A future with electric buses?
Placing bus chargers in Stockholm

Maria Xylaia,2, Sylvain Leduc3*, Piera Patrizio3, Florian Kraxner3, Semida Silveira1

1 Energy and Climate Studies Unit (ECS), KTH Royal Institute of Technology, Stockholm, Sweden
2 Integrated Transport Research Lab (ITRL), KTH Royal Institute of Technology, Stockholm, Sweden
3 International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

February 2017

Cost minimization scenario

42 electric routes, 59 chargers

Cost reduction 3%
Vehicle Investment cost +24%
Fuel saving -32%

A bus electrification pathway can be cost-competitive compared to a 100% biodiesel pathway

Energy minimization scenario

94 electric routes, 150 chargers

Energy consumption -34%
CO2 emissions -51%
Infrastructure cost 5 M€

Advantageous to concentrate chargers in major hubs, but space allocation and bus route rescheduling is required

The model is flexible and can be applied in any urban transport planning, providing accurate input data (e.g., bus routes and schedule)

Infrastructure cost is balanced by lower electricity price up to 185% above its current price