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Abstract:  

Lakes and reservoirs affect the timing and magnitude of streamflow, and are therefore 

essential hydrological model components, especially in the context of global flood 

forecasting. However, the parameterization of lake and reservoir routines on a global 
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scale is subject to considerable uncertainty due to lack of information on lake 

hydrographic characteristics and reservoir operating rules. In this study we estimated 

the effect of lakes and reservoirs on global daily streamflow simulations of a spatially-

distributed LISFLOOD hydrological model. We applied state-of-the-art global sensitivity 

and uncertainty analyses for selected catchments to examine the effect of uncertain 

lake and reservoir parameterization on model performance. Streamflow observations 

from 390 catchments around the globe and multiple performance measures were used 

to assess model performance. 

Results indicate a considerable geographical variability in the lake and reservoir effects 

on the streamflow simulation. Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta 

Efficiency (KGE) metrics improved for 65% and 38% of catchments respectively, with 

median skill score values of 0.16 and 0.2 while scores deteriorated for 28% and 52% of 

the catchments, with median values - 0.09 and -0.16, respectively. The effect of 

reservoirs on extreme high flows was substantial and widespread in the global domain, 

while the effect of lakes was spatially limited to a few catchments. As indicated by global 

sensitivity analysis, parameter uncertainty substantially affected uncertainty of model 

performance. Reservoir parameters often contributed to this uncertainty, although the 

effect varied widely among catchments. The effect of reservoir parameters on model 

performance diminished with distance downstream of reservoirs in favor of other 

parameters, notably groundwater-related parameters and channel Manning’s roughness 

coefficient. This study underscores the importance of accounting for lakes and, 

especially, reservoirs and using appropriate parameterization in large-scale hydrological 

simulations. 
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1. Introduction 

Lakes and man-made reservoirs are key components of terrestrial hydrological 

systems. They affect flow regimes by changing the magnitude and timing of streamflow, 

usually by attenuating and delaying flows, but also through releases from reservoirs 

which can result in severe downstream floods. The impact of reservoirs on global 

streamflow has become considerable over the 20th century (Vörösmarty et al. 1997, 

Chao et al., 2008; Lettenmaier and Milly, 2009), during which the storage capacity of 

global reservoirs increased from less than 100 km3 in 1900 to approximately 8300 km3 

in 2000 (Chao et al., 2008; ICOLD, 2007). The majority of large river systems around 

the world are fragmented by dams (Gao et al., 2012, Nilsson et al., 2005). The spatio-

temporal quantification of the impacts of lakes and reservoirs is essential in terms of 

assessment of water-related hazards such as droughts and floods and hydrologic 

models may serve as essential tools for this purpose (Zhou et al., 2016; Oki and Kanae, 

2006). 

Some of the currently used global and continental scale hydrological models (GHMs; 

Bierkens, 2015a; Bierkens et al., 2015b; Döll et al., 2003; Coe 2000; Meigh et al., 1999) 

that explicitly represent lakes and reservoirs, were used to assess the impacts of lakes 

and/or reservoirs on global- or regional-scale streamflow simulations (Biemans et al., 

2011; Coe 2000; Coe and Foley 2001; Döll et al., 2009; Haddeland et al. 2006; 

Hanasaki et al., 2006; Meigh et al., 1999; Vörösmarty et al.,1997; Zhou et al., 2016). 
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Above all, these previous studies highlighted the considerable impact of dams and 

reservoirs on the large-scale hydrological simulations. However, these studies mainly 

assessed the effect of dams on long-term (monthly - seasonal) streamflow, aggregated 

to catchment or regional scales. In this study we focus on estimating lake and reservoir 

effects on fully spatially distributed (at 0.1˚ resolution), daily streamflow simulations 

suited for global flood forecasting. Our overall objective is to improve streamflow 

simulations within the Global Flood Awareness System (GloFAS; Alfieri et al., 2013)—a 

probabilistic, medium-range flood forecasts at the global scale with a forecast horizon of 

30 days (see www.globalfloods.eu). Within the GloFAS, the LISFLOOD hydrological 

model (De Roo et al., 2000, van der Knijff et al., 2010; Burek et al., 2013a) is used to 

simulate river routing and groundwater processes. The LISFLOOD lake and reservoir 

routines were developed specifically to provide realistic streamflow simulations at lakes 

and reservoirs outlets with a (sub-) daily time steps with the objective of improving flood 

forecasting for river sections downstream of large water bodies. These routines are 

parameterized with information contained within global-scale datasets, using a 

methodologically consistent approach, in order to avoid data bias due to political and 

geophysical boundaries (Arheimer et al., 2012). Although existing global inventories 

such as the Global Lakes and Wetlands Database (GLWD; Lehner and Döll, 2004) and 

the Global Reservoir and Dam Database (GRanD; Lehner et al. 2011) provide extensive 

metadata, some information necessary for parameterization and validation of lake and 

reservoir routines is not available. This includes for example descriptions of 

hydrographic conditions for lakes (e.g., outlet characteristics) and historical operation 

records for reservoirs. Openly shared reservoir records for deriving case-specific 
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operation rules (and related model parameters) are only available in some developed 

countries (CEDEX, 2016, Gao et al. 2012, Hanasaki et al. 2006). We attempt to 

overcome these data limitations by relating some parameters to global-extent auxiliary 

data. For example, we estimate the outflow characteristics of lakes based on the 

channel width at the lake outlet, and we derive reservoir parameters based on simulated 

‘naturalized’ streamflow. However, such an approach is associated with considerable 

uncertainty around parameter values which may adversely affect model performance. 

To examine how uncertainty of lake and reservoir parameters propagates through the 

model and, as a result, affects model performance we use global sensitivity and 

uncertainty analyses (GSA/UA; Saltelli et al., 2004). River flow in sections downstream 

of lakes and reservoirs is controlled by a combination of factors relating to the natural 

variation of river flow and the lake and reservoir processes. GSA provides means of 

exploring the magnitude and spatial extent of influence of lake and reservoirs processes 

on the model response. Understanding the relative importance of lake and reservoir 

parameters is essential to advance global streamflow simulation. Our work has two 

specific objectives: 1) to quantify the effect of lakes and reservoirs on the performance 

and the extreme value statistics of the global daily streamflow simulations, and 2) to 

quantify the relative contributions of lake and reservoir parameters to the uncertainty. 
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2. Materials and Methods 

2.1. Modeling Framework 

2.2.1. Hydrological modeling 

The hydrological simulations in GloFAS (Alfieri et al. 2013) were performed using a land 

surface scheme coupled to a river routing model (Fig 1). The Hydrologically modified 

Tiled ECMWF Scheme for Surface Exchanges over Land (H-TESSEL; Balsamo et al., 

2009) was used for generating surface and subsurface runoff, and a simplified version 

of the LISFLOOD hydrological model was used for flow routing and simulation of 

groundwater processes. LISFLOOD is a spatially distributed, partly conceptual and 

partly physically-based model, primarily developed to simulate major hydrological 

processes in large catchments (De Roo et al., 2000, van der Knijff et al., 2010). The 

simplified version of the model simulates groundwater processes and flow routing, 

human water use, and lakes and reservoirs. The daily global runoff fields produced by 

H-TESSEL were resampled from ~80 km (see section 2.2.3) to the LISFLOOD 

resolution of 0.1˚ (approximately 10 km at the equator), and routed using the kinematic 

wave approach (Chow et al. 1988) with a time sub-step of 4 hours.  

