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FOREWORD 

The public provision of urban facilities and services often 
takes the form of a few central supply points serving a large 
number of spatially dispersed demand points: for example, 
hospitals, schools, libraries, and emergency services such as 
fire and police. A fundamental characteristic of such systems 
is the spatial separation between suppliers and consumers. No 
market signals exist to identify efficient and inefficient geo- 
graphical arrangements, thus the location problem is one that 
arises in both East and West, in planned and in market economies. 

This problem is being studied at IIASA by the Normative 
Location Modeling Task, which started in 1979. The expected 
results of this Task are a comprehensive state-of-the-art survey 
of current theories and applications, an established network of 
international contacts among scholars and institutions in differ- 
ent countries, a framework for comparison, unification, and gen- 
eralization of existing approaches, as well as the formulation of 
new problems and approaches in the field of optimal location 
theory. 

This paper is a result of collaboration between the Human 
Settlements and Services Area and the Resources and Environment 
Area which is hosting Professor Erlenkotter at IIASA. It focuses 
on the dynamic uncapacitated facility location problem, present- 
ing three equivalent formulations of the problem and setting out 
a computationally efficient branch-and-bound solution procedure 
based on the dual ascent method. The authors also discuss exten- 
sions of the fundamental problem to allow for price-sensitive 
demands, linearized concave costs, interdependent projects, and 
multiple commodities. 
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Chairman 
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Andrei Rogers 
Chairman 
Human Settlements 
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ABSTRACT 

In dynamic facility location problems, one desires to specify 
the time-staged establishment of facilities at different locations 
so as to minimize the total discounted costs for meeting demands 
specified over time at various customer locations. We formulate 
a particular dynamic facility location problem as a combinatorial 
optimization problem. The formulation permits both the opening of 
new facilities and the closing of existing ones. A branch-and- 
bound procedure incorporating a dual ascent method is presented 
and shown, in computational tests, to be superior to previously 
developed methods. The procedure is comparable to the most effic- 
ient methods for solving static (single-period) location problems. 
Problems with as many as 25 potential facility locations, 50 cus- 
tomer locations, and 10 time periods have been solved within one 
second of CPU time on an IBM 3033 computer. Extensions of the 
dynamic facility location problem that allow price-sensitive de- 
mands, linearized concave costs, interdependent projects, and 
multiple commodities can also be solved by the dual ascent method. 
The method can serve as a component of a solution process for more 
difficult capacitated problems. 
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A DUAL-BASED PROCEDURE FOR 
DYNAMIC FACILITY LOCATION 

INTRODUCTION 

Dynamic facility location problems deal with size, location, 

and time-phasing decisions for estahlisb-ent of productive 

capacity. Pith economies-of-scale in the costs for facilities of 

different sizes, these decisions involve two interacting trade- 

offs. In the spatial dimension, making facilities smaller and 

more dispersed decreases distribution costs but raises facility 

costs. In the time dimension, making facilities smaller also 

increases facility costs, but allows deferral of some investment 

and possibly a reduction in total discounted costs. 

Often dynamic facility problems are simplified into more 

tractable problems. One approach considers only the time-phasing 

and capacity-sizing problem, but neglects the location problem 

(see, e-g., Manne, 1967). This procedure is acceptable for 

problems with relatively insignificant transportation costs. A 

second approach eliminates the dynamics of the location problem 

and solves a static (single period) location problem for a speci- 

fic time period (see, e.g., Geoffrion and Graves, 1974). This 

procedure can be used for problems in which dynamic characteris- 

tics are negligible (e.g. constant demand), or for problems where 

location choices can be modified at low cost. 



Only in recent years have solution methods for general 

dynamic location problems been developed. Roodman and Schwarz 

(1975, 1977) and Eschenbach and Carlson (1975) generalized to a 

dynamic context the methods proposed by Efroymson and Ray (1966) 

and Khumawala (1972) for the static location problem. Erlenkotter 

and Rogers (1977) devised a dynamic programming alaorithm with 

transportation subproblems. Approximate methods for dynamic 

location problems have also been proposed; a comparison of several 

such methods is given in Erlenkotter (1979). 

This paper zddresses the dynamic uncapacitated facility 

location problem, which was introduced by Roodman and Schwarz 

(1975), and in a slightly different form by Wesolowsky and 

Truscott (1975). We give three formulations for the problem and 

demonstrate their equivalence. Although one formulation is 

identical in structure to a static uncapacitated problem, the 

others reduce substantially the requirements for computer storage. 

For these other formulations, we present a branch-and-bound solu- 

tion procedure incorporating a dual ascent method that extends 

approaches developed by Bilde and Krarup (1977) and Erlenkotter 

(1978) for static uncapacitated problems. Comparative testing 

shows that this method is computationally more efficient than the 

methods proposed by Roodman and Schwarz, with problems havjnq as 

many as 25 facility locations, 50 customer locations, and 10 tine 

periods solved within one second on an IBM 3033 computer. A new 

primal-dual adjustment procedure improves the results given in 

Erlenkotter (1978) for "difficult" pzoblems and appears to be 

quite effective in the dynamic setting. We discuss extensions of 

the basic problem to allow for price-sensitive demands, linear- 

ized concave costs, interdependent projects, and multiple commod- 

ities. Finally we indicate how the method may be used in solving 

more difficult capacitated dynamic facility location problems. 

