PtL—is represented by the 

362 area above the demand.

363 During the sample year, the total power demand was 530 TWh, of which—depending on the carbon and 

364 fossil prices—about 28−53% is met with RES and the remainder with fossil fuel, see Figure 8a. The low 

365 and high ends of the range correspond to scenarios S{0, 1} and S{2, 2}, respectively. Figure 8b shows the 

366 fraction of renewable power that is directly fed to the power grid, the remainder of the generated 

367 renewable power is either used for PtG/PtL or curtailed. Accordingly, the fraction decreases with 

368 increasing carbon price and FFPs. This behavior can be explained by the fact that at high carbon price 
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369 and/or high FFPs the share of intermittent RES in the generation mix is high, which increases occurrences 

370 when supply exceeds demand. 

371

372 Figure 8. The fraction of power generated from RES that is directly fed to power grid to satisfy demand, a, 

373 and its corresponding share of the total RES generation, b.

374 4.2. Power transmissions

375 The model also uses existing transmission capacities among the regions studied. The transmission 

376 capacities are adopted from the European Network of Transmission System Operators (ENTSO-E). The 

377 net annual power transmissions for the  investigated sets of  carbon and fossil prices are presented in 

378 Figure 9. At a low carbon price and base case FFPs the contribution of intermittent renewables to the 

379 generation mix is insignificant  and, therefore, the transmitted power is dominated by hydroelectric. At 

380 high carbon and fossil fuel prices, the contribution of intermittent electricity increases to 40% for S{2, 2}, 

381 of which about 60% is directly fed to the grid, reducing power transmissions, see Figure 9c. The reason 

382 for the shift in transmissions trend is due to the increase in solar power generation in net power 

383 importing regions, in this case Germany and Italy, as shown in Figure 9. It should be noted that the 

384 increase in solar generation reduces the magnitude of power transmissions as a result of the RES 

385 prioritzation constraints that ensure that investments on intermittent generation units are initiated only 

386 if there is a deficit in the power supply. 

387
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388

389 Figure 9. Power transmissions among the regions over the range of carbon price 0−200€/tonne CO2 and 

390 different levels of FFPs, base-case, a, medium, b, and high,c.
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391 4.3. Use of excess intermittent power in other sectors

392 The PtG and PtL technologies exploit excess intermittent power during periods when supply exceeds 

393 demand. In the sample year, an over-generation potential in the range of 0−65 GW is observed (see 

394 Figures 5−7) resulting in an annual total in the range of 0−93 TWh. 

395 Figure 10a presents the corresponding amounts of methanol produced from the over-generated power 

396 in TWh/year. Accordingly, the model produces mainly methanol and traces of synthetic natural gas 

397 (SNG), particularly in the high end of the carbon price and FFPs ranges considered. This behavior is due 

398 to the fact that, in the model, methanol can only replace transportation fuel (gasoline) which generally 

399 has a higher market value than the gas fuels used in the heating sector. The PtG is linked to SNG 

400 production which can only replace fossil fuels in the heating sector.

401 The production of methanol is found to be rather more sensitive to variations in FFP than carbon price 

402 over the range of prices considered in this study. For instance, doubling the FFPs at 0 €/tonne CO2 

403 increases the share of intermittent renewables in the power supply mix from 0.25 to 19% and the 

404 production of methanol from 0 to 6 TWh/year. Whereas increasing the carbon price from 0 to 100 

405 €/tonne CO2 at the base case FFPs raises the share of intermittent renewables in the generation mix 

406 from 0.25 to 12.5% and methanol production from 0 to 0.6 TWh/year, see Figure 10a. 

407 The potential for replacing gasoline transportation fuel with methanol produced in PtL technologies is 

408 shown in Figure 10b. Depending on the carbon price and FFPs, 1−11% of the gasoline use in 

409 transportation sector can be covered with methanol. 

410
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411 Figure 10. Methanol produced, a, and the corresponding displacement of fossil fuels in transportation, b, 

412 over a range of carbon price 0-200€/tonne CO2 and at different levels of FFPs

413 4.4. Impact of RES penetration on CO2 use and emissions

414 Another important aspect is that PtG and PtL provide the opportunity to recycle large volumes of 

415 captured CO2 into the fuel supply system. Figure 11 shows the recycle rate of CO2 by assuming a mole of 

416 CO2 is consumed to produce a mole methanol or methane. In the range of carbon price and FFPs 

417 considered, 0.15−15 million tonnes of captured CO2 is recycled. Recycling only affects the storage 

418 requirements for captured CO2 [7], which could be crucial in countries where geological carbon storage is 

419 not permitted. In principle, by controlling the recycle rate to be equal to the amount of captured CO2, 

420 the need for long-term storage can be avoided. CO2 emissions from industrial processes are only delayed 

421 by one step before they finally are released. However, overall CO2 emissions from the transportation and 

422 heating sectors are reduced because of displacement of fossil fuels.