Spatial physiographic inputs were derived from various sources. Global river network 

and other river characteristics (e.g. flow direction, upstream area, and flow length) were 

taken from the global river network database of Wu et al. (2012), the river width map 

was taken from the Global Width Database for Large Rivers (GWD-LR; Yamazaki et al. 

2014), while channel Manning’s roughness coefficient was calculated from land surface 

elevation and upstream area (De Roo et al., 2000; Burek et al., 2013a). 



  

7 
 

2.2.2. Lake and Reservoir Routines  

The lake routine simulates the outflow from lakes at each time step based on: (i) 

upstream inflow, (ii) precipitation over the lake, (iii) evaporation from the lake, (iv) the 

lake’s initial level, and (v) lakes outlet characteristics (defined by the α parameter which 

is derived based on the channel width at the lake outlet, following Burek et al. (2013a)). 

Groundwater flow (lateral or vertical) between lakes and surrounding aquifers is not 

simulated. The procedure is described in more detail in Appendix A.  

Reservoir outflow is calculated based on: (i) upstream inflow, (ii) precipitation over the 

reservoir surface, (iii) evaporation from the reservoir, and (iv) reservoir-specific 

characteristics and operation rules, represented by a number of parameters. 

Specifically, the outflow is calculated following four different set of rules depending on 

the current filling fraction of a reservoir (described in Appendix A). The rules attempt to 

reach the desirable level, called the normal filling level, by promoting either recharge (if 

storage is below normal) or release (if storage is above normal). Moreover, the 

approach applied in the routine guarantees a minimum outflow (to sustain downstream 

riverine ecosystems) and a non-damaging outflow (to prevent overtopping of the dam). 

Parameterization of the reservoir routine requires the specification of: (i) the reservoir 

storage capacity, (ii) the three threshold filling levels (conservative storage limit, normal 

storage limit, and flood storage limit), and (iii) the three streamflow release thresholds 

(minimum, normal outflow, and non‐damaging outflow; Burek et al., 2013a). Values for 

the storage capacity were extracted from global datasets (see section 2.2.1), while the 
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threshold filling levels were estimated based on expert opinion and the streamflow 

release thresholds from naturalized simulations (see Appendix B). 

2.2. Data 

2.2.1. Lakes and Reservoirs Dataset Compilation  

We used three datasets containing the characteristics and geographical distribution of 

global lakes and/or reservoirs: 1) the Global Lakes and Wetlands Database (GLWD; 

Lehner and Döll, 2004), which contains the largest lakes (area > 50 km2) and reservoirs 

(storage capacity ≥ 0.5 km3); 2) the Global Reservoir and Dam Database (GRanD; 

Lehner et al., 2011), which contains reservoirs with a storage capacity > 0.1 km3, as 

well as many smaller ones; and 3) the World Register of Dams (WRD), compiled by the 

International Commission on Large Dams (ICOLD), which contains approximately 

33,000 large dams (>15 m high) and associated metadata (ICOLD 1998, 2009). 

We incorporated in total 463 of the largest lakes and 667 largest reservoirs selected 

from GLWD and GRanD into the global model setup (Fig. 2), and we georeferenced 

them to the GloFAS river network. Since ICOLD does not provide geographical 

coordinates of dams (Lehner et al., 2011), the dataset was less useful for our purpose. 

As GLWD provides only shoreline polygons of lakes and reservoirs, the location of 

outlets on the river network was determined based on the shoreline polygons and the 

upstream area map. The lakes were required to have a surface area > 100 km2 and had 

to be located on main river channels. Thus, we excluded many lakes that were either 

endorheic (e.g., Lake Chad in Nigeria), located on tributaries and seasonally fed by 
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rivers (e.g., Lake Faguibine in the Niger catchment), or in the vicinity of the coast (e.g., 

Lake Izabal in Guatemala). 

In the case of reservoirs, we included all of the world’s largest reservoirs from the 

GLWD, and in addition some reservoirs from the GranD, resulting in a total cumulative 

storage capacity of 4601 km3 which comprises approximately 65 % of the total global 

large reservoir storage capacity (ICOLD, 2007, 2011). 

Figure 3 illustrates the potential impact of reservoirs included in GloFAS on streamflow 

at global scale. To provide a continuous estimate of the potential reservoir effect along 

river reaches, the ratio (c [-]) of reservoir volume to mean annual discharge proposed by 

Nilsson et al. (2005) and Vörösmarty et al. (1997) was calculated for each grid cell. This 

ratio makes use of the upstream cumulative reservoir capacity [m3] and the cell-specific 

total volume of annual natural streamflow [m3]. Very high reservoir capacity to 

streamflow ratios can be found, for example, for the Euphrates in the Middle East 

(c>100), the Oranje in Africa, and the Colorado in North America (c>10), while medium 

impacted river sections (c>1.5) are found for the Murray in Australia and most northern 

North American catchments. Conversely, very low reservoir capacity to streamflow 

ratios can be found, for example, for the Amazon and the Paraná in South America. 

2.2.2. Observed streamflow data 

Daily streamflow data were compiled from various sources, primarily the Global Runoff 

Data Centre (GRDC), complemented with information obtained from national providers 

for areas where the GRDC has few or no stations. We use daily observations for 390 

stations (Fig.4), located downstream of GloFAS lakes and/or reservoirs, with upstream 
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area >10,000 km2 and at least 4 years of uninterrupted data during the simulation period 

(1980–2013). 

2.2.3. Meteorological input data  

We used the ERA-Interim/Land dataset (Balsamo et al., 2015), which is based on the 

ERA-Interim reanalysis dataset (Dee et al., 2011), to force the hydrological model. The 

dataset consists of daily ~80-km resolution fields of surface and subsurface runoff for 

global land areas for 1980–2014. The ERA-Interim precipitation was bias-corrected to 

match the monthly averages from Global Precipitation Climatology Project (GPCP; 

Huffman, et al., 2009), a precipitation product based on merging satellite and gauge 

observations (Balsamo et al., 2015). Potential evaporation over open water bodies was 

estimated based on the surface radiation budget (Burek et al. 2013b) from ERA-Interim 

meteorological variables. 