2. THE DYNAMIC UNCAPACITATED FACILITY LOCATION PROBLEM 

The dynamic uncapacitated facility location problem (DUFLP) 

has the objective of minimizing total discounted costs for meeting 

demands specified in different time periods at various customer 

locations, where costs include those for operation of facilities 



over time at several possible sites and for production and distri- 

bution of goods from facilities to customers. This problem may 

be formulated as the following extension of the (single period or 

static) uncapacitated facility location problem (UFLP): 

t t  t t  
(PA) Min C C C cij xij + C z fi yi 

x,y t i j t i  - 

all j,t 

all i,j,t 

all irIot 1 < t < T-1 (4) - - 

all irICI 1 < t < T-1 (5) - - 

t t 
x - > 0; yi ~{0,1} all i,j,t 
i j 

where 

i indexes the facility; 

j indexes the customer; 

t indexes the time period; 

1 is the set of facilities : I = IO U Ic; 

IO is the set of facilities that may be opened; 



IC 
is the set of facilities that may be closed; 

J is the set of "pseudo" customers : J = C (j t) 1 ; 

T is the time horizon; 

xt is the fraction of customer j's demand in time 
i j 

period t delivered from facility i; 

= 1(0) when facility i is open (closed) in time Y i 
period t; 

ct is the cost of producing and shipping customer j's i j 
total demand from facility i in time period t; 

ft is the fixed cost for operating facility i in time 
i 

period t. 

Customer demands are required to be met by (2); constraints (3) 

indicate that a customer j may be served by facility i only if 

facility i is open: constraints (4) require a facility i E IO 

opened at time to to remain open; similarly, the constraints (5) 

keep a facility i E Ic closed once it has been closed. Con- 

straints ( 4 )  and (5) are complicating constraints that prevent 

solution of the problem by decomposing it into T (single period) 

UFLP's, one for each period. As in the UFLP, an optimal solution 

will have integer-valued xij. 

The formulation addressed by Roodman and Schwarz (1975, 1975) 

differs from (PA) only by aggregating (summing) the constraints 

( 3 )  over the index j for each i and t. The integer solution for 

such an aggregated formulation is the same as for (PA) , but the 

linear programming relaxation which deletes the integrality 

restrictions in ( 6 )  generally is weaker than that for (PA) . 



An alternative formulation is given by (P): 

t t  t t  
( P )  Min L L L cij xij + C L F i  zi 

x,z t i  j t i  
(7) 

all j, t ( 8 )  

all itjtt (9) 

all itjtt (10) 

where 

t z = 1, i E I implies facility i is open in period t i 0 
and in the following periods; 

t 
'i = 1, i~ Ic implies facility i is open in period t 

and in all the preceding periods; 

t 
Fi , i c  IO gives all future fixed costs for opening 

facility i at t; 

t 
Fi , i c  I, gives all past fixed costs for having 

facility i open through t; 

- 
Tit = 2 ...., tI for i E Io; 

- 
Tit = Itt t+l , . . . . , TI for i e I ~ .  

We demonstrate the equivalence between (PI and (PA) by 

defining: 

for i c I ~ ,  all t and yl 0 



Then 

T+ 1 - 
for i € I C ,  all t and yi = 0. 

where 

Tit 
= it, t+i, .. .., TI for i E IO 

and 

Tit = i1, 2, ...., t} for i~ IC , 

and (PA) becomes (P). Similarly (P) can be written as (PA) by 

using (1 1) and substituting also: 

T+l 
for i~ 10, all t and Fi z 0 

5 0.  for i E IC, all t and Fi 

Although formulation (P) includes the static UFLP as a 

special case where T = 1 ,  it also can be derived from a static 

UFLP formulation. This formulation is 

Min L L L L ctT xfT + L 1 F: zT 
x,z t i j T 1 3  1 3  , i i 

all j ,t 



all i,j,t,~ 

all i,j,t,~ 

all i t T  

where 

tT is the fraction of customer j's demand in time Xij 
period t delivered from the facility at i 

established in period T; 

is defined as in (P) ; 

t~ is the cost of producing and shipping customer 
C 
iJ j's total demand in period t from facility i 

established in time period T ; 

F: is defined as in (P) . 

Formulation (PD) is clearly a "static" UFLP with pseudo facility 

locations ( i ~ )  and pseudo customers (jt). To create the "dynamic" 

structure, we specify the data as follows: 

CtT = + rn for t < T, i E I ij 0 

This ensures that a facility will not supply its customers before 

it is opened, or if initially opened, after it is closed. 



