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FOREWORD

The public provision of urban facilities and services often
takes the form of a few central supply points serving a large
number of spatially dispersed demand points: for example,
hospitals, schools, libraries, and emergency services such as
fire and police. A fundamental characteristic of such systems
is the spatial separation between suppliers and consumers. No
market signals exist to identify efficient and inefficient geo-
graphical arrangements, thus the location problem is one that
arises in both East and West, in planned and in market economies.

This problem is being studied at IIASA by the Normative
Location Modeling Task, which started in 1979. The expected
results of this Task are a comprehensive state-of-the-art survey
of current theories and applications, an established network of
international contacts among scholars and institutions in differ-
ent countries, a framework for comparison, unification, and gen-
eralization of existing approaches, as well as the formulation of
new problems and approaches in the field of optimal location
theory.

This paper is a result of collaboration between the Human
Settlements and Services Area and the Resources and Environment
Area which is hosting Professor Erlenkotter at IIASA. It focuses
on the dynamic uncapacitated facility location problem, present-
ing three equivalent formulations of the problem and setting out
a computationally efficient branch-and-bound solution procedure
based on the dual ascent method. The authors also discuss exten-
sions of the fundamental problem to allow for price-sensitive
demands, linearized concave costs, interdependent projects, and
multiple commodities.

Oleg Vasiliev Andrei Rogers
Chairman Chairman
Resources and Human Settlements
Environment Area and Services Area
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ABSTRACT

In dynamic facility location problems, one desires to specify
the time-staged establishment of facilities at different locations
so as to minimize the total discounted costs for meeting demands
specified over time at various customer locations. We formulate
a particular dynamic facility location problem as a combinatorial
optimization problem. The formulation permits both the opening of
new facilities and the closing of existing ones. A branch-and-
bound procedure incorporating a dual ascent method is presented
and shown, in computational tests, to be superior to previously
developed methods. The procedure is comparable to the most effic-
ient methods for solving static (single-period) location problems.
Problems with as many as 25 potential facility locations, 50 cus-
tomer locations, and 10 time periods have been solved within one
second of CPU time on an IBM 3033 computer. Extensions of the
dynamic facility location problem that allow price-sensitive de-
mands, linearized concave costs, interdependent projects, and
multiple commodities can also be solved by the dual ascent method.
The method can serve as a component of a solution process for more
difficult capacitated problems.
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A DUAL-BASED PROCEDURE FOR
DYNAMIC FACILITY LOCATION

1. INTRODUCTION

Dynamic facility location problems deal with size, location,
and time-phasing decisions for establishment of productive
capacity. With economies-of-scale in the costs for facilities of
different sizes, these decisions involve two interacting trade-
offs. 1In the spatial dimension, making facilities smaller and
more dispersed decreases distribution costs but raises facility
costs. In the time dimension, making facilities smaller also
increases facility costs, but allows deferral of some investment

and possibly a reduction in total discounted costs.

Often dynamic facility problems are simplified into more
tractable problems. One approach considers only the time-phasing
and capacity-sizing problem, but neglects the location problem
(see, e.g., Manne, 1967). This procedure is acceptable for
problems with relatively insignificant transportation costs. A
second approach eliminates the dynamics of the location problem
and solves a static (single period) location problem for a speci-
fic time period (see, e.g., Geoffrion and Graves, 1974). This
procedure can be used for problems in which dynamic characteris-
tics are negligible (e.g. constant demand), or for problems where

location choices can be modified at low cost.
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Only in recent years have solution methods for general
dynamic location problems been developed. Roodman and Schwarz
(1975, 1977) and Eschenbach and Carlson (1975) generalized to a
dynamic context the methods proposed bv Efroymson and Ray (1966)
and Khumawala (1972) for the static location problem. Erlenkotter
and Rogers (1977) devised a dynamic programming algorithm with
transportation subproblems. Approximate methods for dynamic
location problems have also been proposed; a comparison of several

such methods is given in Erlenkotter (1979).

This paper addresses the dynamic uncapacitated facility
location problem, which was introduced by Roodman and Schwarz
(1975), and in a slightly different form by Wesolowsky and
Truscott (1975). We give three formulations for the problem and
demonstrate their equivalence. Although one formulation is
identical in structure to a static uncapacitated problem, the
others reduce substantially the requirements for computer storage.
For these other formulations, we present a branch-and-bound solu-
tion procedure incorvorating a dual ascent method that extends
approaches developed by Bilde and Krarup (1977) and Erlenkotter
(1978) for static uncapacitated problems. Comparative testing
shows that this method is computationally more efficient than the
methods proposed hy Roodman and Schwarz, with problems having as
many as 25 facility locations, 50 customer locations, and 10 time
veriods solved within one second on an IBM 3033 computer. A new
primal-dual adjustment procedure imoroves the results given in
Erlenkotter (1978) for "difficult" problems and appears to be
quite effective in the dynamic setting. We discuss extensions of
the basic problem to allow for price-sensitive demands, linear-
ized concave costs, interdependent projects, and multiple commod-
ities. Finally we indicate how the method may be used in solving

more difficult capacitated dynamic facility location oroblems.