3. Evaluation Methods 

3.1. Assessing the Effect of Lakes and Reservoirs 

We assessed the model performance using historical streamflow data for the three 

alternative model configurations: (i) baseline scenario — neither lakes nor reservoirs 

included, (ii) lake scenario — only lakes included, and (iii) lake and reservoir scenario — 

both lakes and reservoirs included. For practical reasons the lakes and reservoirs were 

implemented into GloFAS using a stepwise procedure: first only lakes, secondly 

reservoirs added to lakes. Therefore, in this analysis the separate effect of reservoirs 

was not evaluated. For each configuration we ran the model for the 34-year period from 
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1980 to 2013 using the same initialization procedure and inputs. The first year was used 

as warm-up period and therefore excluded from evaluation of model performance. 

3.1.1. Effect of lakes and reservoirs on streamflow 

We evaluated the model performance using daily streamflow observations. The 

performance metrics were calculated for the period with non-missing observed data 

during the simulation period. We considered multiple performance measures, including 

the Nash-Sutcliffe Efficiency (NSE; Nash and Sutcliffe 1970), Kling-Gupta Efficiency 

(KGE; Gupta et al. 2009), Pearson linear correlation coefficient (r), and percent bias 

(PBIAS; Moriasi 2007).  

The normalized effect of the lake scenario as well as the lake and reservoir scenario for 

each performance measure was quantified as a skill score. For example, for the lake 

and reservoir scenario the skill (S) for KGE was defined as: 

S��� = �����	
�			�
�		�
�
�������������
��


�����������������
��

  ,     (1) 

where: KGElakes and reservoirs represents the KGE for the scenario with lakes and 

reservoirs, KGEbaseline represents the KGE for the baseline scenario, and KGEoptimal 

represents the optimal value for KGE (KGE = 1). A positive skill score means that the 

performance has improved, whereas a negative skill score means that the performance 

has deteriorated. 
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3.1.2. Effect of lakes and reservoirs on return levels 

We quantified the effect of lakes and reservoirs on extreme flows (5- and 20-year return 

period levels). GloFAS defines the severity of a flood event relative to hydrological 

thresholds. Hence, determining accurate flood thresholds is important for skillful 

threshold exceedance forecasting (Alfieri et al. 2013, Hirpa et al. 2016). The Gumbel 

extreme-value distribution was fit to the daily annual maxima of streamflow to derive 

flood return levels for all three scenarios based on the simulated streamflow climatology 

for the 34-years period. The 5- and 20-year flood levels (Q5, and Q20, respectively) 

were estimated for each grid cell. 

To compare the effect of lakes and reservoirs on the threshold values, we compared 

return levels for the lake and for the lake and reservoir scenarios to the baseline 

scenario as follows: 

 ΔQL = �����

����̍������
��


�����
��

 �,     (2) 

where QL !"#$%&'̍	and QL($ ")&#" are return levels derived from the streamflow 

climatology of either lakes or lakes and reservoirs scenario and the baseline scenario, 

respectively, and L denotes the return period.  

We compared the simulated return levels, with and without lakes and reservoirs, with 

point data obtained from extreme value analysis on observed discharge. As none of the 

stations included in the GloFAS database had continuous records of observed 

discharge for the entire simulation period (1980-2010), we used the reduced time 

window of 1996-2010. We evaluated normalized differences between simulated and 

observed return levels as: 
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∆+,	̓ = �./012�./340
./340 �      (3) 

where QLsim and QLobs are return levels derived from the simulated streamflow 

climatology and observations, respectively, and L denotes the return period. 

3.2. Global Sensitivity and Uncertainty Analyses 

Global Sensitivity and Uncertainty Analyses (GSA/UA) were performed based on quasi-

Monte Carlo (MC) simulations following the general outline proposed by Saltelli et al. 

(2012) as described in detail below. First, screening analysis (Saltelli and Annoni 2010, 

Saltelli et al. 2012) was performed using the modified method of Morris (Campolongo et 

al. 2007; step 1 in Fig. 5). This step required a relatively small number of model 

evaluations to filter out non-important parameters. The parameters (also referred to as 

factors) identified as important were subsequently used for the next steps. Second, the 

variance-based GSA method of Sobol (Sobol 1993, 2001) was applied (step 2 in Fig. 5), 

and the quantitative sensitivity measures were calculated. Finally, uncertainty analysis 

was performed (step 3 in Fig. 5) using the same set of model simulations as used for 

step 2. 

Description of the model parameters and corresponding ranges used for the GSA/UA is 

presented in Table 1. The parameter ranges were selected based on expert opinion as 

well as previous uncertainty assessments and calibration studies (e.g., Feyen et al. 

2008; Feyen et al. 2007). 

Within the method of Morris, the parameter sampling space is subdivided in a number of 

regularly spaced intervals at which local derivatives are obtained for a number r of 

sampling trajectories (Morris, 1991). Subsequently, two measures are calculated for 
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each parameter, based on r local derivatives (i.e. elementary effects). A mean of 

absolute values of elementary effects (µ*) estimates the overall importance of a given 

parameter, and a standard deviation of elementary effects (σ) estimates effects due to 

parameter interactions. The method provides a qualitative ranking of the parameters’ 

importance with respect to model output based on performance measures. For more 

details on the SA method, see Appendix B. The method of Sobol decomposes the total 

variance of the model output and quantifies the parameter contributions to the model 

output uncertainty (Saltelli et al. 2004, Saltelli et al. 2008). The parameter input space is 

sampled with Sobol sequences (Sobol 2001). Two sensitivity measures were calculated 

for each parameter, using approximate MC integrations (Saltelli et al. 2008): 1) the first-

order sensitivity index Si that measures the direct contribution of parameter i to the total 

output variance (Eq. B1 in Appendix B), and the total sensitivity index STi that contains 

the sum of all effects involving parameter i (Eq. B2). Therefore the interaction effects 

can be isolated by calculating a remainder STi - Si. The empirical distributions for 

performance measures obtained from the MC simulations serve as a baseline for 

deriving UA measures, such as: variance, standard deviation (SD) or confidence 

intervals (CIs).  

The above framework was implemented using R (R Development Core Team 2011). 

The number of required runs for each step depends on a number of parameters (see 

appendix B). A number of 140 simulations was required for the screening (for 13 

parameters presented in Table 1), and approximately 10,000 simulations were 

performed for Sobol (for top 10 parameters identified by screening). Performing 

LISFLOOD computations for the global domain consumes considerable running time, 
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therefore we limited the GSA/UA to 11 selected catchments, and used a simulation 

period of 4 years for the Morris analysis and 2 years for the Sobol analysis. The test 

catchments represent diverse hydro-meteological conditions, and include: Niger and 

Nile in Africa; Amu Darya, Syr Darya, Pyasina and Lam Chi in Asia; Murray in Australia; 

Ebro and Guadiana in Europe; Colorado in North America, and Tocantins in South 

America.   