To show that (P) is a special case of (PD), we note that (P) 

requires further that 

- 
for r E Tit 

If we now define 

clearly the optimal integer solutions for (P) and (PD) are 

identical. Furthermore, even though constraints (9) represent 

an aggregation of the constraints (1 4) in formulation (PD) , the 
solutions to the linear programming relaxations of (P) and (PD), 

t with zr E (0,l) replaced by 0 < zi 5 1, are also identical. This 

is seen by showing that the solution for the aggregated formula- 

tion (P) corresponds to one optimal for (PD) given the structure 
tr of the costs c i j  For i E 10, such a solution may be constructed 

r t tr' recursively by defining xtT = min (zit x - E xi 1 for T < t. 
11 ij - 

Clearly such a solution is feasible for (PD) and gives the same 

objective value since the ctr are the same for all relevant r. ij 
A similar procedure may be applied to i E I . 

C 

We have shown that three seemingly different formulations 

of the DUFLP are equivalent, and one of the equivalent forms is 

a " static" UFLP. Each seems to offer somewhat different insight 

into the nature of the problem. However, before turning to 

solution methods, we point out that one significant shortcoming 

restricts the applicability of these and related formulations 

(wesolowsky and Truscott, 1975). In the static UFLP, facility 

size decisions are determined simultaneously with location 

decisions and the capacities established are fully utilized. In 

the dynamic problem, capacities established in earlier periods 

become constraints on production in subsequent periods: full 

capacity utilization in every period is unlikely. By ignoring 

these capacity decisions, the DUFLP assumes that capacity 

adjustment in each period is perfectly flexible. 



Effectively the DUFLP is a project sequencing problem (Erlenkotter 

and Rogers, 1977) that determines the order in which fixed costs 

should be incurred to open or close facility sites rather than 

the more general dynamic location problem addressed in Erlenkotter 

(1979). Although this degree of capacity flexibility may be 

unrealistic, the DUFLP can be used as a component of an approach 

that does incorporate capacity amounts explicitly as discussed in 

Section 5. 

3. A DUAL ASCENT METHOD 

Since the formulation (PD) provides an equivalent static 

UFLP, a solution of the DUFLP could be attempted by applying 

directly the dual-based method of Erlenkotter (1978) for the UFLP. 

However, there are two reasons for developing a modified approach. 

First, computer storage requirements for data are determined 

mainly by the number of cost coefficients: as many as l 1 1 - l ~ l  
ct 's for formulation (P) and I I I I JI (T+1)/2 ct?'s for formula- ij 1 3  
tion (PD) . Addressing formulation (P) ecdnomizes by avoiding the 

separate storage and processing of identical cost elements. In- 

core solution of the larger problems examined in Section 4 would 

not have been possible with formulation (PD). Second, in the 

construction of solutions and in the branching procedure, it is 

desirable to enforce explicitly the condition that a facility 

should be opened (or closed) no more than once. This condition 

is not exploited if the DUALOC code of Erlenkotter (1978) is used 

to solve (PD) . 
We solve (P) by a branch and bound method with lower bounds 

obtained via the linear programming relaxation of (P), with the 

integrality restrictions in (10) deleted. As in Bilde and Kraru~ 

(1977) and Erlenkotter (1978),. instead of solving the LP relaxa- 

tion optimally we use a heuristic dual ascent method, applied to 

a "condensed dual" of (P) or (PA). The condensed dual problem 

may be obtained by taking the dual of (P! : 

Max 1 1 v t 

v,w t j j 



all i,j,t 

all i,t 

all i,j,t 
. ' 

where v and w are the vectors of dual variables corresponding to 

(8) and (9) respectively. 

We may set 

wt = max {0.vt - ct 1 ij j ij, 

to obtain the condensed  d u a l  prob lem:  

(D) v(D) = Max C C v 
t 

v t j  j 

C C 
t rnax {~,v' - ct' 1 < F~ 

j ij - j ~'ET:, 

all i,j,t 

(18) 

all i,t . (19) 

Alternatively, (Dl may be derived from (PD) as in Erlenkotter 

(1 978) with terms having infinite cr3 deleted and the redundant 

index T dropped for those remaining. 

Define from ( 1 9) the slack variable 

s ~ : F ~ - c  i max {O,v t' - } > o all i,t; (20) 
i j t'€Tit j 'ij - 

then the complementary slackness (CS) conditions for the LP 

relaxation of (P) are: 

all i,t 



all ilj,t 

all j, t 

xt (Vt - ct - wt ) = 0 ij j i j ij all iljlt . (24) 

The dual ascent procedure uses the condensed dual formulation 

(Dl for finding a set of dual feasible {vtf 1 [and corresponding 
t+ j t+ 

{wij} by (17) 1 .  Then a primal feasible solution {zi 1, {x:+~) 

can be constructed corresponding to {vt+} such that the CS 
j 

conditions (21), (23), and (24) are satisfied and the number of 

violations of (22) is kept small. We first show how to construct 
t+ t a primal feasible solution {zi 1, Define 

and 

* * 
It = {i : (it1) E I and t1 €Tit) 

t+ t t+ * where si is given by (20) and v = v . Thus It denotes the 
j j 

candidate set of potential open facilities at time t. Also, 

+ It = ii : facility i is open at time t} 

+ 
I+ = i (it) : i E I ~ ,  for some t' and 

t = min (max) it' : i E I ~ J  for i E I ~ ( I ~ ) )  . 

