Submitted manuscript entitled: Global aquifers dominated by fossil groundwaters but vulnerable to modern contamination

Submitted to: Nature Geoscience on 23 February 2017

Authors: Scott Jasechko1,*, Debra Perrone2,3, Kevin M. Befus4, M. Bayani Cardenas5, Grant Ferguson3, Tom Gleeson7, Elco Luijendijk8, Jeffrey J. McDonnell9,10,11, Richard G. Taylor12, Yoshihide Wada13,14,15,16, James W. Kirchner17,18,19

Author affiliations:
1 Department of Geography, University of Calgary, Calgary, Alberta, T2N 4H7, Canada
2 Water in the West, Stanford University, Stanford, California, 94305, USA
3 Civil and Environmental Engineering, Stanford University, Stanford, California, 94305, USA
4 Civil and Architectural Engineering, University of Wyoming, Laramie, Wyoming, 82071, USA
5 Department of Geological Sciences, The University of Texas at Austin, Austin, Texas, 78712, USA
6 Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A9, Canada
7 Department of Civil Engineering and School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
8 Geoscience Centre, University of Göttingen, Göttingen, 37077, Germany
9 Global Institute for Water Security, and School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 3H5, Canada
10 School of Geosciences, University of Aberdeen, Aberdeen, Scotland, AB24 3FX UK
11 Department for Forest Engineering, Resources and Management, Oregon State University, Corvallis, Oregon, 97330, USA
12 Department of Geography, University College London, London, WC1E 6BT, UK
13 International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, A-2361, Austria
14 Department of Physical Geography, Utrecht University, Utrecht, 80115, The Netherlands
15 NASA Goddard Institute for Space Studies, 2880 Broadway, New York, New York, 10025, USA
16 Center for Climate Systems Research, Columbia University, 2880 Broadway, New York, New York, 10025, USA
17 Department of Environmental System Sciences, ETH Zürich, Universitätstrasse 16, CH-8092, Switzerland
18 Swiss Federal Research Institute WSL, Birmensdorf, CH-8903, Switzerland
19 Department of Earth and Planetary Science, University of California, Berkeley, California, 94720, USA

*Corresponding author:
Scott Jasechko
Department of Geography, University of Calgary
2500 University Drive, Calgary, AB, T2N 1N4
Telephone: +1 403 220 5584
Fax: +1 403 282 6561
Email: sjasechk@ucalgary.ca

Words (abstract): 194
Words (main text): 2323
Words (methods): 1118
Number of figures: 2
Number of tables: 1
The vulnerability of groundwater supplies to contamination is closely related to their age. Fossil groundwaters that infiltrated prior to the Holocene have been documented in numerous aquifers and are widely assumed to be immune to modern contaminants. However, the global prevalence and vulnerability of fossil groundwater to modern-era pollutants have not been systematically studied. Here we analyze groundwater carbon isotope data \((^{12}\text{C},^{13}\text{C},^{14}\text{C})\) from 6455 wells around the globe. We show that fossil groundwaters comprise a large share (42-85%) of total aquifer storage in the upper 1 km of the crust, and the majority of waters pumped from wells deeper than 250 m. Fossil groundwater resources are often exploited unsustainably, but are thought to be unaffected by current climate variability and modern-era pollutants. However, half of the wells in our study that are dominated by fossil groundwater also contain detectable levels of tritium, indicating the presence of much younger, decadal-age waters. The prevalence of decadal-age waters in wells predominantly pumping fossil groundwater implies that contemporary contaminants may be able to reach deep wells tapping fossil aquifers. Thus, the management of fossil groundwater resources should also consider water quality risk along with sustainable use.

Global groundwater is an immense resource, storing ~100 times more water than all the world’s lakes\(^1\), supplying ~40% of the water for global irrigated agriculture\(^3\), and providing drinking water to billions of people around the world. Recent research has evaluated the global depths of both the groundwater table\(^4\) and modern groundwater recharged within the past ~50 years\(^1\), but the global prevalence and distribution of "fossil groundwater" remain unclear. Here we define fossil groundwater as groundwater recharged by precipitation more than ~12,000 years ago, prior to the beginning of the Holocene epoch; we define prevalence as the frequency with
which regional well waters contain fossil groundwater. Understanding the global extent and
depth of fossil groundwater resources is important because of their distinctive susceptibility to
overdraft5, presumed isolation from surface-borne pollutants6,7, potential vulnerability to
geogenic contaminants8, and isolation from modern climate variability9.