4. Results and Discussion 

4.1. Assessing the effect of lakes and reservoirs 

4.1.1. Effect of lakes and reservoirs on streamflow performance  

The general observed effect of lakes on simulated streamflow was attenuation of peaks 

and delayed timing due to detention and evaporation. The relative importance of these 

processes for determining lake outflows varied for each individual catchment and was 

conditioned on lake surface area, climate, magnitude of upstream river inflows, as well 

as lakes’ outlet characteristics. We illustrate how the incorporation of lakes affects 

simulated streamflow for the Lasalle station, located on the St. Lawrence, downstream 

of Lake Ontario in the Great Lakes region (Fig. 6A). In this region the hydrology is 

strongly affected by open water evaporation (Spence et al. 2013). Therefore due to 

incorporation of lakes (and lake surface evaporation) the amplitude and magnitude of 

simulated streamflow improved at downstream river reaches. Similar effects were 

observed for other catchments with large-surface lakes, especially when located in 

areas prone to high potential evaporation (e.g., Tanganyika, Lake Victoria in Africa). On 

the other hand, small-surface lakes may affect streamflow mainly through detention. As 
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observed for the station Valek at Norilka (Russia, Fig. 6B) upstream lakes considerably 

improved timing and magnitude of peak flows. In addition, reservoirs exerted a 

considerable influence on simulated hydrographs through anthropogenic operating rules 

that altered natural distribution of streamflow. We illustrate this effect in Figure 6C for 

the Peixe station on the Tocantins. The incorporation of the Serra da Mesa reservoir, 

which is mainly used for hydropower, markedly affected the seasonal distribution of 

water from the wet summer to the dry winter, and improved the simulated hydrographs 

for downstream stations. 

The inclusion of lakes generally improved the streamflow simulation skill. However, for 

most catchments the effect of lakes on skill scores was rather small, with a few notable 

exceptions. Figure 7A shows the spatial distribution of NSE skill scores obtained for 

simulations with the lake scenario as compared to the baseline scenario. For 171 

catchments downstream of lakes, the introduction of lakes improved the NSE for 67% of 

the catchments with a median improvement of 0.09 (mean 0.21, maximum 0.96), while 

the NSE worsened for 22% of the catchments with a median deterioration of -0.04 

(mean -0.07, maximum -0.34). The scores remained the same for 11% of stations 

downstream of lakes. The KGE skill improved for 41% catchments with a median 

improvement of 0.2, while it worsened for 37% catchments with a median deterioration 

of -0.05. The most pronounced improvements were seen for several catchments in 

Europe (notably the Rhine, Rhone, Po), and Yukon and Fraser rivers. The limited effect 

of lakes, even for some lake-abundant catchments (e.g., Amazon and Ob), may be 

explained by the fact that for these basins many lakes are positioned on the tributaries, 
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therefore the influence of lakes on a daily variability of streamflow in main channels 

(where the gauge stations are generally located) is minor.  

The lake and reservoir scenario resulted in changes in NSE skill scores for numerous 

catchments (Fig. 7B), indicating that model performance is more strongly affected by 

reservoirs than lakes. For the 390 catchments with lakes or reservoirs (including 253 

catchments affected only by reservoirs) the NSE improved for 65% of the catchments, 

with a median improvement of 0.16 (mean 0.24, maximum 0.96). Model performance 

deteriorated for 28% of catchments with a median deterioration of -0.09 (mean -0.11, 

maximum -0.95). The KGE performance improved for 38% catchments with a median 

increase of 0.2, while it deteriorated for 52% of catchments with a median deterioration 

of -0.16. Substantial improvements with the introduction of reservoirs were found for 

many catchments, including Zambezi (Africa), Mekong, Amu Darya, and Syr Darya 

(Asia), Murray (Australia), Tocantins and Magdalena (South America), Columbia, 

Colorado, and Rio Bravo (North America), among others. However, the effect of 

including reservoirs was not always beneficial as scores deteriorated for some stations, 

many of them located in North America (e.g., the Apalachicola and Alabama, and 

sections of the Mississippi), but also for other catchments, such as Oranje (Africa), Ob 

(Asia), Danube (Europe), as well as, Rio Iguaçu (South America). In most cases, the 

deterioration was rather small, such as for the Danube, where the introduction of only 

one reservoir—Iron Gates 1—resulted in a slightly lower NSE for all downstream 

stations. 

The maps for the other performance measures (Fig. 8) show deterioration of r and 

PBIAS values mainly in North America. The accurate representation of timing and bias 
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components is challenging for this region, which is heavily impacted by anthropogenic 

alterations not represented by the model (e.g., inter- and intra-catchment water 

transfers and joint reservoir operations). Furthermore, the reservoir routine, in its current 

form, does not account for downstream water demands or water abstractions from 

reservoirs. It is rather assumed that reservoirs are operated mainly for flood control. In 

reality reservoirs may also be operated for other purposes (e.g., irrigation, hydropower) 

or multiple purposes (e.g., flood control during the wet season, irrigation during the dry 

season). Reservoirs operated for irrigation exhibit seasonal release patterns, depending 

on downstream crop water demands. The ongoing developments of the LISFLOOD 

include incorporation of such demands into the reservoir routine. The deterioration of 

skill scores may also result from the unrepresentativeness of the default reservoir 

parameter values as a result of lack of knowledge regarding the specific reservoir 

operating rules. The sensitivity to the parameter values is further investigated in the 

section 4.2.1. Furthermore, decisions such as preventive water releases before 

anticipated heavy rainfalls (e.g., before typhoons) are difficult to represent in global 

hydrological models. Due to the unavailability of streamflow data for many regions (e.g., 

India, vast areas of east China, and South America) we were unable to evaluate the 

effect of lakes and reservoirs on model performance for these regions.  

4.1.3. Effect of lakes and reservoirs on return levels 

Figure 9 shows for the entire land surface the reduction in 5-year return level (Q5) with 

the introduction of only lakes (Fig. 9A) and both lakes and reservoirs (Fig. 9B) 

compared to the baseline scenario. At a global scale, the effect of lakes on Q5 is 

spatially limited to few catchments. The catchments with streamflow regimes strongly 
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affected by lakes include Yenisei, Pyasina, and Amur in Asia, Rhine and Po in Europe, 

Saint Lawrence in North America, and rivers in Patagonia (e.g., Santa Cruz) in South 

America. In Africa, the effect of lakes on Q5 was most prominent for the Nile, showing a 

75% decrease downstream Lake Victoria, for the upper Congo (e.g., the Lukuga river 

downstream of Lake Tanganyika) and the Shire. 