+ We then set zr = 1 for each (it) E I . 



+ * + * 
Notice that requiring I 5 I or It 5 It for all t implies 

that CS condition (21) is satisfied, and also that the definition 
+ 

for I implies that a particular facility i is opened (closed) 

only once or it is not opened (closed) at all. 

NOW, we can present the p r i m a l  p r o c e d u r e  for constructing a 
t+ primal feasible solution corresponding to {v 1 .  For a given, 
j 

but arbitrary, sequence (jt) q = 1,. . . I J ]  , we perform: 
q' 

step 1 

+ + 
a. set I = % ,  I t = % :  (jt)+(jtIl ; q + l  . 

* * 
b. find I , It . 

step 2 

+ * 
a. for each t, include in It all i s  It for which a - 

single v* > cFj for some j and tt E Tit . 
j - 

step 3 

+ + 
a. for (jt), if there is no facility i e It witn 

vt > c t + 
j - i+j , augment It, , all t' s Tit , with * + 
i e It having minimum ct for (j t) ; update I . i j 

b. (jt) + (jt)q+l ; q + q  + 1 ; go to step 3a if 

q 5 I J I  , otherwise go to step 4 with (jt) . 



step 4 

a. assign (jt) to facility i E 1: with lowest crj and 

record this assignment as i(jt) . 

b. (jt) + ; q + q  + 1 ; go to step 4a if 

q 5 ( J J  , otherwise terminate . 

As a result, the primal procedure gives a feasible integer solu- 
+ 

tion with cost v (P). The objective function value of the 
+ 

corresponding dual solution is denoted by v (D). Note that the 

role of step 3 is, if possible, to keep the open set of facilities 
+ * 
I smaller than the eligible set I . As in Erlenkotter (1978), 

+ + 
this will reduce the gap between v (P) and v (Dl. 

The condensed dual problem (D) is the basis for a dual ascent 

Procedure similar to those in Bilde and Krarup (1977) and 

Erlenkotter (1978) for solving the (static) uncapacitated facility 

location problem. As in (PD), one may interpret the condensed 

dual (D) as having pseudo customers (jt) and pseudo facilities 
t (it), with fixed costs Fi. The objective is to increase the dual 

variables vt associated with the pseudo customers until their sum 
j t 

is maximal, thereby absorbing the fixed costs Fi. To do so, we 

sort the demand costs cij for each pseudo customer (jt) into non- 

decreasing order, and we increase the dial variables vt consecu- j 
t 

tively from one demand cost level to the next higher cij. Each 

time vf is increased, the corresponding slacks sr'given by (20) 
3 L 

are decreased until v; is "blocked" from increasing by one or more 
-1 

zero slacks. The procedure is general in that it may start with 
t any feasible solution Iv,) to (D) and restrict changes to a subset 

+ '  t of pseudo customers J . We reindex the c:, for each pseudo custo- 
J-J 

mer j in nondecreasing order as ctk, k = 1.2,. . .kjt, where k i it 
denotes the number of facility-to-customer links for- (jt).  he- 
mapping i(kjt) indicates the original facility index. For conven- 

ience, we also include a dummy source with crj arbitrarily large 

for all (jt) . 



We now give the d u a l  a s c e n t  p r o c e d u r e :  

step 1 

t initialize with any feasible solution (v.) to (D), 
3 

such that vt > ctl for each (jt) and sr 2 0 for all (it) . 
j -  I 

For each (jt), define k(jt) = min (k : vt < cfk). If 
j -  3 

t 
v = ctk(jt) , increase k( jt) by 1 . 
j j 

step 2 

initialize (jt) + (jt)l and q+l ; 6 = 0 . 

step 3 

if (jt) f J' , go to step 7 . 

step 4 

t t' t t 
set A =min isi : v - c > 0 , ttE Tit) 

j : u j ij - 

step 5 

if A~ > c t tk(jt) - vt , set A = tk(jt) - vt and 6 = 1 , 
j j j j j j 

and increase k (jt) by 1 . 



s t e p  6 

t' 
d e c r e a s e  si by A t  f o r  a l l  i and t1 E Fit 

3 
t wi th  v t  - c t  > 0 ; t hen  i n c r e a s e  v  by A; . 

j  it - j  

s t e p  7 

i f  q  # ( J (  , q + q + l  , ( j t ) + ( j t ) q  , r e t u r n  t o  s t e p  3 . 

i f  6 = 1  , r e t u r n  t o  s t e p  2 .  Otherwise  s t o p .  