2. THE DYNAMIC UNCAPACITATED FACILITY LOCATION PROBLEM

The dynamic uncapacitated facility location problem (DUFLP)
has the objective of minimizing total discounted costs for meeting
demands specified in different time periods at various customer

locations, where costs include those for operation of facilities



over time at several possible sites and for production and distri-

bution of goods from facilities to customers.

This problem may

be formulated as the following extension of the (single period or
static) uncapacitated facility location problem (UFLP):

(PA)

where

Min I I I ci, x.+ LT fLyt (1)
X,y tij ] ] t i -
t _ 1 .
t t .o
X4 3 ' all i,j,t (3)
t t+1 .
Y; 2vJ all ieIy, 1 <t < T-1 (4)
R all ieI_, 1<t <T=1 (5
t
x° > 0; yi e{0,1}  all i,j,t (6)
i]
i indexes the facility;

indexes the customer:
indexes the time period;
is the set of facilities : I = I0 U Ic;

is the set of facilities that may be opened;



I is the set of facilities that may be closed;
J is the set of "pseudo" customers : J = {(jt)};
T is the time horizon;

X is the fraction of customer j's demand in time

period t delivered from facility 1i;

yE = 1(0) when facility i is opven (closed) in time
period t;
czj is the cost of producing and shipping customer j's

total demand from facility i in time period t;

is the fixed cost for operating facility i in time

period t.

Customer demands are required to be met by (2): constraints (3)
indicate that a customer j may be served by facility i only if
facility i is open; constraints (4) require a facility 1 ¢ IO
opened at time tO to remain open; similarly, the constraints (5)
keep a facility i ¢ Ic closed once it has been closed. Con-
straints (4) and (5) are complicating constraints that prevent
solution of the problem by decompeosing it into T (single period)
UFLP's, one for each period. As in the UFLP, an optimal solution
will have integer-valued xij'
The formulation addressed by Roodman and Schwarz (1975, 1977)
differs from (PA) only by aggregating (summing) the constraints
(3) over the index j for each i and t. The integer solution for
such an aggregated formulation is the same as for (PA), but the
linear programming relaxation which deletes the integrality

restrictions in (6) generally is weaker than that for (PA).



An alternative formulation is given by (P):

X. .
ij

where

=3
I

it —

Tie

{1

t t t _t
LI C.. X.. +Z L F; z; (7)
3 ij 7ij e i 171
1 all j,t (8)
t' .
z_ z; all i,3j.,t (9)
A}
teTit
t .
0 z; e {0,1} all i,j,t (10)

i eIO implies facility i is open in period t

and in the following periods;

i EIC implies facility i is open in period t

and in all the preceding periods;

ie IO gives all future fixed costs for opening

facility i at t;

ie Ic gives all past fixed costs for having

facility i open through t;

12, eee., t} for i € Iyi

{t, t+1, ...., T} for ieIc.

We demonstrate the equivalence between (P) and (PA) by

defining:

- Y. >0 for ieI all t and Yg =0

i - 0’



zi = yz - y§+1 >0 for i el all t and yi+1 = 0.

Then
it

T fz yE =3I fE L z§'= (T ff)zi = I FE zE

t t EETit t H‘Tit t
where

T,p = {t, &1, ..., T} for ie1I,
and

Ti¢ = {17, 2, «...., t} for ieI_

and (PA) becomes (P). Similarly (P) can be written as (PA) by

using (11) and substituting also:

£ = gt - pbT for ieI., all t and F 7| = 0
i h i 0 i
f? =‘£? - FF—1 for ieI , all t and FQ = 0.
i i i c i
Although formulation (P) includes the static UFLP as a
special case where T = 1, it also can be derived from a static
UFLP formulation. This formulation is
(PD) Min 22z et x4l ST (12)
. ij "ij A S
X,z t 1 3jr1 T 1

tt _
i]



tT T

xij < z; all i,j,t,T (14)
tt .
X.. >0 all i,j,t,T (15)
ij -
T .
z; € {0,1} all i,t (16)
where
ng is the fraction of customer j's demand in fime

period t delivered from the facility at i
established in period T;

2z, is defined as in (P);

tT is the cost of producing and shipping customer
1] j's total demand in period t from facility i
established in time period t;

F. is defined as in (P).

Formulation (PD) is clearly a "static" UFLP with pseudo facility
locations (it) and pseudo customers (jt). To create the "dynamic"

structure, we specify the data as follows:

tt _ .
cij = + for t < 1, 1 EIO

> ] .
and t T 1 EIC

This ensures that a facility will not supply its customers before
it is opened, or if initially opened, after it is closed.