Reservoirs have a pronounced effect on Q5 in many catchments worldwide (Fig. 9B). In 

North America Q5 was reduced by as much as 80% for some rivers (e.g., the Rio Bravo 

and Colorado Rivers) with changes observed for all major rivers. In South America, 

reservoir effects were visible for some major rivers, such as the Parana, Tocantins, Sao 

Francisco, and Negro. Also in Australia, in contrast to lakes which had a negligible 

effect, reservoirs had a substantial impact on Q5. In the Murray catchment, for example, 

Q5 was reduced by >50 % for many river sections. In some African catchments (for 

example in the Niger, Zambezi, Orange, and Senegal) Q5 was substantially impacted 

by reservoirs. For the Nile, the effect of the Aswan dam was clearly visible for the 

section below Lake Nasser. Furthermore, reservoirs effects are evident for some 

catchments in the Middle East. In the Euphrates catchment Q5 was reduced by 

approximately 80% for most river sections, while in the Tigris catchment Q5 was 

reduced by >60% for selected sections. Asian catchments with considerably altered Q5 

due to reservoirs include Amu Darya and especially Syr Darya (where Q5 was reduced 

by up to 60%), as well as the Ganga, Godavari, Krishna (India), Indus (Tibet, India, 

Pakistan), Irtysh, Yenisei (Russia), Yongding He, Yellow River, Huai He, and Liao He 

(China). Similar impacts were observed for Q20. 
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The comparison of simulated return levels with and without lakes and reservoirs, with 

point data obtained from extreme value analysis on observed discharge indicated that 

incorporating lakes generally improved the representation of extremes, as summarized 

in Figure 10. The buffering effect of lakes resulted in a narrower range of normalized 

differences of Q5 and Q20 between simulations and observations. The inclusion of 

reservoirs resulted in further reductions in the range, but also in more frequent 

overestimation of simulated return levels, as compared to observations. This shift could 

indicate that our current parameterization of reservoirs for critical conditions does not 

reflect real-world operating rules (i.e., values of critical storage and critical discharge 

might be too low) resulting in insufficient reduction of simulated peak flows for 

downstream stations. 

In summary, the results show that lakes and especially reservoirs exert an important 

influence on streamflow dynamics in many catchments. This is in agreement with 

several previous studies (Biemans et al., 2011; Coe 2000; Döll et al. 2009; Haddeland 

et al. 2006; Hanasaki et al., 2006; Meigh et al., 1999; Vörösmarty et al.1997; Zhou et 

al., 2016), although we assessed daily simulations at global scale and also investigated 

the impact of lakes separately. Our results highlight the importance of accounting for 

lakes and reservoirs in hydrological model applications, particularly when focusing on 

streamflow extremes as for agricultural planning, or flood and drought forecasting and 

monitoring. 
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4.2. Global Sensitivity and Uncertainty Analyses 

4.2.1. Uncertainty Analyses 

In this study, we assessed the impact of uncertainty in lake and reservoir parameters 

(among other parameters) on hydrological model performance. Other sources of 

uncertainty include model structure initial and boundary conditions, forcing data (e.g., 

meteorological inputs), and static input data (Beven, 2006, Engeland et al. 2016, 

Pappenberger et al. 2005, Sperna Weiland et al. 2015), but these are not considered 

here. While, it is generally agreed that rainfall forecasts (Fekete et al. 2004, Nasonova 

et al. 2011, Pappenberger et al. 2005, Pappenberger et al. 2011, Sperna Weiland et al. 

2015) and initial conditions (Yossef et al. 2013) represent the main source of uncertainty 

of hydrological simulations, parameter uncertainty may also exert important effect on 

model performance and predicting extreme events globally (Chaney et al. 2015).  

The UA results for test catchments revealed a considerable uncertainty of model 

performance propagated from parameters. Figure 11A illustrates UA results for the 

example stations in the Tocantins basin (locations presented in Fig. 12A). Empirical 

distribution of KGE, obtained from MC simulations, are characterized with standard 

deviation (SD) that ranges from 0.10 to 0.16 for locations 1 and 3, respectively, with 

corresponding 95% confidence intervals (obtained from 2.5 and 97.5 percentile values) 

of [0.10, 0.52] and [0.20, 0.76], respectively. Thus, alternative parameter sets, used as a 

baseline for MC simulations, may lead to very different values of model performance 

metrics, and subsequent decisions regarding model performance. Uncertainty 

measures were spatially variable within test catchments, with small uncertainty 

observed only for a few stations with consistently poor model performance (see for 
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example, Amu Darya in Fig. 11B) possibly due to underestimated runoff, provided by 

the rainfall runoff model. Considerable uncertainty of KGE scores, observed for most of 

the test catchments, illustrates the potential of enhancing model performance by formal 

parameter estimation, with a focus on sensitive parameters. The contribution of lake 

and reservoir parameters to this uncertainty is presented in the next section.  

4.2.2. Sensitivity Analyses 

The routing parameter CCM (multiplier applied to channel Manning’s n) appears to exert 

strong influence overall on the streamflow performance measures, especially in the 

more arid catchments (e.g., Murray and Colorado). KGE, r, and NSE are highly 

sensitive to this parameter which affects the timing and magnitude of peak flows. For 

some of the test catchments (e.g., Niger, Nile, Lam Chi, and Tocantins) model 

performance is to a large degree controlled by groundwater processes, and the 

groundwater parameters (GwL, GwPV, UZTC, and LZTC, defined in Table 1) are the 

most important in terms of KGE response to the parameter variations (Table 2). The 

effect of CCM for these catchments is pronounced, with its importance tending to 

increase for downstream reaches. LISFLOOD uses kinematic wave approach for river 

routing. Although this is best feasible approach for flood routing at a global scale (as 

dynamic wave is too data demanding) it may involve some disadvantages. Typically 

flood peaks in lowland reaches could be simulated too fast, arriving one or few days 

earlier than in reality. This could explain a typically high importance of CCM in affecting 

performance metrics for downstream river reaches, as this parameter can greatly 

influence timing of the flood wave. 
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For the majority of test catchments, the effect of reservoir parameters is strongest for 

the river sections downstream of reservoirs. This effect is reduced with increasing 

distance downstream, in favor of other parameters. Spatial patterns indicating local 

influences of reservoir parameters were observed for some test catchments (Amu 

Darya, Murray, Ebro, Guadiana, and Tocantins, Table 2 and Fig. 12). For example 

within Tocantins catchment reservoir parameters rnlim and rnormq were highly 

important (3rd and 4th in the ranking) for location 2, below the reservoir, while these 

effects were diminished, further downstream, in favor of groundwater parameters and 

CCM (Table 2, Fig. 12A). However, some other test catchments, such as Nile, Niger, or 

LamChi exhibited very limited or no sensitivity of the hydrological response to reservoir 

parameters. One possible explanation for such limited effect of reservoir parameters is 

that LISFLOOD model with the current setup tends to overestimate water balance for 

these catchments, and therefore factors that reduce amount of water in the system (i.e. 

groundwater parameters) are the most influential ones in affecting performance metrics. 