D i f f e r e n t  a l t e r n a t i v e  sequences may be  used f o r  ( j t )  , q  = I , . . . ,  

I4 
When t h e  d u a l  a s c e n t  procedure  t e r m i n a t e s ,  a d u a l - f e a s i b l e  

s o l u t i o n  {vtc} t o  ( D l  i s  produced and a  p r imal  s o l u t i o n  c o r r e s -  
j  

ponding t o  (v rC}  may be  c o n s t r u c t e d  w i th  t h e  p r ima l  p rocedure  
J + + 

d e s c r i b e d  above. I f  v  (P) = v  ( D )  t h e  i n t e g e r  p r ima l  s o l u t i o n  

has  been v e r i f i e d  a s  op t ima l  and t h e  a lgo r i t hm i s  t e rmina t ed .  I f  
+ + + v  ( P )  > v  ( D )  w e  t r y  t o  i n c r e a s e  v  ( D )  by an  ad jus tment  procedure .  

+ + 
Since  v  (P) # v  ( D )  t h e r e  e x i s t s  a  "pseudo" customer ( j t )  w i t h  a  

t +  CS v i o l a t i o n  of  ( 2 2 ) ;  t h a t  i s ,  i f  w e  reduce  v  by one u n i t  t h e  
j  

s l a c k  v a r i a b l e s  SF o f  a t  l e a s t  two "b lock ing"  f a c i l i t i e s  ( i . e .  
t' having SF = 0 and z i  = 1 )  w i l l  be  i n c r e a s e d .  A s  a  r e s u l t  it may 

be p o s s i b l e  t h a t  w e  can i n c r e a s e  by one u n i t  t h e  d u a l  v a r i a b l e s  

of  more t h a n  one pseudo customer and improve t h e  d u a l  o b j e c t i v e  

va lue .  To s p e c i f y  t h e  procedure  fo rma l ly ,  w e  d e f i n e  t h e  fol low- 

i n g  a d d i t i o n a l  n o t a t i o n :  

I t*-  - * 
j  - : z t l E  Tit I ( i t 7  € 1  and v t  > c r j }  j  - 

- 
rt+= j  { i  : z t l  r Tit I (it1) E I +  and v t  j  > c r j l  



I f  l l S C /  > 1 , we have a  C S  v i o l a t i o n ;  i f  1 1 ~ ~ 1  < 1 f o r  a l l  ( j t )  j  - + 
then  t h e  pr imal  s o l u t i o n  corresponding t o  I i s  op t ima l ;  i f  

I1f* 1 = 1 then  a  s i n g l e  c o n s t r a i n t  ( 1  9)  b locks  vt from f u r t h e r  
I j  

i n c r e a s e .  A b e s t  sou rce  i ( j t )  and a  second-best  source  i' ( j t )  

a r e  g iven  by 

C 
t = min c  t 
i ( j t ) j  iE1t i j  

C 
t = min c  t 
i' ( j t )  j  iEI; i j  

f o r  a l l  ( j t )  

f o r a l l  ( j t )  w i t h  11fC~ > 1 
3 

and w e  d e f i n e  

W e  now g i v e  t h e  p r i m a l - d u a l  a d j u s t m e n t  p r o c e d u r e :  

s t e p  1 

s t e p  2 

i f  I l fC/  < 1 go t o  s t e p  9  . 
I - 

s t e p  3 



s t e p  4 

t t t1 f o r  e a c h  (it1) w i t h  tt E f i t  and v > ci j  , i n c r e a s e  si 
j 

t '- : t h e n  d e c r e a s e  v t  t o  c t- by v j  - c 
j j j 

s t e p  5a 

+ 
set  J = J 

t +  '+ and e x e c u t e  t h e  d u a l  a s c e n t  i ( j t )  " J i t ( j t )  
p rocedure .  

+ 
augment J by ( j t )  and r e p e a t  t h e  d u a l  a s c e n t  p r o c e d u r e .  

set  J+ = J and r e p e a t  t h e  d u a l  a s c e n t  p r o c e d u r e .  

s t e p  6 

i f  v: h a s  n o t  resumed i t s  o r i g i n a l  v a l u e ,  r e t u r n  t o  
J 

s t e p  2 .  

s t e p  7 

e x e c u t e  t h e  p r i m a l  p rocedure .  

s t e p  8 

+ + 
i f  n e i t h e r  v ( D l  > v nor  v ( P )  < vp , set  6 + 6 + 1 ; 

D 
o t h e r w i s e  se t  6 = 0 and u p d a t e  vD and v p  . 

s t e p  9 

i f  vD 2 vp , 6 = Smax , o r  4 = ( J (  , s t o p ;  o t h e r w i s e  

( j t )  + , q + q + l  , r e t u r n  t o  s t e p  2 .  



Further improvement may be possible by repeating the primal-dual 
+ 

adjustment procedure as long as the dual objective value v (D) 

improves. 