To show that (P) is a special case of (PD), we note that (P)

requires further that

cFT = c?. for T € T.
1] 13 1t

If we now define

clearly the optimal integer solutions for (P) and (PD) are
identical. Furthermore, even though constraints (9) represent
an aggregation of the constraints (14) in formulation (PD), the
solutions to the linear programming relaxations of (P) and (PD),
with ZE e {0,1} replaced by 0 < ZE < 1, are also identical. This
is seen by showing that the solution for the aggregated formula-
tion (P) corresponds to one optimal for (PD) given the structure
of the costs CE;. For i ¢ IO’ such a solution may be constructed

recursively by defining ng = min {zz, xt. - 1 %% } for T < t.

iJ <~
T<T
Clearly such a solution is feasible for (PD) and gives the same
objective value since the CE; are the same for all relevant T.

A similar procedure may be applied to i ¢ Ic'

We have shown that three seemingly different formulations
of the DUFLP are equivalent, and one of the equivalent forms is
a " static" UFLP. Each seems to offer somewhat different insight
into the nature of the problem. However, before turning to
solution methods, we point out that one significant shortcoming
restricts the applicability of these and related formulations
(Wesolowsky and Truscott, 1975). 1In the static UFLP, facility
size decisions are determined simultaneously with location
decisions and the capacities established are fully utilized. 1In
the dynamic problem, capacities established in earlier periods
become constraints on production in subsequent periods: full
capacityv utilization in every period is unlikely. By ignoring
these capacity decisions, the DUFLP assumes that capacity

adjustment in each period is pverfectly flexible.



Effectively the DUFLP is a project sequencing problem (Erlenkotter
and Rogers, 1977) that determines the order in which fixed costs
should be incurred to open or close facility sites rather than

the more general dynamic location problem addressed in Erlenkotter
(1979). Although this degree of capacity flexibility may be
unrealistic, the DUFLP can be used as a component of an approach
that does incorporate capacity amounts explicitly as discussed in
Section 5.

3. A DUAL ASCENT METHOD

Since the formulation (PD) provides an equivalent static
UFLP, a solution of the DUFLP could be attempted by applying
directly the dual-based method of Erlenkotter (1978) for the UFLP.
However, there are two reasons for developing a modified approach.
First, computer storage requirements for data are determined
mainly by the number of cost coefficients: as many as |I

- 3]
Cij's for formulation (P) and |I . J|+(T+1)/2 czg's for formula-
tion (PD). Addressing formulation (P) ecénomizes by avoiding the

separate storage and processing of identical cost elements. In-
core solution of the larger problems examined in Section 4 would
not have been possible with formulation (PD). Second, in the
construction of solutions and in the branching procedure, it is
desirable to enforce explicitly the condition that a facility
should be opened (or closed) no more than once. This condition
is not exploited if the DUALOC code of Erlenkotter (1978) is used
to solve (PD).

We solve (P) by a branch and bound method with lower bounds
obtained via the linear programming relaxation of (P), with the
integrality restrictions in (10) deleted. As in Bilde and Krarup
(1977) and Erlenkotter (1978), instead of solving the LP relaxa-
tion optimally we use a heuristic dual ascent method, applied to
a "condensed dual" of (P) or (PA). The condensed dual problem
may be obtained by taking the dual of (P):

Max £ L v?
J

v,w t J



-10-

VF - wF, < cF- all i,j,t
j ij = %ij
]
r I wt, <Ft all i,t
j teT 13- 01
it
wi. > 0 all i,3,t
i]" rJ

where v and w are the vectors of dual variables corresponding to
(8) and (9) respectively.

We may set

t t _ t ..
Wiy = max {O,Vj cij} all i,j,t (17)

to obtain the condensed dual problem:

(D) v(D) = Max T I v© (18)
v t 3 J
£ T max {0,vE - cF.) < Ft all i,t . (19)
. ' ] l] - 1
J tETit

Alternatively, (D) may be derived from (PD) as in Erlenkotter
(1978) with terms having infinite c;; deleted and the redundant

index T dropped for those remaining.

