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PREFACE

In a number of economic situations a decision maker is con-
fronted with the problem of modifying a given and unsatisfac-
tory resource allocation in order to improve it. This requires
a control strategy to be implemented sequentially over time.
Typical constraints are, loosely speaking, the control effort
he is willing (or able) to exert, the information requirements
on the system "state", the feasibility of intermediate alloca-
tions, and the total time in which the process is to be completed.
This paper deals with some of these aspects: an "equal realloca-
tion policy" 1is introduced and appropriate convergence proper-
ties are derived. On the basis of income distribution data for
the Italian Economy, an example of wealth reallocation over in-

come classes is presented.
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A CONVERGENT REALLOCATION
POLICY IN A CONVEX SET

Paolo Caravani

1. INTRODUCTION

A rather primitive concept in economics is the non—négati—
vity of the resources shared by each agent at a given time and
in a given social context, as well as the finitness of the re-
sources shared among all agents. A formal translation of this
concept leads to an apparently simple set-theoretic property,
convexity, from which far-reaching implications and unsuspected
results are often derived. In the past and more recently, the
somewhat disguising feature of this property has drawn the
attention of applied mathematicians and mathematical economists
to several aspects of the ensuing "Convex Theory" (Rbckafellar,
1969; Nikaido, 1968).

It appears guite natural that a systems theory viewpoint
on this matter should be primarily concerned with dynamic sys-
tems defined on a convex state space. One such system is con-
sidered in this paper. When the matter of concern is convex re-
allocation dynamics, a fundamental gquestion can be formulated as
follows: How would a policy based on taking from the "rich" and
giving to the "poor" succeed in equalizing shares over a fixed
time horizon? This paper answers that question for the singular

but important case of an equal reallocation policy.
2. BASIC ASSUMPTIONS

In addition to the standard assumptions of homogeneity and
divisibility of resources, the policy discussed in this paper is

based on the following assumptions:
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(i) The resource set can be modeled as a Unit Simplex.

(ii) The policy maker operates at discrete time-points and
has direct access to one component of the distribution
at a time.

iii) The reallocation is evenly redistributed over the re-

maining components.

A few comments are in order. Regarding (i), it has been argued

that reallocation dynamics in a Unit Simplex, to the extent in
which it postulates constant-sum resources, contradicts the possi-
bility of growth. It seems more accurate to say, however, that
what is omitted from this description is the feedback link between
distribution and growth. But this link can be added in an
integrated growth-distribution model, if one recognizes that no
conceptual difficulty arises in separating a multidimensional -
growth process into a balanced-growth of all components and a

zero-growth redistribution among them.

As for (ii), we should first notice that when access to all
components is possible, the reallocation problem becomes mathe-
matically trivial. Convex combinations of unit-sum vectors are
unit-sum vectors and such combinations may be chosen at will.
Given two vectors, start-end, a trajectory connecting them and
containing a desired number of arbitrarily spaced points can
easily be constructed.

On the other hand, this case presupposes on the policy maker
side a very strict and efficient control on all his resources.
This, in practice, may result in costly - if not infeasible -
policies. 1In brief, this case appears both trivial mathe-
matically and of very restricted scope for application.

At the other extreme, we have the case in point. One compo-
nent is controlled at each step. In order to preserve convexity,
it is assumed that the amount by which one component is varied
will be evenly redistributed over the remaining components. That
this policy should converge to any desired distribution, while
intuitively plausible, will require some amount of mathematical

reasoning to be rigorously established.
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Regarding (iii), some implications of this assumption can be
best appreciated in the light of the policy algorithm to be pre-
sented in the next paragraph. For this reason, discussion on

this point will be deferred until the conclusion.

PROBLEM STATEMENT

As usual, resources are modeled as non-negative unit-sum
vectors. A convenient geometric interpretation is suggested by
the notion of a Unit Simplex (Nikaido, 1968) in RN. In two-
dimensional space, resource vectors have one end on the line seg-
ment through the points (1,0) and (0,1) and this segment is a

Unit Simplex in RZ.

Let s¥ ' be the simplex in RN defined by

SN—1
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where A's are scalars and e's unit vectors. To avoid trivial

cases, we will assume N > 2. As we are interested in motions
. . . . N-1

within the simplex, we define a trajectory in S .

def. 1 A Trajectory T 71s a collection of vectors

N-1

in S indexed by the integer t, Z.e.