This primal-dual adjustment procedure tends to be more 

efficient than the dual adjustment procedure of Erlenkotter (1978), 

even for static UFLP's. The essential difference is that the 

procedure in Erlenkotter (1978) constructs a primal solution only 

at the termination of the adjustment procedure, whereas here a 

primal solution is obtained at step 7 each time the dual solution 
+ * 

is modified. For more difficult problems where typically I # I , 
the procedure of Erlenkotter (1978) sometimes adjusts the dual * 
solution assuming more facilities in I open than are required, 

and corresponding violations of complementary slackness condition 

(22) that are unnecessary. For the static problems of Erlenkotter 

(1978), incorporating the primal-dual adjustment procedure reduced 

the solution time for each of the two difficult 100 location 

problems by more than two-thirds, to slightly less than one second 

on an IBM 360/91 computer. The number of dual solutions required 

to solve the most difficult 33 location problem was reduced from 

37 to 16. Similar performance on dynamic problems is reported in 

the next section. 

A second innovation in the primal-dual adjustment procedure 

is the use of a counter 6 for the number of times in succession 

that adjustment has been attempted with no primal or dual improve- 

ment, and the abandonment of adjustment if no improvement is 

attained after 6max trials, Setting hmax = 2 worked well in 

experiments, and all computational tests were conducted with this 

value. 
+ + 

If v (Dl < v (PI after termination of the primal-dual 

adjustment procedure, we initiate a b r a n c h  and bound p r o c e d u r e  

to complete the discovery and verification of an optimal solution. 

Subproblem separation is based on the yi variables in formulation 
(PA): this permits effective restriction of other integer 

variables to values of zero or one in the branching process. An 

obvious choice for yr in branching is the one that contributes the 
largest magnitude of complementary slackness violation. Initially 

the branching facility is always fixed open, and a LIFO backtrack- 



ing scheme is used. The primal-dual adjustment procedure is 

repeated at the inital node as long as the dual value increases, 

and at all subsequent nodes only if the primal solution improves. 

4. COMPUTATIONAL RESULTS 

The solution procedure for the DUFLP has been implemented in 

a FORTRAN IV computer code, called DYNALOC, and tested on IBM 

360/91 and IBM 3033 computers. The only DUFLP's for which 

comparative results are available are the problems solved by 

Roodman and Schwarz (1975, 1977). We have solved those problems, 

and in addition provide results for a new set of dynamic location 

problems developed from the static problems of Kuehn and Hamburger 

(1963). 

Core memory requirements for DYNALOC can be calculated as 

30,000 + 6 E  ( T +  1) + 2N (ST+ 2) + 4M (2T+ 5) bytes 

where T is the number of time periods, N is the number of cus- 

tomers, M is the number of potential facility locations and 

is the total number of facility-customer links, assumed the same 

for each period. We store only possible facility-customer link 

costs, i.e., < M x N ; for each time period. A 50 facility, 

100 customer problem for 10 time periods and with an average of 

15 potential facilities per customer (G = 1500) typically 

requires 150K bytes. For comparison, solution of such a problem 

with DUALOC (Erlenkotter, 1978) using the formulation (PD) would 

require 900K bytes. 

In the presentation of the detailed results for problem sets, 

we shall use the following terminology: "ZeveZ" denotes the 

maximum depth in the branch and bound tree needed to solve the 

problem; "nodes"  gives the total number of explored nodes in the 

branch and bound tree; "duaZs" is the number of times the dual 

ascent procedure completed a solution {vt+}. 
7 

Computational performance for DYNALOC on the Roodman-Schwarz 

problems is given in Table 1, together with their results for 

these problems. Problems 101-108 involve only facility phase-out 



Table 1. Computational results for Roodman - Schwarz problems, 

Problem Problem Optimal Roodman E Schwarz DYNALOC 
number parameters solution 

FI N T 
value CPU CPIl II* cpUb Levels Modes Duals 

Total CPIl time (seconds) 1960.6' 5.99 

C 
CPU t i m e  i n  s e c o n d s  on Honeywell G 635 a s  r e p o r t e d  i n  Roodman a n d  Schwarz (1975) for  T a n d  i n  Roodman and 

b Schwarz (1977) f o r  11.  
CPU t i m e  i n  s z c o n d s  on  IBM 3033, e x c l u d i n g  i n p u t - o u t p u t  t i m e .  

C 
The t o t a l  t i m e  i s  o b t a i n e d  by t a k i n g  t h e  best f o r  a p p r o a c h e s  T and  T T .  



(closing) decisions; 205-208 involve only phase-in (opening) 

decisions, and 209-210 are static UFLP's. (As is evident from 

formulation (PD), pure phase-out problems, with no constraints 

(4), may be transformed into equivalent pure phase-in problems, 

with constraints (5) absent, by renumbering the periods in reverse 

order.) Problems 106-108, listed by Roodman and Schwarz as 8 

period problems, are indicated here as 7 period problems since in 

each case the last period has no demands. This period must be 

deleted to re~licate their solutions, which have no facilities 

open in the last period, since constraint (2), also present in 

thei,r formulation, does not permit such solutions. Even allowing 

for the slower computer used by Roodman and Schwarz, the results 

in Table 1 indicate that DYNALOC is faster by more than an order 

of magnitude. 