This example illustrates the potential of GSA to serve as a tool to examine model 

behavior and indicate problematic areas in the domain. Possibly the processes that 

reduce amount of water in the river systems (e.g. evaporation from channel, channel 

seepage) are currently represented suboptimally, especially for basins with extensive 

wetlands (e.g. Nile, Niger, Mekong). Prospective enhancements of transmission loss 

module of the LISFLOOD model, which include seasonal changes of the open water 

surface of river systems, are expected to improve estimation of water balance for 

wetland areas. 
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Among the reservoir factors, parameters related to normal operating conditions: normal 

storage fraction (rnlim) and normal outflow (rnormq) are generally the most important; 

rnlim may locally replace CCM and groundwater parameters in their importance ranks 

(Table 2). Other reservoir parameters are also of significance for some stations with 

exception of minimum outflow (rminq) that has generally negligible effect. The 

importance of rnlim and rnormq may derive from the fact that most often reservoir 

operations take place under normal conditions, and/or relatively wide uncertainty range 

associated with specification of these parameter. Contrary to reservoirs factors, the 

effect of lake parameter (LM) was negligible for catchments with lakes (e.g.: Nile, Niger 

and Murray). The only exception, among the test catchments, was observed for the 

Pyasina, where performance measures were mostly affected by LM, followed by CCM, 

and groundwater parameters (Table 2). 

The screening analysis for the test catchments indicated that the number of parameters 

identified as important was effectively smaller than the full set of 13 parameters 

considered for GSA/UA (Table 2). In some cases it was reduced to two or even one 

parameter. Both SA methods (Morris and Sobol) were consistent in identifying a set of 

important parameters; however we identified two main differences that may occur 

between screening and Sobol results: Morris may identify a wider set of important 

parameters, and the shifts of parameter importance between two methods . As seen for 

example for station Peixe (Fig. 13A) the quantified contribution of reservoir parameters 

rrflim, rndq (identified as important by Morris) was negligible (below 1% cutoff value). 

On the other hand, a significant contribution (7% of the total KGE variance) of the 

reservoir parameter rnormq was confirmed. For another example station Kerki in Amu 
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Darya rflim, indicated as important by Morris, contributed marginally (<1%) to the KGE 

variance (Fig. 13B), while the KGE uncertainty was dominated by CCM (97%) with a 

small contribution of rnlim. A narrower set of factors identified as important by Sobol 

may be explained by the fact that the Morris method is susceptible to type I - false 

positive - errors (that is identifying a not-important factor as important) (Saltelli et al. 

2004). However, such behavior should not underline the value of screening in narrowing 

the set of important parameters, as the number of potentially important factors is much 

reduced during screening for most of the cases. The shifts of parameter importance 

between two methods, apart from methodological differences, could possibly be 

attributed to the fact that different simulation time periods were used for screening and 

GSA (4 versus 2 years). We acknowledge this potential limitation of the present study. 

As both methods provide similar identification of important parameters, and Sobol is 

associated with high computational requirements, Morris may be considered for 

application of the SA on the global-scale.  

The SA results are useful for model evaluation and development as they identify 

priorities for parameters’ refinements, for example by means of additional data 

collection, calibration, or regionalization. The results of the analyses presented here 

could serve as a guideline for selecting catchment-specific parameter sets to calibrate 

the latest LISFLOOD global version, using both river gauges as well as satellite data (as 

tested in Revilla-Romero et al. 2015). With reduced parameter sets, effective (i.e. better 

estimates) and efficient (i.e. faster computational speed) optimization algorithm could be 

achieved. In particular, the reduced computational time is a critical priority for the global-

scale model calibration. Further estimates of reservoir parameters could be improved by 
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calibration of daily reservoir releases or storages, simulated by LISFOOD, against 

historical reservoir records. However, for this purpose an open access database of daily 

reservoir records (currently non-existing) would be indispensable. Possibly, over time a 

compiled database of observed streamflow, as used here, could be extended to store 

reservoir discharge and storage records from the available sources. Furthermore, the 

sensitivity and uncertainty analyses, as presented here, could serve as a starting point 

for a future assimilation of products of satellite radar altimeters into the global 

LISFLOOD.  Incorporation of satellite derived lake and reservoir surface levels could 

compensate for the lack of ground reservoir records, and improve model skill, especially 

for areas with highest uncertainty, due to lakes and reservoirs parameters.  

5.5.5.5. Conclusions Conclusions Conclusions Conclusions     

In this study, we estimated the effect of lake and reservoir and their parameterization on 

daily river streamflow simulations of a global spatially-distributed hydrological model. 

Streamflow observations from 390 catchments around the globe were used for 

evaluation of the LISFLOOD model performance. Incorporation of lakes resulted in 

improvement of model performance for few catchments globally, but where present, the 

improvement was substantial. On the other hand, incorporation of reservoirs improved 

performance for many regions. However, for some catchments, mainly in North 

America, the timing component of simulated hydrographs deteriorated. The challenges 

related to global scale reproduction of daily reservoir streamflow were mostly identified 

as variability of individual reservoirs operating rules, and limited reservoir records for 

reservoirs’ parameter estimation on the global scale. 



  

27 
 

The effect of lakes and reservoirs on simulating extreme flows was a reduction of the 

threshold levels for return periods of five and twenty years for the majority of the global 

domain. While inclusion of lakes generally improved representation of extreme 

discharge levels, inclusion of reservoirs resulted in a general tendency to underestimate 

extreme streamflow (as compared to base or lake scenarios).  

Moreover, we applied global sensitivity and uncertainty analyses to examine the effect 

of lake and reservoir parameter uncertainty on model performance. The uncertainty 

analysis results revealed a considerable uncertainty of model performance metrics 

propagated from parameters. The sensitivity analysis identified the Manning´s channel 

multiplier (CCM), and groundwater parameters as the most sensitive factors in the 

currently-tested LISFLOOD model set-up. The CCM very often controlled model 

performance for drier basins, and downstream river sections, while groundwater factors 

were more important for wet catchments or for locations where the model overestimates 

discharge. The lake parameter was generally of limited importance, even for test 

catchments with several lakes; whereas the reservoir parameters (mainly related to 

normal operating conditions) had a pronounced effect for river section downstream of 

dams; this effect was reduced further downstream, in favor of other parameters. 