423

424 Figure 11. CO2 recycle [Million tonne/year], over the range of variation of carbon price and for the 

425 different levels of FFPs.

426 PtG and PtL technologies decrease CO2 emissions by enabling increased RES penetration, which displaces 

427 fossil fuels. As shown in Figure 8b, depending on the scenario, 75 to 99.9% of the RES-based power 
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428 generation is directly transmitted to satisfy demand. Figure 12 shows the amount CO2 emissions avoided 

429 because of direct substitution of fossil-based power with RES. As a result, depending on the scenario, 

430 22−103 million tonnes of CO2 emissions are avoided annually. 

431

432 Figure 12. CO2 emissions avoided because of RES penetration in million tonnes per year, over the range of 

433 carbon price and FFPs.

434 4.5. Curtailment and overgeneration

435 One impact of the PtG and PtL technologies on electricity systems is that curtailment is reduced. We 

436 assume that all excess electricity generation can be used for the production of gas and/or liquid should 

437 the model find it cost-effective to do so. In real energy systems, curtailment may also occur because of 

438 operational constraints on PtG and PtL. It may not be technically feasible to build PtG and PtL plants that 

439 operationally follow the peaks of the power generation profile, shown in Figures 5−7: however, 

440 electrochemical processes have fewer technical limitations than thermal conversion processes, such as 

441 minimum uptimes, minimum loadings and ramping constraints. Curtailment can also be minimized by 

442 coupling PtG and PtL with temporary power storages, such as batteries, in order to smooth out periods 

443 of peak power supply, but such operational details of the PtG and PtL are beyond the scope of this work. 
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444 Figure 13 shows the percentage of curtailment as a fraction of intermittent RES (solar and wind) for the 

445 sets of carbon and fossil fuels prices considered. Curtailment in this context refers to the surplus power 

446 because the model chose not to build PtG and/or PtL plants because of economic considerations. The 

447 weighting scheme by which the annual estimates are evaluated also adds bias, for instance, over-

448 generation on a median day would be more likely to be converted into liquid or gas fuel than an 

449 equivalent over-generation on a peak day. 

450

451 Figure 13. Curtailment as a fraction of intermittent RES

452 5. Conclusions

453 This study investigated the potential for integrating RES into the energy system of the Alpine region, 

454 emphasizing the quantification of power over-generation potentials as a result of large scale integration 

455 of RES. The results indicate a broad range of over-generation, from 0.85 to 65 GW, are possible for the 

456 capacities and economic conditions considered in this work.

457 We found that PtG and PtL add flexibility to the energy system by linking power to gas/liquid fuels that 

458 can be used in other sectors. This link is highly important because of the intermittency of RES electricity 

459 production. Over the range of prices assumed in this study, as much as 11% of gasoline in the 

460 transportation sector can be replaced with methanol produced from excess intermittent power. 
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461 In addition, PtG and PtL provide the opportunity to recycle large volumes of captured CO2, as much as 15 

462 million tonnes/year, into the fuel supply system.  Furthermore, PtG and PtL enable deeper penetration of 

463 RES into the power sector. For instance, depending on carbon and fossil fuel prices, 22 to 103 million 

464 tonnes of CO2 emissions can be avoided because of direct substitution of fossil fuel use with RES. 

465 Under the assumed economic and operating conditions of the SOECs, these results indicate that PtG and 

466 PtL technologies can enable greater integration of renewables into the energy system. In particular, 

467 under global efforts to reduce CO2 emissions, these technologies could play a crucial role in linking the 

468 electricity, heating, and transportation sectors, and providing long-term storage.
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476  Nomenclature

477 BECCS Bioenergy with carbon capture and sequestration

478 BC Base case

479 bIGCC biomass integrated gasification combined cycle

480 CHP Combined heat and power plant

481 FFP Fossil fuel price factor

482 RE Renewable energy

483 RES Renewable energy sources

484 SOEC Solid oxide electrolysis cell

485 SNG Substitute natural gas
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486 PtG Power-to-gas

487 PtL Power-to-liquid
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641

642

643

644

645

646 Appendix A. Cost of technologies

647 The capital cost of building each type of technology is collected from different sources. Table A1 

648 summarizes the parameters of the reference bIGCC technology considered. Costs of other plant 

649 capacities are scaled based on the reference plant using the power law of capacity with a scaling 

650 exponent of 0.7. Table A2 summarizes the cost of technologies and economic parameters used in 

651 relation to PtG, PtL, solar, wind and hydropower technologies. For consistency, capital cost estimates are 

652 based on future projections for the year 2020, (e.g., [6,11,50]). All cost data refer to Euro value of the 

653 first quarter of 2010, assuming currency conversion factor of 1.30 $/€. The investment costs are 

654 amortized over the operational life time of the respective technology by assuming 5% interest rate and 

655 25 years of economic lifetime. 