Comparisons for some of these dynamic problems also demon- 

strate the ~reviously discussed superiority of the primal-dual 

adjustment procedure to the (pure) dual adjustment procedure of 

Erlenkotter (1878). Table 2 presents comparative results for 

three of the Roodman-Schwarz ~roblems. 

Table 2. Comparison of dual versus primal-dual adjustment. 

Problem Primal-dual adjustment Dual adjustmenta 

C P U ~  Duals C P U ~  Duals 

RS 102 .25 28 .64 8 5 

a 
Erlenkotter (1978). 

bCPU time in seconds on IBM 3033, excluding input-output time. 



The second set of dynamic facility location problems was 

derived from those of Kuehn-Hamburger (1963) by specifying 

mutually offsetting demand growth and discount rates. Details of 

these problems are as follows: 

1. all costs ct and F: are calculated in dollars and i j 
rounded to integers; 

2. c1 = C2 = . . . - for all i, j : defined as identical 
i j i j - 'ij 
in all periods to the cij 's of the (static) Kuehn- 

Hamburger problems; 

3. only facility opening decisions are considered (Ic = 8 ) ;  
4. the fixed costs are computed to compensate for the 

terminal effects of the finite time horizon. The fixed 

costs fi given by the (static) Kuehn-Hamburger r~roblems 

can he interpreted as the equivalent annual cost for 
t 1 investment. Then we compute the Fi s as: 

Hence r = 0.2 specifies an annual discount rate of 20%. Since 

the cij are held constant in terms of present value, the corres- 

ponding effective annual percentage demand increase is also 20%. 

Each of the K-H problems has 24 potential warehouses and 50 

demand locations in each period, not counting those warehouses 

available for zero fixed cost at factories. The first four have 

a factory and warehouse at Indianapolis, the second four at 

Jacksonville, the third four at both Baltimore and Indianapolis, 

and the last four a factory, but no warehouse, at Indianapolis. 

Table 3 summarizes DYNALOC1s performance on all the K-H 

problems with ten time periods and values for r of 0.1, 0.2, and 

0.3. These 25 x 50 x 10 problems have 250 pseudo facilities and 

500 pseudo customers. The CPU time on the IBM 3033 for a single 

problem ranges from 0.05 to 1.08 seconds, the average being 0.43 

seconds. Only three of the 48 problems required branching. 



r-l P 
rl Q: 
K t .  



5. EXTENSIONS OF THE BASIC PROBLEM (P) 

In Sections 3 and 4 we presented a dual ascent method embed- 

ded in a branch and bound scheme for solving the dynamic facility 

location problem (P). Because of its structure a computationally 

efficient method could be developed. In this section, we inves- 

tigate extensions that still may be solved by a dual ascent/ 

primal-dual adjustment procedure. In particular, we discuss the 

cases of price-sensitive demands, concave facility costs, inter- 

dependent projects, and multiple commodities. We also suggest how 

such a procedure may be employed to solve capacitated dynamic 

location problems. 

For static UFLP'S, it has been established in Erlenkotter 

(1977) that problems with p r i c e - s e n s t i v e  demand f u n c t i o n s  at the 

various demand locations can be converted into equivalent problems 

with fixed demands, corresponding to (PA) with T = 1 .  Exactly the 

same procedure may be applied to dynamic problems, where demand 

functions now are specified for each customer j in each time 

period t. The crj now would be interpreted as the negative of the 

optimal discounted benefit contribution assuming that facility i 

supplies customer j in period t. The presence of the linking 

constraints (4) and (5) has no effect on this transformation. 

Thus DYNALOC is applicable directly to DUFLP's with price- 

sensitive demands after the transformation is made. 

It is customary to handle concave f a c i l i t y  c o s t s  by a piece- 

wise linear approximation, as illustrated in Figure 1. In the 

single period location problem (Efroymson and Ray, 19661, i.e., 

problem (PI with T = 1, we simply use the segments iO, il, i2, ... - - 
as alternative facilities with fixed costs fiO, fill fi2, ... 
with the variable costs aiO, ail, ai2 included in the respective 

customer costs biOj, cilj, c ~ ~ ~ .  Since concave costs imply 
- - - 
fiO < fil < fi2 < ... and ciOj > cilj > c~~~ > ..., the optimal 
solution always has facility iO open if throughput is between 0 

and vi; facility il open if throughput is between vl and v2 etc. 

However, in the dynamic problem only facility iO of the set 

CiO, il, i2,. . . I  must satisfy constraints (4) and (5) of (PI. 





Therefore, the following modifications to (P) are made: 
- 

1. usef = f i O  i0 
as the fixed cost for the basic facility 

corresponding to the first segment of the linearization; - 
2. use fik- - 'ik - fiO as the fixed cost for facilities 

corresponding to subsequent segments; 

3. require only the basic facilities iO to satisfy con- 

straints (4) and (5); 

4. require the facilities ik (k # 0) to satisfy 

t t 
Yio 1 Yik all t,k # OIi, 

Then the condensed dual becomes 

v(D) = Max L L vt 
v j t j 
s > o  - 

all t,k # 0,i . (25) 

all iO,t 

where st is the dual variable associated with constraint (25). ik 
This is a combination of static and dynamic location problems. 