T &

{f(t);t=1,2,---} . (2)
For each t, we also introduce

def. 2 An a-Neighborhood of X(t) is the subset of 27

N>

X(t) X :x=x(t)+ab; ;a#0;k=1,2,..,N} (3)

where

with unit component in position k. The vector abk can be re-
garded as the control vector for the reallocation policy. For
fixed o, X(t) contains exactly N vectors. Notice that x(t) is

not contained in any of its a-Neighborhoods.
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Thus, a Feasible Trajectory is completely specified by (2)-(9).
We now turn to the main question. Given two distinct points in
SN”1 does there exist a Feasible Trajectory starting at one point

and ending at the other?

An answer 1is given, in some sense, by the following realloca-
tion policy. '
Policy 1 Given X (0) and ¥ # X (0) in SN_1, construct the sequence

{x*(t)} according to

x*¥(1) = x(0)

(12)
X*(£) = x*(t-1) + ob, ,
t = 2,3,4, ,

with b, specified in (3) and at each t.k and o chosen

according to the "Robin Hood Rule':

Evaluaze:

. A X*t * _

g 2 |xj (&) | > |xi - xi(t)I; i=1,2,...,N + (13)
YA (mrt)-x) > (xf(t) - %) io=1,2,..0,8 . (18)

xh i i’ yer e ey 4
) *
§ 8 min(o. kt),xj— Xj (t)) (15)
Then
* .

if x4 - xj(t) > ¢ and S#0 choose a=8 and K=], (16)
vf % - X;(t) > 0 and 6=0 choose a=-y and k=h, (17
if x; x;(t) <0 choose a=-y and k=j , (13)
if none of the above applies stop the algorithm. (19)

Remark We will try to comment briefly on this algorithm.
At each step, the current state 5*(t) is compared to the
desired state x. The difference vector 5*(t) - X is
analyzed component-wise to find:
- the highest absolute value (B; component j), and

~ the highest value (y; component h).
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Now the idea is to modify either component of the current

state so as to obtain a new state vector "closer" to the de-
sired state. If j=h, we decrease the j-th comoonent of the
current state. No problems arise with constraints in

this case (18). 1If j#h, we increase the j-th component

to the extent permitted by the m; constraint (16). But
there might be cases where no increase is permitted,
i.e.,af=0. In this case, we decrease the h-th component

]
(17).

Convergence results are summarized in the following:

Theorem

The sequence (12)in Policy 1 728 a Feasible Trajectory. If
this sequence is finite, its last element ts X, otherwise
{x*(t); t=1,2,...} monotonically converges to X tn the

Fuclidean Norm,

Proof

(13)-(18) imply (10), (11) thus {x*(t); t=1,2,...} is a
Feasible Trajectory. If (12) contains a finite number of
points, then at some t = T < » step (19) of Policy 1 has
been reached. This means 0 = X4 = xﬁ(T) = xj - xﬁ(T)I and,
by (13) x = x*(T).

To prove monotonic convergence, equip .RN with the Euclidean

Norm || - ||2. Then

g (6) [[2 = | xmx* (e=Dy=ab, | |2 = | |x=x*(t-1)[]2 +
a2||§k||2 - 20 <X-X*(t-1),b,> =

||ﬁ-x*(t'1)l|2 +al(1 + T;11)2) - 2a(Axk(t-1)'+ ﬁf%é;:ll.)=
Hxxr e [17 + g @® - 200 e-1)) (20)

where we put

Ax (£) & % - xp(8)

Observe that (16)-(13) imply

la| € (0,1); adxy, (t) > 0; faf < \Axk(t)y , (21)
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Remark 1 The Trajectory obtained with (12)-(18) satisfies a local
optimality criterion in the following sense. At each
step t, [|x - §*(t)]|2 is decreased proportionally to
Axk(t) and by (13)-(15) any different choice of Axk(t)
whould yield a lower value of Axk(t).

However, local optimality does not ensure global opti-
mality, that is a locally non-optimal choice of k may
yield faster convergence than a locally optimal one,

as shown by this counter-example. Assume initial state =

1 2 5

E

+{ 7 ]and finale state = 4']. A globally optimal
T4 1484 - ; ~
5 5
/ » 1 12\ [*\/5 [
Feasible Trajectory is the finite sequence 10 7116 {4
5/\4/\5

)

whereas a locally optimal Feasible Trajectory would

12\ /3.5\ /5.00\ [5.325
generate % T7LI4.01,13.25],13.575)+, eeevenn

\5/\6.5/ \5.75/) \5.000
L

Remark 2 1In several applications, reallocation policies that are
"smoother" than implied by this rule may be desired.
This, however, can be obtained by restricting the
a-range to a suitable sub-interval of (0,1] with no

prejudice on convergence results.

4. AN EXAMPLE: INCOME DISTRIBUTION IN THE IATLIAN ECONOMY

As a possible application of the preceding results, consider
the per-capita income distribution in Italy during the period of
1974-76. The dynamics of the distribution is best illustrated
by normalized histograms, as in Figure 1. Per capita income has
been divided into ten income classes ranging from one fifth to
twice the average income. The diagrams show the percentage of
the national income allocated to each income class. The area of
the histograms is proportional to the gross national income and

is normalized to one.