To calculate the prevalence of fossil groundwater in well waters, we compiled a
groundwater carbon isotope (12C, 13C, 14C) database of 6455 well water samples from around the
globe. The continental USA and Europe are overrepresented in our compilation, which is also
inevitably biased towards sedimentary basins where groundwater use is common (Supplementary
Figs. S1 and S2; Methods). Radiocarbon (14C) has a half-life of 5730 years and has been widely
used to identify fossil groundwaters10-18. Stable carbon isotope (12C, 13C) data were used to
correct for the dissolution of carbonate rocks, which are devoid of radiocarbon19 and thus would
otherwise distort 14C-based fossil groundwater calculations. We estimated fossil groundwater
fractions in wells around the world using a recently developed radiocarbon end-member mixing
model, which accounts for both radioactive decay and carbonate dissolution for pre- and post-
Holocene recharge20. Our approach, which estimates the fraction of fossil groundwater in a water
sample rather than the sample’s average age, is designed to be less vulnerable to the aggregation
errors that are known to bias mean groundwater age calculations21-23. We plotted depth profiles
of fossil groundwater for aquifers around the world, and calculated the depth below which fossil
groundwater becomes common (>50% of wells pump some fossil groundwater) or dominant
(>50% of wells pump >50% fossil groundwater; Methods). Where tritium (3H) data were
available (n=5661 well water samples), we determined the fraction of the groundwater sample
that recharged more recently than ~1953 by relating groundwater 3H concentrations to historical
precipitation 3H time-series24 (Methods). The threshold year 1953 was selected because
widespread thermonuclear testing in subsequent years increased precipitation tritium levels by
~5 to ~500 times above local natural background concentrations\(^2\), providing a tracer of recently
recharged groundwater (e.g., Ref. 15). For samples with both radiocarbon and tritium data, we
calculated the fractions of water that (i) recharged more than ~12 thousand years ago (fossil
groundwater), (ii) recharged more recently than the year 1953 (post-1953 groundwater), and (iii)
was of an intermediate age, having recharged more recently than ~12 thousand years ago, but
before the year 1953.

Fossil groundwater in global aquifers

Our global compilation of radiocarbon data shows that fossil groundwater is not an
anomaly in the upper 1 km of the crust, but instead is common in wells drilled to depths of more
than ~250 m (Figs. 1, 2 and S3). Among all surveyed wells (n=6455; Fig. S3), we find that over
half of all wells deeper than 250 m yield groundwater that was mostly (>50%) replenished before
the Holocene (i.e., minimum fossil groundwater exceeds 50% for the majority of groundwater
samples pumped from wells deeper than 250 m). By contrast, post-1953 groundwater becomes
increasingly scarce with depth (Fig. 2). Half of all wells deeper than 40 m pump groundwater
that is comprised almost entirely (>90%) of groundwater recharged before 1953 (i.e., maximum
post-1953 groundwater is less than 10% for the majority of groundwater samples pumped from
deeper than 40 m).

Fossil groundwaters are found throughout several major aquifers that sustain modern
irrigated agriculture (Fig. 1), including the North China Plain (at depths >200 m), the Southern
Central Valley of California (at depths >260 m), the north, central and south High Plains aquifers
of the central USA (at depths >120-280 m), Italy's Emilia-Romagna Plain (at depths >100-300
m) and Hungary's Pannonian Basin (at depths >160-300 m). Among our 62 study aquifers (Fig. 1), we find the range of depths below which fossil groundwaters dominate well waters (i.e., fossil groundwaters comprise >50% of the water pumped from more than half of all deeper samples) has a median of 200 m, an upper-lower quartile range of 115-290 m, and a 10th-90th percentile range of 70-430 m.