Morris and Sobol identified a consistent subset of important parameters, indicating the 

usefulness of the method of Morris for computationally demanding models. SA using the 

method of Morris (due its low computational requirements) could be used to explore 

large scale hydrological model applications, such as LISFLOOD global used in this 

study, and to limit the dimensionality of parameters prior to model calibration. Ultimately, 

a global open access database of daily reservoir records would be indispensable to 
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further enhance the simulation of any hydrological model when including reservoir 

dynamics. 
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TABLES 

Table 1: Model parameters used for GSA/UA including the uncertainty ranges. 

parameter process format 
default 
value min max units description 

1 LakeMultiplier lakes scalar 1 0.3 3 - 
multiplier applied to calculate parameter alfa 
(lake outlets characteristics) from alfa=x*RW  

2 rclim 

reservoirs 

table 0.1 0.05 0.15 - conservative storage fraction 

3 rnlim table 0.3 0.3 0.7 - normal storage fraction 

4 rflim table 0.97 0.8 0.99 - flood storage fraction 

5 rminq table 0.05 0.05** 0.15** m3/s minimum outflow  

6 rnormq table 0.3 0.3** 0.7** m3/s normal outflow 

7 rndq table 0.97 0.9** 0.99** m3/s non-damaging outflow 

8 CCM channel 
routing 

scalar 1.5 0.1 15 - Multiplier applied to Channel Manning's n 

9 CCM2 scalar 3 0.1 15 - 
Multiplier applied to Channel Manning's n for 
second routing line 

10 UZTC 

groundwater 

scalar 10 1 40 [d mmGwα]* 
UpperZoneTimeConstant-time constant for 
water in upper zone 

11 LZTC scalar 200 10 5000 [d] 
LowerZoneTimeConstant-time constant for 
water in lower zone  

12 GwPV scalar 0.5 0 2 [mm d-1] 
maximum rate of percolation going from the 
Upper to the Lower zone 

13 GwL scalar 0 0 0.5 - 
maximum loss rate out of Lower response box, 
expressed as a fraction of lower zone outflow 

*Gwα- parameter that defines the nonlinearity of the relation between the storage in and the outflow from the upper groundwater zone to the channel 

**Flows are expressed as percentiles of naturalized (without lakes and reservoirs) flow, these percentile values are subsequently converted into m3/s.. 
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Table 2: Morris ranking for KGE according to µ* for selected test catchments and stations. Only ranks for sensitive parameters are 

shown. The colors represent the different ranks. The locations of stations are shown in Figure 12, letters A-E before catchment name 

correspond to catchment maps, numbers in square brackets correspond to selected locations. 

Parameter 
(A) Tocantins (B) Amu Darya (C) Pyasina (D) Murray (E) Guadiana 

[1] 
Ceres 

[2] 
Peixe 

[3] 
Tupiratins 

[1] 
Garm 

[2] 
Kerki 

[1] 
Norilka At Valek 

[1] 
Louth 

[2] 
Burrinjuck 

[3] 
GundagI 

[4] 
Balranald 

[5] 
Lock 

[1] 
Luciana 

[2] 
VillanuevaDeLaSerena 

[3] 
AzudDeBadajoz 

LM      1         
rclim        6 5      
rnlim  3   2   2 2 3   1 2 

rflim     3        6 5 

rminq               
rnormq  4      1 1 4   5 8 

rndq  7      5  5   4 4 

CCM 5 6 2 1 1 2 1 4 3 1 1 2 2 1 

CCM2               
UZTC 3 5 1   5 4        
LZTC 4 2 5   4        7 

GwPV 2  4   6 3       6 

GwLoss 1 1 3 2  3 2 3 4 2 2 1 3 3 
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APPENDIX A: Lakes and Reservoir Routines of APPENDIX A: Lakes and Reservoir Routines of APPENDIX A: Lakes and Reservoir Routines of APPENDIX A: Lakes and Reservoir Routines of LISFLOODLISFLOODLISFLOODLISFLOOD    

The lake and reservoir routines of LISFLOOD model are described in Burek et al. 

(2013). Both lakes and reservoirs are simulated as points on the channel network. 

A.1. Lakes 

The change in lake storage (S) over a time period of ∆5=56 − 58 can be related to the 

average inflow (+&#), average outflow (+':;, total accumulated precipitation (P) and net 

evaporation (E) from the lake area (A) over the time step as Equation A1.  

<=�<>
∆? = @.�
>A.�
=)

6 − @.�B�>A.�B�=)
6 + @D�E)∗G

∆?     (A1) 

Most of the terms in Equation A1 are known from previous time step 

(H8, +':;8	JKL	+&#8), meteorological data (e.g., P and E), lake properties (lake area), 

or from inflows from upstream area (+&#6 ). However, two quantities need to be 

estimated: the lake storage (H6) and outflow (+':;6)at the current time step. 

Rearranging Equation A1 to put the known quantities into one side gives Equation A2.  

<=
∆? +

.�B�=
6 = <>

∆? +
@.�
>A.�
=)

6 − .�B�>
6 + @D�E)∗G

∆?   (A2)  

The lake outflow is related to the lake level (H)using the well-known weir equation of 

Poleni (Bollrich and Preibler, 1992), assuming the weir is of parabolic shape: 

+':;6 = M × O6      (A3) 

Where: [Q] = [m3s-1], α is a lake parameter defining lake outlet characteristics [ms-1], H 

is a lake level a.s.l. [m].  

The lake effective storage (i.e. storage above sea level) can be related to the lake level 

using a simplified linear equation as:  
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H6 = P × O      (A4) 

By combining Equations A3, A4 and A2, the lake outflow can be defined as: 

+':;6 = @√2 ∗ HS + ,T6 − ,T)6   (A5) 

Where,	,T = G
∆?√U	, is a lake factor and SI is the right hand side of Equation A2.  

The initial lake levels were estimated using average annual net inflow from the baseline 

simulations. 

A.2. Reservoirs 

For reservoirs, the outflow is calculated with four different set of rules (Equations A6-A9) 

depending on the current filling level of a reservoir.  

+VWX = YZK �+[\] , 8∆?T × H�     T ≤ 2 × ,_  (A6) 

+VWX = +[\] +	@+]`V[ −+[\]) @a�6/b)
@/c�6/b)   ,] ≥ T > 2,_  (A7) 

+VWX = +]`V[ + @a�/c)
/f�/c ×YJg h�SVWX + @D�E)∗P

∆? − +]`V[� , @+]i −+]`V[)j ,k ≥ T > ,]
 (A8) 

+VWX = max	 �oa�/fp∆? × H, +]i�    T > ,k   (A9) 

Where the reservoir parameters are defined as follows; H: design storage capacity; +VWX: 
outflow; T: fill fraction;	,_: conservative storage limit;	,]: normal storage limit; ,k: flood 

storage limit; +[\]: minimum outflow; +]`V[: normal outflow; +]i: non-damaging 

outflow; SVWX: reservoir inflow; P: precipitation on the reservoir and E: evaporation from 

the reservoir.  
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As we lacked consistent, global operational records that could be used to derive 

reservoir parameters, we assumed the minimum, normal and maximum storage as 0.1, 

0.3, and 0.97 fraction of total installed capacity, respectively. While the minimum, 

normal and non‐damaging outflow were assumed to correspond to the 5th, 30th, and 

97th percentiles of naturalized daily streamflow (for the LTR), respectively. These 

parameter estimates are expected to have a various level of correctness for individual 

reservoirs. 