Define from (19) the slack variable

z max {0,vE - ct.} > 0 all i,t ; (20)
ET T

T

then the complementary slackness (CS) conditions for the LP
relaxation of (P) are:

He ot
B ot

=0 all i,t (21)
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z . - . = 0 11 .I.I
lJ(EeT z] le) a i,j,t (22)
it
viiz k. - 1) =0 all j,t (23)
] i 1]
t t t t _ .
xij(vj cij wij) =0 all i,j,t . (24)

The dual ascent procedure uses the condensed dual formulation
(D) for finding a set of dual feasible {v: +} [and corresponding
{w } by (17)]. Then a primal fea51ble solution {z 3, {x J}
can be constructed corresponding to {vJ } such that the CS
conditions (21), (23), and (24) are satisfied and the number of
violations of (22) is kept small. We first show how to construct

a primal feasible solution {z§+}, {x§+j}. Define

{(it) : s§+ = 0}

[
]

and

* {i : (it") e I* and t' ¢ T.,}
: it

H
]

t+ . . t t+ *
where s; 1s given by (20) and vj = vj . Thus It denotes the

candidate set of potential open facilities at time t. Also,

+ . v . .
I, = {i : facility i is open at time t}
+ . . +
I = {(it) : ieI,, for some t' and

t

o . .
t = min (max) {t': i sItJ for i EIO(IC)}

We then set ZE = 1 for each (it) ¢ I+
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. + * + * A L
Notice that requiring I' €I or I_ C I_ for all t implies

t t
that CS condition (21) is satisfied, and also that the definition
for I+ implies that a particular facility i is opened (closed)

only once or it is not opened (closed) at all.

Now, we can present the primal procedure for constructing a
. . . . + .
primal feasible solution corresponding to {v§ }. For a given,

but arbitrary, seguence (jt)q, q=1,...|3|, we perform:

step 1
+ + . .
a. setI =4, I, = g (38) « (3t) 4 5 q«1
. * *
b. find I , I
t
step 2
%*
a. for each t, include in I: all ie It for which a
single v¢+ > cﬂ for some j and t' & T,
J - Tij it °
+
b. update I
step 3

a. for (jt), if there is no facility ite f: with

t t + , .
vj > ci+j , augment Iﬂ , all t'e¢ Tit , with
. * . - . +
i eIt having minimum czj for (jt) ; update I

b. (jt)*—(jt)q+1 ;i 9+g + 1 ; go to step 3a if

q £ |3] , otherwise go to step 4 with (jt) « (jt),
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step 4

a. assign (jt) to facility i eIz with lowest c;j and

record this assignment as i(jt) .

b. (jt)*—(jt)q+1 ; 9+«+q + 1 ; go to step la if

q < |J| , otherwise terminate

As a result, the primal procedure gives a feasible integer solu-
tion with cost v+(P). The objective function value of the
corresponding dual solution is denoted by v+(D). Note that the
role of step 3 is, if possible, to keep the open set of facilities
I+ smaller than the eligible set I*. As in Erlenkotter (1978),
this will reduce the gap between v+(P) and v+(D).

The condensed dual problem (D) is the basis for a dual ascent
Procedure similar to those in Bilde and Krarup (1977) and
Erlenkotter (1978) for solving the (static) uncapacitated facility
location problem. As in (PD), one may interpret the condensed
dual (D) as having pseudo customers (jt) and pseudo facilities
(it) , with fixed costs FE. The objective is to increase the dual
variables v§ associated with the pseudo customers until their sum
is maximal, thereby absorbing the fixed costs FE. To do so, we

sort the demand costs cF for each pseudo customer (jt) into non-

ij -
decreasing order, and we increase the dual variables v§ consecu-
tively from one demand cost level to the next higher cij. Each
1)

time v§ is increased, the corresponding slacks sy given by (20)
are decreased until v? is "blocked" from increasing by one or more
zero slacks. The procedure is general in that it may start with
any feasible solution {V§} to (D) and restrict changes to a subset
of pseudo customers J+. We reindex the CE' for each pseudo custo-

mer (jt) in nondecreasing order as cgk, k = 1,2,...kjt, where kjt
denotes the number of facility-to-customer links for (jt). The

mapping i(kjt) indicates the original facility index. For conven-
ience, we also include a dummy source with C:j arbitrarily large
for all (jt).
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We now give the dual ascent procedure:

step 1
initialize with any feasible solution {vg} to (D),
such that v? > c§1for each (jt) and sg > 0 for all (it).
For each (jt), define k(jt) = min {k : v§ < c?k}. If
v§ = c?k(Jt), increase k(jt) by 1 .
step 2
initialize (jt)<—(jt)1 and g<«1 ; § = 0 .
step 3
. . +
if (jt) £ 3 , go to step 7 .
step U
t . t t t =
set A =min {s, : v, - ¢c.;. >0, t'e T., }
j ig i J ij - it
step 5