The dual ascent method of Section 3 can be implemented with minor 
t modifications. Initially one sets all sik = 0. A plant ik, k # 0. 

cannot block unless the basic facility iO blocks. 



I n t e r d e p e n d e n t  p r o j e c t s  frequently occur in dynamic location 

problems. Interdependencies arise, for example, in water resource 

planning problems where the output of a power plant depends on 

construction of a reservoir upstream. Some approaches, e.g., 

Erlenkotter and Rogers (19771, do not permit such interdependencies. 

As we will show later, interdependent facilities may also arise in 

multicommodity problems. To deal with such interdependencies we 

modify problem (P) by adding ZogicaZ c o n s t r a i n t s  of the type 
t t 

yi 5 yj . Again only minor changes to the dual ascent procedure 

are needed. For example, assume that facility A cannot be con- 

structed unless facilities B and C are open, i.e., A only if B and 
.C, or: 

all t , 

C z < 1 z ' and C z t' A - B VET,, f&TBt VET,, c 

all t . 

By introducing these additional constraints on the z varia- 

bles, the condensed dual problem can easily be constructed. The 

modified constraints in (D) are: 



To accommodate these constraints in the dual ascent method of 
t Section 3, one initially sets all sAB and skc equal to zero. Then 

I 

blocking of customers by facility A is avoided by increasing sL AB 
or st until B and C block. AC 

We can also solve muZticommodity DUFLP's, e.g., fire equip- 

ment location problems (Schilling, et al, 1979). ~ e t  i be the 

facility index and k the index for a type of equipment .(co~mo- 

dity). Then the DUFLP cah be formulated as: 

t t  t t x  t 
(MP) Min 1 fi yi + fik yrk + C cijk ijk 

x y ti tlk tijk 

X 
t t 
ijk < 'ik 

all t,j,k 

all t,i,j,k 

all t,i,k 

all i&IO, 1 5 t - < T-1 

all ~ E I ~ ,  1 < t < T-1 - - 

X 
t t  > o  YifYikE1Ofll ijk - 

The identification of the symbols is as in Section 2. Formulation 

(MP) implies that facilities (buildings) cannot be opened and 

closed with perfect flexibility [see ( 3 3 )  and (34) 1 . On the other 

hand, equipment may be assigned with greater flexibility. Thus 

constraints (321, (33), and (34) can be handled as in the case 

with concave costs. If there exist types of equipment k which, 

once assigned to that facility, remain assigned to that facility, 

we add constraints of form (33) and (34) for all ik. Then the 

problem is one with interdependent "projects". 



F i n a l l y ,  t h e  d u a l  a s c e n t  method can a l s o  be used f o r  so lv ing  

c a p a c i t a t e d  dynamic f a c i l i t y  Zocation probZems, i . e .  

t t  
(CP)  Min Z Z C c r j  xt  + C C f i  yi 

x , y  t i j i j  

s . t .  ( 2 1 ,  (31, ( 4 1 ,  (51, (61, and 

a l l  i , t  (36) 

where d f  i s  customer j ' s  demand i n  pe r iod  t, and a: i s  f a c i l i t y  
3 

i ' s  d e l i v e r y  c a p a b i l i t y  i n  pe r iod  t. Guignard and S p i e l b e r g  

(1979) r e c e n t l y  p re sen ted  a d u a l  a s c e n t  method f o r  s o l v i n g  (CP)  

f o r  a s i n g l e  pe r iod  (T  = 1 ) .  DYNALOC could be embedded i n  a 

s i m i l a r  approach f o r  m u l t i p l e  per iods .  S ince  DYNALOC i t s e l f  d e a l s  

w i th  t h e  dynamic c o n s t r a i n t s  ( 4 )  and (5), on ly  minor a l g o r i t h m i c  

changes would be r e q u i r e d .  S i m i l a r l y  one can modify t h e  procedure  

proposed by Van Roy and Gelders  (1 979) t o  d e a l  w i th  a ( s t a t i c )  

f a c i l i t y  l o c a t i o n  problem wi th  g e n e r a l  s i d e  c o n s t r a i n t s  of  t h e  

form of ( 3 6 ) .  A procedure  s i m i l a r  t o  t h a t  of Van Roy and Gelders  

(1979) would s o l v e  (CP)  by a sequence of problems ( P )  de r ived  from 

a Lagrangian r e l a x a t i o n  of ( 3 6 ) ,  each of  which can be so lved  by 

DYNALOC. The same procedure  could be followed f o r  c a p a c i t a t e d  

dynamic problems wi th  p r i c e - s e n s i t i v e  demands ( E r l e n k o t t e r  and 

T r i p p i ,  1976) ,  where t h e  Lagrangian problem would be  t ransformed 

i n t o  an e q u i v a l e n t  DUFLP a s  i n  E r l e n k o t t e r  (1977) .  
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