Assuming that isotopes measured in well waters reflect the isotopic compositions of groundwater stored in aquifers and are not the result of contamination by infiltrated surface water or rainfall (e.g., Refs. 1,5,11-18), our data show that fossil groundwater likely comprises 42-85% of total groundwater in the crust's uppermost 1 km, 31-79% in the uppermost 500 m, and 10-63% in the uppermost 100 m (Fig. 2c). By contrast, post-1953 groundwater comprises only 5-22% of total groundwater in the crust’s uppermost 1 km, 6-27% in the uppermost 500 m, and 13-51% in the uppermost 100 m (Fig. 2d). Fossil groundwater storage in the uppermost 1 km of the crust is, therefore, ~1.9 to ~17 times larger than post-1953 groundwater stores. By combining our new global fossil groundwater storage estimate with global porosity data\(^1\), we calculate that of the 12-22 million km\(^3\) of unfrozen water stored in the uppermost 1 km of the crust\(^1\) (~85-152 m equivalent depth of a column of water), approximately 5-18 million km\(^3\) is fossil groundwater (36-130 m equivalent depth), 0.6-4.6 million km\(^3\) is post-1953 groundwater (4-33 m equivalent depth), and less than 8000 km\(^3\) is recent rain and snow that becomes streamflow in less than three months\(^{25}\) (<0.055 m equivalent depth).

Figs. 1 and 2 show that the abundance of modern (post-1953) groundwater generally decreases with depth and that the abundance of fossil groundwater generally increases with
Topography-driven groundwater flow, geologic layering, and the decrease of permeability with depth generally lead to well-flushed shallow zones overlying poorly-flushed deeper zones, consistent with the occurrence of fossil groundwaters at depth. We conclude that a substantial share (42-85%) of global groundwater in the upper 1 km of the crust is fossil in age. Further, our analysis may even underestimate fossil groundwater abundance because of (a) possible sampling biases towards more permeable basins, (b) contamination of samples by atmospheric 14CO$_2$ that would bias our results to smaller fossil groundwater fractions26, (c) preferential pumping from more permeable strata that may be more likely to contain younger groundwaters (Supplementary Information section S3), and (d) contamination of well waters by recent precipitation due to the construction and use of the well itself (see subsequent section). Although our finding that old water is more common at greater depths is highly intuitive, our analysis is the first global, empirical assessment of the depths at which global aquifer systems transition to poorly-flushed storage dominated by fossil groundwaters.

Global groundwater use is accelerating27,28. Declining water tables, more intense droughts, and improved well construction technologies may encourage deeper drilling and increase society’s reliance on fossil groundwaters. Assessing how much fossil groundwater is pumped from aquifers requires records of well construction depths, which are available in the western US (Supplementary Information section S4) but not available globally. We examined how frequently fossil groundwaters are pumped in three western US groundwater aquifers by relating constructed well depths to 14C-based fossil groundwater abundances (Supplementary Information section S4). In the northern High Plains, 99% of wells are shallower than the depth at which fossil groundwaters become common (~170 m), implying that fossil groundwater pumping here is relatively rare (Fig. 3). Similarly, in the San Joaquin Valley, the large majority
(98%) of wells are shallower than the depth at which fossil groundwater becomes common (~240 m). In the Denver Basin, however, many (38%) groundwater wells have been constructed to depths where fossil groundwater is either detectable or dominant (>125 m), implying that fossil groundwater use in the Denver Basin is widespread. Further, fossil groundwater pumping in the Denver Basin has likely increased over the past ~60 years because older wells drilled between 1950 and 1970 were substantially shallower (median well depth of 27 m) than wells constructed more recently than 2010 (median well depth of 126 m), and because total groundwater pumping has more than quadrupled since 1970 (Ref. 29).

Our comparison of groundwater well depths and vertical distributions of fossil groundwater emphasizes that both fossil and post-1953 groundwaters are withdrawn from US aquifers. Pumping fossil groundwater may lead to aquifer depletion, and this risk is greater in arid regions where groundwater tables are deeper and compensatory increases in recharge or decreases in groundwater discharge are less likely (see Ref. 30). Water levels in deep wells have declined across much of the US over the past six decades, likely due to changes in groundwater pumping in response to climate variations31. Groundwater well construction is guided by groundwater aquifer conditions (e.g., transmissivity) and quality (e.g., salinity) rather than groundwater age. Nevertheless, we conclude that deep fossil groundwater is already used in some parts of the US, and posit that reliance on fossil groundwaters is probably also widespread in other regions, particularly in hyper-arid climates where modern recharge is negligible.