c;k(]t) . -

¢ c?k(Jt) - vt vj and §=1 ,

. t
if AT > . t AT =
j 3 Vy s SET By 3

and increase k(jt) bv 1 .
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step 6

decrease se by A? for all i and t' ¢ T

i J it

with vg - czt > 0 ; then increase vg by A; .
step 7

if g # |3 , g«qg+1 , (jt)<—(jt)q , return to step 3 .
steo 8

if § = 1 , return to step 2. Otherwise stop.
Different alternative sequences may be used for (jt) , g =1,...,

| T
(¥}

When the dual ascent procedure terminates, a dual-feasible
solution {v§+} to (D) is produced and a primal solution corres-
ponding to {v§+} may be constructed with the primal procedure
described above. 1If v+(P) = v+(D) the integer primal solution
has been verified as optimal and the algorithm is terminated. If
v+(P) > v+(D) we try to increase v+(D) by an adjustment procedure.
Since v+(P) # v+(D) there exists a "pseudo" customer (jt) with a
CS violation of (22); that is, if we reduce v§+ by one unit the
slack variables sf of at least two "blocking" facilities (i.e.
having sf = 0 and zf = 1) will be increased. As a result it may
be possible that we can increase by one unit the dual variables
of more than one pseudo customer and improve the dual objective
value. To specify the procedure formally, we define the follow-

ing additional notation:

* -
I‘?={i:at's'ri

t t
}
3

. *
£ | (ith eI and Vi 2cyy

(ith eI and v? > cF-}

t+ﬁ i . ' m
Ij-{l.g;tE:TitI 3 i

tF_ g aem L LBE
I = {(3th = Ij = {i} for ¢t ¢ Tit} .
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t+l

If |1t bl
]

> 1 , we have a CS violation; if |IJ < 1 for all (jt)

then the primal solution corresponding to I+ is optimal; if

*x
|I§ | = 1 then a single constraint (19) blocks v? from further
increase. A best source i(jt) and a second-best source 1i' (jt)

are given by

t . t .
T, i . = . Cis for all (jt)
€i(3t)3 T o1+ (i3 )
t
t . t . . t+
Ty s .= C. . for all t) with |I. > 1
Cir(3t) 3 ?;?+ ij (jt) l j |
t
i#i(jt)
and we define
t- t t t
. o= C. 1 Vs > cCiit .
¥ mix {c13 3 i3
We now give the primal-dual adjustment procedure:
step 1
initialize (jt)+—(jt)1 , 9+ 1 ; set vy = v+(D) and
vy = v+(P) ; set § =0 .
step 2
if [I§+| <1 go to step 9 .
step 3

i £ Jt+ t+

l(jt) = § and Jl'(jt) =g go to step 9




step

step

step

step

step

step

5b

Sc
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. . - t t . t
! ' , T > cl. :
for each (it') with t'e Tlt and vJ cl] » increase s;

by VF - cF- ; then decrease VF to c§-
] J J J
+
set J+ = Jirjt) U J;’tjt)and egecute the dual ascent
procedure.

augment gt by (jt) and repeat the dual ascent procedure.

+
set J = J and repeat the dual ascent procedure.

if v§ has not resumed its original value, return to

step 2.
execute the primal procedure.
set §«68 + 1 ;

. . + +
if neither v (D) > v_ nor v (P) < v

D P’
otherwise set § = 0 and update Vh and Vo
ifvg2v,, 8§=35 _,0raq= |J| , stop; otherwise

(jt)*-(jt)q+1 , @+«qg+1 , return to step 2.
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Further improvement may be possible by repeating the primal-dual
adjustment procedure as long as the dual objective value v+(D)

improves.

This primal-dual adjustment procedure tends to be more
efficient than the dual adjustment procedure of Erlenkotter (1978),
even for static UFLP's. The essential difference is that the
procedure in Erlenkotter (1978) constructs a primal solution only
at the termination of the adjustment procedure, whereas here a
primal solution is obtained at step 7‘each time the dual solution
is modified. For more difficult problems where typically I+ # I*,
the procedure of Erlenkotter (1978) sometimes adjusts the dual
solution assuming more facilities in I* open than are required,
and corresponding violations of complementary slackness condition
(22) that are unnecessary. For the static problems of Erlenkotter
(1978), incorporating the primal-dual adjustment procedure reduced
the solution time for each of the two difficult 100 location
problems by more than two-thirds, to slightly less than one second
on an IBM 360/91 computer. The number of dual solutions required
to solve the most difficult 33 location problem was reduced from
37 to 16. Similar performance on dynamic problems is reported in

the next section.