This representation permits the comparison of income dis-
tributions at different epochs, irrespective of variations in popu-
lation size and gross national income. The three-year record
shows no substantial change in the distribution, thus it is
reasonable to assume a balanced growth of all classes at a com-
mon growth rate.
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A rather controversial issue in Economic Theory is whether
or not the observed distribution represents an economic optimum -
aside from the guestion of whether or not such an optimum really
exists. I will not enter that dispute here. But, for illustration
purposes, I shall assume that some benevolent governmental goal has
been set so as to reach the target distribution in Figure 2 (light
line) starting from the 1976 situation. Assume that income trans-
fers are controlled by some government action (fiscal policy, so-
cial benefits, interest rates, etc.) on a trimester basis. Assume
further that the policy employed is selective, i.e. at each tri-
mester t the fraction of the national income allocated to one parti-
cular income class is varied by a value not exceeding a pre-set
transfer rate g(t). If this class is chosen according to Rule
(13)-(19), the reallocation process becomes a Feasible Trajectory

in Income Space with

o min(8,g(ty) 1if (16) applies, otherwise

(29)

) max(-y,-g(t))

Assuming a constant 5% transfer rate, the hypothesized policy
results ia the graphs shown in figure 2 (dark line).

Table 1 shows the number of steps regquired to get to the
target distribution within a 1% norm error, in function of
the maximum transfer rate which is assumed constant at each step.
It may be of (academic?) interest to note that no improvement
in the convergence ( number of steps) can be achieved by trans-
fer rates higher than 5.86%.

5. CONCLUSIONS

There are cases where equal readjustment occurs as a spon-
taneous property of an economic system. In the Theory of Demand,
for instance (Hildebrand, 1974), there is room for the case in
which a price increase in one commodity affects an agent's con-
sumption plan by a decrease in the budget share of that commodity
and a common increase of the remaining ones. The equal readjust-
ment process is endogenously performed by the system, i.e., the
commodity market, whose behavior is - so to speak - inherently

convex.
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MAX TRANSFER RATE (%) [100|5.86(5.00({4.00|3.00({2.00 [1.00

NUMBER OF STEPS 8 8 9 9 12 14 22

Table 1. Convergence up to 1% norm error as a function
of maximum transfer rate.

In other economic situations a system may not possess that
property, in which case, of course, it becomes the responsibility
of the policy maker to enforcé equal readjustment over the re-
maining components. The advantage of concentrating the control

effort on a single component is lost in this case.

Despite this obvious drawback, the equal readjustment policy
still appears to merit special attention over the other, possibly
more flexible, policies when considered from the viewpoint of
information requirements. As information is minimal in a vector
of equal components, it is plausible to expect that information
costs would be minimal with a control vector containing as many
common values as possible, as is the case with agk type of controls.
Although it would be desirable to support this statement on the
basis of a firmer formal theory, an attempt to clarify this point
on heuristic grounds can be made along the line of reasoning

contained in the Appendix.
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APPENDIX

We will try to justify the minimality of the information re-

quirement associated to an equal readjustment policy on the basis

of the block~diagram shown in figure A1l:

) /_\
A
\

OLD MODIFY PRESENT STATE OBSERVE
\ F ;
sent state)
/ \
L . - f’/ ECONOMIC SUBSYSTEM/COMPUTER
' INTERFACE PRESENT
i STATE
CONTROL COMPARE
(policy al- (present state i
gorithm) vs. desired state) |
——— & x.;\._.,.____,,...._._..“‘ '
; DESIRED
|STATE
Figure A1. Block Diagram of a Reallocation Policy

Each block in the diagram is representative of a finite set
of elementary operations: storage and retrieval of information.

Some of these are to be performed by computer (square blocks),
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others involve interaction between the economic subsystem
and the appropriate governing agency (round blocks). Assuming
that major costs are concentrated on the latter, the equal re-
adjustment policy involves:
~a sorting of an N-component vector (egs. (13),(14),(15)) in
the OBSERVE block: no storage is necessary and
-an assignment of two values in the MODIFY block: the amount
by which k-th component is to be changed and the amount by
which the remaining components are to be changed. However,
remaining components need not be identified. 1In this case,

storage requirement is independent of the size N of the

problem.

A more flexible policy would require instead:

-an appraisal of N different values in the OBSERVE block -
these are to be stored for subsequent processing and

-an assignment of N different values and additional informa-
tion on the identity of each component in the MODIFY block.
Information is dependent on the size N of the problem in

this case.