Fossil well waters vulnerable to contamination

Our compilation of radiocarbon and tritium data shows that roughly half of the well water samples that are measurably depleted in carbonate-dissolution-corrected \(^{14}\text{C}\) (which is clear
evidence of fossil age) also contain measurable amounts of 3H (which is unequivocal evidence of recharge after the onset of thermonuclear bomb testing in the 1950s; Table 1). This observation questions the common perception that fossil groundwaters are largely immune to modern contamination (e.g., Refs. 6,7). Our finding that fossil well waters often contain a component of much younger, decades-old groundwater means that fossil well waters—and, possibly, the aquifers from which they derive—are more vulnerable to pollution from modern-era contaminants than previously thought.

Several processes can mix decadal-age groundwater with fossil groundwater and thus make fossil well waters vulnerable to modern contaminants. One plausible explanation is aquifer heterogeneity, leading to preferential flow of younger groundwater through high-permeability zones and slower flows of correspondingly older groundwater through less permeable parts of the aquifer system, with mixing of these different-aged waters by dispersion or diffusion. Topography-driven multi-scale groundwater flow can also result in adjacent groundwater flow paths with very different ages, and thus there can be substantial mixing or dispersion of ages where flow paths converge, such as low-lying discharge areas on the land surface32,33. Induced mixing of young and old waters could also occur in wells with open holes or long screens that simultaneously capture young and old groundwater from shallow and deep layers of an aquifer34,35. Leaks in corroded or poorly sealed portions of a well may also contribute to mixing of young and old waters in the well bore itself. Co-occurrences of fossil and post-1953 groundwater pumped from wells screened hundreds of meters below the land surface more likely arise from the construction, presence and use of the well itself. For some hydrogeologic settings,
it is unlikely that natural flow paths transmit groundwater hundreds of meters below the land surface within a few decades. We note that tritium occurs equally often in well waters containing some fossil groundwater (tritium was detected in ~half of all samples with >0%) and in well waters containing mostly fossil groundwater (tritium was detected in ~half of samples with >50% fossil water). If natural flow paths were the primary cause of the widespread mixing of fossil and post-1953 groundwater, we would expect that samples dominated by fossil groundwater (>50%) would contain measurable tritium less frequently than samples that contain some fossil groundwater (>0% but possibly <50% fossil water), which is not the case (Table 1). Thus, tritium may co-occur with fossil groundwaters primarily as a result of pumping along extensive well screens, up-coning and down-coning of groundwater due to pumping, and leaks along well bores.

Regardless of how tritium has become mixed with much older groundwaters, the main implication for drinking water supplies is clear: many (~50%) fossil well waters contain detectable amounts of recently recharged groundwater (Table 1), rendering them potentially vulnerable to modern anthropogenic contamination despite their great age. Because aquifers bearing fossil groundwater require millennia to be flushed, their contamination may also persist for millennia, causing effectively irreversible harm to these aquifers over human timescales. However, it remains unclear how frequently tritium arises in fossil well waters as the result of mixing within the aquifer itself, versus mixing induced by the construction and pumping of the groundwater well.

Concluding remarks
Our analysis shows that fossil groundwater likely dominates global groundwater storage in the uppermost 1 km of the crust (42-85%). This figure is likely to be a lower bound on the global prevalence of groundwater, because the likely biases in our analysis (detailed above) serve to minimize our calculated fossil groundwater fractions. Further, our analysis focuses solely on the shallowest 1 km of the crust that is also the most rapidly flushed. Fractured rocks deeper than 1 km can host ancient fossil groundwaters that have been isolated for millions or even billions of years.

Improving access to freshwater for agriculture, households, and industry while sustaining vital ecosystems in a changing global environment represents a critical scientific and political challenge. Fossil groundwater resources likely comprise more than half of global unfrozen freshwater (Figs. 1 and 2), and dependence upon fossil groundwater to meet water demands is rising as a consequence of increasing groundwater withdrawals and deeper drilling in some regions (e.g., Denver Basin, USA). Groundwater quality remains a critical concern in many parts of the world, and our results highlight that even though deeper wells pump predominantly fossil groundwater, they are not immune to modern contamination.

Methods

Global groundwater isotope data.