A second innovation in the primal-dual adjustment procedure
is the use of a counter § for the number of times in succession
that adjustment has been attempted with no primal or dual improve-
ment, and the abandonment of adjustment if no improvement is
attained after smax trials. Setting émax = 2 worked well in
experiments, and all computational tests were conducted with this

value.

If v+(D) < v+(P) after termination of the primal-dual
adjustment procedure, we initiate a branch and bound procedure
to complete the discovery and verification of an optimal solution.
Subproblem separation is based on the y§ variables in formulation
(PA): this permits effective restriction of other integer
variables to values of zero or one in the branching process. An
obvious choice for yz in branching is the one that contributes the
largest magnitude of complementary slackness violation. Initially
the branching facility is always fixed open, and a LIFO backtrack-
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ing scheme is used. The primal-dual adjustment procedure is
repeated at the inital node as long as the dual value increases,

and at all subsequent nodes only if the primal solution improves.

4. COMPUTATIONAL RESULTS

The solution procedure for the DUFLP has been implemented in
a FORTRAN IV computer code, called DYNALOC, and tested on IBM
360/91 and IBM 3033 computers. The only DUFLP's for which
comparative results are available afe the problems solved by
Roodman and Schwarz (1975, 1977). We have solved those problems,
and in addition provide results for a new set of dynamic location
problems developed from the static problems of Kuehn and Hamburger
(1963).

Core memory requirements for DYNALOC can be calculated as
30,000 + 6MN (T + 1) + 2N (5T + 2) + UM (2T + 5) bytes

where T is the number of time periods, N is the number of cus-
tomers, M is the number of potential facility locations and MN
is the total number of facility-customer links, assumed the same
for each period. We store only possible facility-customer link
costs, i.e., MN < M x N ; for each time period. A 50 facility,
100 customer problem for 10 time periods and with an average of
15 potential facilities per customer (MN = 1500) typically
requires 150K bytes. For comparison, solution of such a problem
with DUALOC (Erlenkotter, 1978) using the formulation (PD) would
require 900K bytes.

In the presentation of the detailed results for problem sets,
we shall use the following terminology: "Zlevel" denotes the
maximum depth in the branch and bound tree needed to solve the
problem; "nodes" gives the total number of explored nodes in the
branch and bound tree; "duals" is the number of times the dual

ascent procedure completed a solution {v§+}.

Computational performance for DYNALOC on the Roodman-Schwarz
problems is given in Table 1, together with their results for
these problems. Problems 101-108 involve only facility phase-out



Table 1.

Computational results for Roodman - Schwarz problems,

Prohlem Problem Optimal Roodman & Schwarz DYNALOC
number parameters solution

M N T value cpu 1 ceu 117 cpu? Levels Nodes Duals
101 8 30 5 62970 42,9 - .05 0 1 6
102 40 5 73473 4n.8 - .25 2 5 28
103 8 50 5 109824 127.8 - i 6 19 62
104 12 40 s 79893 314.2 160.6 .59 4 15 57
105 12 50 5 110742 654.3 302.0 .51 3 11 37
106 8 30 7 86418 184.7 - .57 5 15 57
107 8 40 7 108224 521,7 211.8 1,65 8 31 131
108 8 50 7 149672 175, 4 61.9 .28 0 1 19
205 12 30 5 38030 - 41,4 A5 4 9 71
206 12 30 8 49362 - 173.3 .60 Y 13 53
207 15 30 8 50054 - 169.2 .20 0 1 20
208 15 30 6 31346 - 85.5 ,01 0 1 1
209 15 30 1 6380 - 8.9 .01 0 1 5
210 25 50 1 10226 - 249.8 .08 1 3 20
Total CPU time (seconds) 1960.6° 5.99

Iol
CPU time in seconds on Honeywell G 635 as reported in Roodman and Schwarz (1975) for I and in Roodman and

Schwarz (1977) for 1II.

CPU time in seconds on IBM 3033, excluding input-output time.

The total time is obtained by taking the best for approaches T and TI.

_OZ...
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(closing) decisions; 205-208 involve only phase-in (opening)
decisions, and 209-210 are static UFLP's. (As is evident from
formulation (PD), pure phase~-out problems, with no constraints
(4), may be transformed into equivalent pure phase-in problems,
with constraints (5) absent, by renumbering the periods in reverse
order.) Problems 106-108, listed by Roodman and Schwarz as 8
period problems, are indicated here as 7 period problems since in
each case the last period has no demands. This period must be
deleted to replicate their solutions, which have no facilities
open in the last period, since constraint (2), also present in
their formulation, does not permit such solutions. Even allowing
for the slower computer used by Roodman and Schwarz, the results
in Table 1 indicate that DYNALOC is faster by more than an order

of magnitude.