656 For hydropower and bioenergy systems the investment, operation and maintenance costs are pre-

657 calculated based on resources potential in every demand area and supplied to the model as parameters. 

658 In the model, coal and natural gas are set to satisfy deficit in energy supply and the associated costs are 

659 accounted in terms of the energy carrier market value. Whereas for the rest of the technologies, 

660 estimation of capital and O&M costs are internalized in the model based on capacity factors and capacity 

661 limits. 

662 Table A1. Input data for the reference bioenergy production technologies [51–53]. All costs are adjusted 

663 to €2010 using Chemical Engineering Plant Cost Index (CEPCI) 2010.  Efficiencies refer to the LHV of 

664 biomass on dry basis.

bIGCC
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Parameter Unit Tech1 Tech2

Maximum size tbiomass/hour 6.35 33.88

Base plant capacity MW 6 30

Base investment cost M€/year 4.11 11.75

O&M cost €/GJbiomass 0.41 1.18

Heat efficiency % 50 40

Power efficiency % 35 45

665 Table A2. Biomass (refers to forest residue) transportation cost and related emissions. Energy 

666 conversions refer to 18.5 GJ/tonne, LHV dry basis, and 55% moisture content. Cost data are adjusted to € 

667 2010. 

Transport type Transport costa Emissionsb

€/TJ/km tCO2/PJ/km

Truck d 92.6307 5.82

Train d 96.0648 2.97

668 aTransportation costs are adapted from [54]. d is the transportation distance in km. The transportation 

669 cost values are for wet biomass (as received basis, 55% moisture content).

670 bEmission factors are taken from [31]. 

671

672 Table A3. Cost of conversion technologies and economic parameters

 Parameter PtL PtG Solar Wind Hydropower Unit

Capital cost 1000a 800a 3750c 1980e 4000−5000f €/kW

Economic life time 25 25 25 25 25 years

O&M fixed 5b 5b 5.14d 6.84d 0.03−0.185g

O&M variable 0 0 6h €/MWh

Electricity 50 50 €/MWh

CO2 20 20 €/tonne

Water 2 2 €/tonne
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Conversion efficiency 70 70    %

673 aCapital cost includes both the SOEC assembly as well as the synthesis plant from syngas to methanol in 

674 the case of PtL [6] and syngas to methane in the case of PtG [7]. 

675 bFixed O&M cost as % of the corresponding capital cost [6].

676 cNon-tracking commercial solar PV technology with 4kW (DC) installed capacity is considered for this 

677 study. The capital, fixed O&M cost are adopted from [50]. The capital cost estimates are expected to have 

678 uncertainties of +25%.

679 dFixed O&M cost for solar and wind technologies in €/MWh [50]. 

680 eCapital cost estimate reported here is for onshore wind turbines, with expected uncertainties of less than 

681 +25% [50].

682 fCapital cost of new hydropower systems are averaged ranges. In general, typical capital cost estimates 

683 vary between 4000−5000 €/kW depending on plant size. These values are averaged from maximum and 

684 minimum estimate ranges of 2500−10000 $/kW for plant sizes less than 1MW, 2000−7500 $/kW for plant 

685 sizes 1−10MW and 1750−6250 $/kW for plant sizes greater than 10MW. Capacity levelized capital cost 

686 estimate of 3500 $/kW (with uncertainties of +35%)  is reported in literature [50], which lays within the 

687 above range.  

688 gTotal O&M cost (in €/GWh) for hydroelectric are averaged ranges. Depending on the size of the plant 

689 O&M cost can vary between 0.03−0.185 $/GWh. These values are averaged from maximum and 

690 minimum estimate ranges of 55−185 $/MWh for plant sizes less than 1MW, 45−120 $/MWh for plant 

691 sizes 1−10MW and 40−110 $/MWh for plant sizes greater than 10MW.  Accordingly, the capital and O&M 

692 cost for every new hydropower installation is estimated beforehand based on the river catchment 

693 potential of each demand area and input to the model as parameters.

694 hVariable O&M for hydropower (€/MWh) [50]. Already included in the total O&M cost.

695 Appendix B. Energy prices

696 The prices of energy, by sector and country, used in this study are summarized in Table B1 [31]. 

697 Table B1. Energy prices (€/GJ) used in this study [31]
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Country Heating Transport Power

Austria 8.5 11.9 21.1

France 6.8 12.0 13.6

Germany 7.9 12.3 21.1

Italy 9.5 13.9 22.5

Slovenia 5.1 12.0 20.0

Switzerland 6.8 11.3 21.1

698 Appendix C. CO2 emission factors

699 Table C1. Emission intensities (kg-CO2/GJ) for displaced fossil energy carriers [31]

Country Heating Transport Power

Austria 86.2 78.1 87.3

France 72.1 78.1 39.3

Germany 88.2 78.1 200.8

Italy 70.6 78.1 200.8

Slovenia 98.6 78.1 158

Switzerland 76.9 78.1 32

700