APPENDIX B: Sensitivity Analysis MethodsAPPENDIX B: Sensitivity Analysis MethodsAPPENDIX B: Sensitivity Analysis MethodsAPPENDIX B: Sensitivity Analysis Methods    

Screening with a method of Morris 

The method is based on computing for each input a number of incremental ratios, called 

elementary effects (EEs), which are then averaged to assess the overall importance of 

a given input factor. Elementary effects are calculated by varying one parameter at a 

time across a discrete number of levels (p) in the space of input factors. The elementary 

effect is calculated from: 

qq\ = k@r1,…,r1A∆,…,rt 	)�k@u)
∆       (B1) 

where: EEi – elementary effect for a given factor Xi, ∆ is a value in {1/(p-1), ,1-1/(p-1)} 

this value defines a “jump” in the parameter distribution between two levels considered 

for calculating the elementary effect , p – number of levels. 

Based on elementary effects calculated for each input factor, two sensitivity measures 

are proposed by Morris (1991): (1) the mean of distribution of absolute values of the 

elementary effects, µ*, which estimates the overall effect of the parameter on a given 

output (Campolongo et al. 2005); and (2) the standard deviation of the effects, σ, which 

estimates the higher-order characteristics of the parameter (such as curvatures and 

interactions). 

v ∗\= 8
V ∑ qq\

xVxy8        (B2) 
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z\ = {8
V∑ oqq\

x − v\p6Vxy8       (B3) 

where: r -–number of elementary effects for parameter i (equivalent to a number of 

search trajectories), EEi – elementary effect for parameter i.  

Previous studies have demonstrated that using p = 4 and r = 10 produces satisfactory 

results (Campolongo et al., 1999; Saltelli et al., 2000), and we used these values in this 

study. The 10 best (mostly spread) search trajectories were selected from 500 pre-

generated ones. 

Sobol – for variance-based SA 

The variance-based method of Sobol (1993) that decomposes the total variance of 

model output between the different uncertain input factors and their interactions, 

according to the equation (Saltelli et al. 2004): 

i ij ijm 12...k

i i<j i<j<m

V(Y)= V + V + V +...+V∑ ∑ ∑      (B4) 

where: V(Y) is the total variance of the model output Y, Vi is the fraction of the output 

variance explained by the ith model input factor, Vij is the fraction of the variance due to 

interactions between factors i and j, and k is the number of inputs. The first order 

sensitivity index Si is calculated from the ratio of the output variance explained by the ith 

model input (Vi) to the total output unconditional variance (V): 

i
i

V
S =

V(Y)
       (B5) 

Assuming the factors are independent, the total order sensitivity index STi is calculated 

as the sum of the first order index and all higher order indices of a given parameter. For 

example, for parameter Xi: 
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-i
Ti

V
S =1-

V(Y)
        (B6) 

where STi is the total order sensitivity, and V-i is the average variance that results from 

all parameters, except Xi. Sobol indexes are constrained as follows: 0 ≤ Si ≤ STi ≤ 1. 

While the method of Morris requires M=r(k+1) model simulations, where: k – number of 

parameters, r – number of sampling trajectories (usually r=10 is sufficient and provides 

satisfactory results). The method of Sobol (1993), as implemented in this study, requires 

M = (2k+2)N model simulations (Lilburne & Tarantola 2009), where k is the number of 

parameters, N is the number of samples (we used N = 512 as suggested by Lilburne 

and Tarantola (2009), and M is the total number of iterations 
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FIGURE CAPTIONS : 

Figure.1: Schematic overview of the GloFAS modeling framework (from Alfieri et al., 

2013, Revilla-Romero, et al. 2015). A) Overview of the GloFAS setup. The blue-

contoured polygon indicates the input and output datasets and model; B) Schematic of 

the LISFLOOD model). Light blue arrows in panel B) represent water fluxes. The 

parameter names are explained in Table 1.  

Figure 2: Locations of lakes and reservoirs within the global LISFLOOD model setup.  

Figure 3: Spatially distributed c [-] ratio (reservoir volume to mean annual streamflow). 

Figure 4: Location of GloFAS stations with daily streamflow observations. 

Figure 5: Schematic of the screening, Global Sensitivity Analysis (GSA), and 

Uncertainty Analysis (UA) procedures.  

Figure 6: Example hydrographs and corresponding statistics showing effects of 

simulated lakes and reservoirs, for: A) St. Lawrence (USA), B) Pyasina (Russia), C) 

Tocantins (Brazil).  

Figure 7: Normalized change of skill (NSE) for GloFAS stations after incorporation of: 

(A) lakes (for 171 stations located downstream of lakes), (B) lakes and reservoirs (for 

390 stations located downstream of lakes or reservoirs). 

Figure 8: Normalized change of skills for GloFAS stations after incorporation of lakes 

and reservoirs: A) KGE, (B) RMSE, (C) r, (D) PBIAS. Only stations located downstream 

of lakes or reservoirs are presented.  
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Figure 9: The normalized differences for 5-year return levels as a result of introduction 

of lakes (A) and both lakes and reservoirs (B) into the global simulations (see Equation 

2). The locations of incorporated lakes and reservoirs are shown in Figure 2.  

Figure 10: Normalized difference between discharge levels obtained from simulations 

and observations for 5-year and 20-year return periods. 

Figure 11: Empirical distributions for KGE for selected stations for: A) Tocantins; B) 

Amu Darya. Numbers in the legend correspond to station identifiers, used in Table 2 

and Figure 12. 

Figure 12: Test catchments with locations of GloFAS stations: A) Tocantins, B) Amu 

Darya, C) Pyasina, D) Murray, E) Guadiana. Colors of circles indicate change of KGE 

skill after incorporation of lakes and reservoirs. 

Figure 13: GSA results for selected locations for example catchments: A) Tocantins, B) 

Amu Darya. The graphs on the left show first order effects (Si), while the graphs on the 

right show interaction effects (STot – Si).  



  

• The effects of lakes and reservoirs on global daily streamflow are evaluated. 

• Reservoirs affect model performance substantially in the global domain. 

• Lakes’ effects on model performance are limited to few catchments. 

• Lakes and reservoirs reduce return levels discharge thresholds globally.  

• Reservoir parameters contribute to uncertainty of model performance metrics. 

 