Comparisons for some of these dynamic problems also demon-
strate the previously discussed superiority of the obprimal-dual
adjustment procedure to the (pure) dual adjustment procedure of
Erlenkotter (1978). Table 2 presents comparative results for

three of the Roodman-Schwarz problems.

Table 2. Comparison of dual versus primal-dual adjustment.

Problem Primal-dual adjustment Dual adjustment?
CPUb Duals CPUb Duals
RS 102 .25 28 .64 85
RS 104 .59 57 1.74 194
RS 106 .57 57 7.62 927

a
Erlenkotter (1978).
. bCPU time in seconds on IBM 3033, excluding input-output time.
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The second set of dynamic facility location problems was
derived from those of Kuehn-Hamburger (1963) by specifying
mutually offsetting demand growth and discount rates. Details of

these problems are as follows:

1. all costs CEj and FE are calculated in dollars and
rounded to integers:;
2. c?. = c?. = ,.. = c?. for all i,j; defined as identical
1] 13 1]

in all periods to the cij's of the (static) Kuehn-
Hamburger problems;

only-facility ovening decisions are considered (Ic = M
the fixed costs are computed to compensate for the
terminal effects of the finite time horizon. The fixed
costs fi given by the (static) Kuehn-Hamburger problems
can be interpreted as the equivalent annual cost for

t
investment. Then we compute the Fi 's as:

t T £y
Fi= b e
=t (1+r)

Hence r = 0.2 specifies an annual discount rate of 20%. Since

t
the cij

ponding effective annual percentage demand increase is also 20%.

are held constant in terms of present value, the corres-

Each of the K-H problems has 24 potential warehouses and 50
demand locations in each period, not counting those warehouses
available for zero fixed cost at factories. The first four have
a factory and warehouse at Indianapolis, the second four at
Jacksonville, the third four at both Baltimore and Indianapolis,

and the last four a factory, but no warehouse, at Indianapolis.

Table 3 summarizes DYNALOC's performance on all the K-H
problems with ten time periods and values for r of 0.1, 0.2, and
0.3. These 25 x 50 x 10 problems have 250 pseudo facilities and
500 pseudo customers. The CPU time on the IBM 3033 for a single
problem ranges from 0.05 to 1.08 seconds, the average heing 0.43

seconds. Only three of the 48 problems required branching.
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5. EXTENSIONS OF THE BASIC PROBLEM (P)

In Sections 3 and 4 we presented a dual ascent method embed-
ded in a branch and bound scheme for solving the dynamic facility
location problem (P). Because of its structure a computationally
efficient method could be developed. 1In this section, we inves-
tigate extensions that still may be solved by a dual ascent/
primal-dual adjustment procedure. 1In particular, we discuss the
cases of price-sensitive demands, concave facility costs, inter-
dependent projects, and multiple commodities. We also suggest how
such a procedure may be employed to solve capacitated dynamic

location problems.

For static UFLP's, it has been established in Erlenkotter
(1977) that problems with price-senstive demand functions at the
various demand locations can be converted into equivalent problems
with fixed demands, corresponding to (PA) with T = 1. Exactly the
same procedure may be applied to dynamic problems, where demand
functions now are specified for each customer j in each time
period t. The c;j now would be interpreted as the negative of the
optimal discounted benefit contribution assuming that facility i
supplies customer j in period t. The presence of the linking
constraints (4) and (5) has no effect on this transformation.

Thus DYNALOC is applicable directly to DUFLP's with price-

sensitive demands after the transformation is made.

It is customary to handle concave facility costs by a piece-
wise linear approximation, as illustrated in Figure 1. 1In the
single period location problem (Efroymson and Ray, 1966), i.e.,
problem (P) with T = 1, we simply use the segments iO, i1, i2,

0’ Ei1’ Ei2’ ter
with the variable costs aigr @597 355 included in the respective

i
Ci1j’ ci2j’ Since concave costs imply

as alternative facilities with fixed costs Ei

cust A
omer costs cle’

10 < fi1 < fi2 < ... and cioj > ci1j > ci2j > ey

solution always has facility i0 open if throughput is between 0

Hhi

the optimal

and vy facility i1 open if throughput is between v, and v, etc.
However, in the dynamic problem only facility i0 of the set

{io, i1, i2,...} must satisfy constraints (4) and (5) of (P).
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Therefore, the following modifications to (P) are made:

1. use fiO = in as the fixed cost for the basic facility
corresponding to the first segment of the linearization;
2. use f.,, = £, =~ f.. as the fixed cost for facilities
ik ik i0

corresponding to subsequent segments;

3. require only the basic facilities i0 to satisfy con-
straints (4) and (5);

4. require the facilities ik (k # 0) to satisfy

t St

5o 2 viy all t,k # 0,1,
or
I ozf, 2 Y, all t,k # 0,i . (25)
EETit

Then the condensed dual becomes

v(D) = Max I I v© (26)
v j t ]
s > 0]
s.t. T = max{0,v; - cfo.} < FEO - I sik
j ter,, J Y k €T,
(27)
all io0,t
t t t .
§ max{0,v. cikj} < fik + S0y all t,k # 0,1 (28)

where szk is the dual variable associated with constraint (25).
This is a combination of static and dynamic location problems.

The dual ascent method of Section 3 can be implemented with minor
modifications. 1Initially one sets all Sgk = 0. A plant ik, k # 0,

cannot block unless the basic facility i0 blocks.
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Interdependent projects frequently occur in dynamic location
problems. Interdependencies arise, for example, in water resource
planning problems where the output of a power plant depends on
construction of a reservoir upstream. Some approaches, e.g.,
Erlenkotter and Rogers (1977), do not permit such interdependencies.
As we will show later, interdependent facilities may also arise in
multicommodity problems. To deal with such interdependencies we
modify problem (P) by adding logical constraints of the type
yz < y§ . Again only minor changes to the dual ascent procedure
are needed. For example, assume that facility A cannot be con-
structed unless facilities B and C are open, i.e., A only if B and

C, or:
vy <vp and  yj g all t ,
or
1 zh < I 25 anda  z_ ozl < I_ z$
t's:TAt fsTBt t's:TAt ﬁsTCt
all t .

By introducing these additional constraints on the z varia-
bles, the condensed dual problem can easily be constructed. The

modified constraints in (D) are:

] 3 3
I I max(O,v? - c?.) < FS + 1 (st + st )
i teT J ij’" - "A HeT AB AC
At - At
]
LI I max(0,v., - c..) < Ft z st
j teT 137 = B = pep AB
Bt Bt
] ]
I I max(0,v, - c?.) F; - I szc .
j teT J 1] teT
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To accommodate these constraints in the dual ascent method of
Section 3, one initially sets all SKB and SXC egqual to zero. Then
blocking of customers by facility A is avoided by increasing st

t AB
or Sac until B and C block.

We can also solve multicommodity DUFLP's, e.g., fire equip-
ment location problems (Schilling, et al, 1979). Let i be the
facility index and k the index for a type of equipment (commo-
dity). Then the DUFLP can be formulated as:

. t .t t t t t
(MP) Min £ £ y. + I f£. vy.,.  + I Ciiq X (29)
xyti Tl gix ik ik g 23k 713K
L x‘?.k =1 all t,3.,k (30)
i 1
t t .
19k < Yik all t,i,j,k (31)
t t .
Yi S ¥ all t,i,k (32)
t t+1 .
y{ £ Yy all ieIy, 1 <t < T-1 (33)
t Lt : _
y{ > vy all ieI_, 1 <t < T-1 (34)
t t _t '
Xijk 2 0 5 Yir ¥Yipe {o,1} . (35)

The identification of the symbols is as in Section 2. Formulation
(MP) implies that facilities (buildings) cannot be opened and
closed with perfect flexibility [see (33) and (34)]. On the other
hand, equipment may be assigned with greater flexibility. Thus
constraints (32), (33), and (34) can be handled as in the case
with concave costs. If there exist types of equipment k which,
once assigned to that facility, remain assigned to that facility,
we add constraints of form (33) and (34) for all ik. Then the
problem is one with interdependent "projects".



Finally, the dual ascent method can also be used for solving

capactitated dynamiec facility location problems, i.e.

- ot
- ot

"
u
[
.
™

s.t. (2), (3), (4), (5), (6), and

all i,t (36)

where d; is customer j's demand in period t, and az is facility
i's delivery capability in period t. Guignard and Spielberg
(1979) recently presented a dual ascent method for solving (CP)
for a single period (T = 1). DYNALOC could be embedded in a
similar approach for multiple periods. Since DYNALOC itself deals
with the dynamic constraints (4) and (5), only minor algorithmic
changes would be required. Similarly one can modify the procedure
proposed by Van Roy and Gelders (1979) to deal with a (static)
facility location problem with general side constraints of the
form of (36). A procedure similar to that of Van Roy and Gelders
(1979) would solve (CP) by a sequence of problems (P) derived from
a Lagrangian relaxation of (36), each of which can be solved by
DYNALOC. The same procedure could be followed for capacitated
dynamic problems with price-sensitive demands (Erlenkotter and
Trippi, 1976), where the Lagrangian problem would be transformed
into an equivalent DUFLP as in Erlenkotter (1977).
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