We analysed global groundwater isotope data compiled from hundreds of primary literature sources and from the United States Geological Survey’s Water Quality Portal (Tables S1 and S2). About two-thirds (65%) of our global radiocarbon compilation comes from North America, which represents only ~18% of the global landmass. By contrast, only 9% and 11% of our compiled radiocarbon data come from Africa and Asia, which each comprise much larger
shares of global ice-free land areas (~22% and ~33% of the global landmass, respectively; Fig. S2). We analysed the compiled groundwater isotope data to partition the fraction of groundwater samples that recharged (i) before the Holocene-Pleistocene transition 11,700 years ago (“fossil groundwater”, based on 14C with a half-life of 5730 years), and (ii) more recently than 1953, when the "hydrogen bomb peak" in meteoric tritium began (“post-1953 groundwater”, based on 3H with a half-life of 12.3 years).

Determining fossil groundwater fractions.

We used stable (δ^{13}C) and radioactive (14C) carbon isotope data to calculate fossil groundwater fractions (F_{fossil}) following (Ref. 20):

$$F_{\text{Fossil}} = 1 - \frac{^{14}C_{\text{sample}} - ^{14}C_{\text{fossil}}}{^{14}C_{\text{Holocene}} - ^{14}C_{\text{fossil}}}$$

Equation 1

where dissolved inorganic carbon concentrations are assumed to be roughly equal for the fossil and Holocene waters20, and 14C represents the radiocarbon activity of: the groundwater sample (subscript “sample”), Holocene groundwater recharged within the past 11,700 years (subscript “Holocene”), or fossil groundwater recharged more than 11,700 years ago (subscript “fossil”). Holocene and fossil 14C inputs are based on late-Quaternary atmospheric 14C time series42,43 corrected for radioactive decay following (Ref. 20):

$$^{14}C_t = \left(q_t \times ^{14}C_{\text{precip}}(t) e^{-0.693(t_{\text{sample}}-t)/(5730 \text{ years})} \right)_t$$

Equation 2

where $^{14}C_{\text{precip}}(t)$ represents precipitation 14C at time t, and t_{sample} is the date that the groundwater sample was analysed. $^{14}C_{\text{Holocene}}$ is represented by $^{14}C_t$ evaluated for the time interval of $0 < \text{abs}(t_{\text{sample}} - t) < 11700$ years; $^{14}C_{\text{fossil}}$ is represented by $^{14}C_t$ evaluated prior to the Holocene (i.e., $\text{abs}(t_{\text{sample}} - t) > 11700$ years). For years postdating thermonuclear-bomb testing, we apply a 10-
year running average to estimate the maximum possible $^{14}C_{\text{Holocene}}$ value (Supplementary Fig. S5), effectively assuming some amount of dispersion has taken place in most aquifer systems over the past 50 years. The factor q is used to correct for the dissolution of carbonate with zero radiocarbon:

$$q_t = \frac{\delta^{13}C_t - \delta^{13}C_{\text{carbonate}}}{\delta^{13}C_{\text{recharge}} - \delta^{13}C_{\text{carbonate}}} \quad \text{Equation 3}$$

where $\delta^{13}C_{\text{recharge}}$ and $\delta^{13}C_{\text{carbonate}}$ are the stable isotope compositions of recharge and carbonates. We used $\delta^{13}C_{\text{recharge}}$ and $\delta^{13}C_{\text{carbonate}}$ values reported in the compiled studies when available, and otherwise assumed$^{20} \delta^{13}C_{\text{carbonate}} = 0$‰ and $\delta^{13}C_{\text{recharge}} = -14.3$‰. Global $\delta^{13}C_{\text{carbonate}}$ and $\delta^{13}C_{\text{recharge}}$ values vary around the globe20 such that our assumption of $\delta^{13}C_{\text{carbonate}} = 0$‰ and $\delta^{13}C_{\text{recharge}} = -14.3$‰ introduces uncertainty into our fossil groundwater calculations.

The range of $\delta^{13}C$ values ascribed to each time interval ($\delta^{13}C_t$) is assumed to be constrained by $\delta^{13}C_{\text{recharge}} \leq \delta^{13}C_{\text{Holocene}} \leq \delta^{13}C_{\text{sample}} \leq \delta^{13}C_{\text{fossil}} \leq \delta^{13}C_{\text{carbonate}}$ (Ref. 20). Because the possible ages of the Holocene and pre-Holocene end members vary widely, the ranges of $^{14}C_{\text{Holocene}}$ and $^{14}C_{\text{fossil}}$ values are often large; we apply upper and lower limits of $^{14}C_{\text{Holocene}}$ and $^{14}C_{\text{fossil}}$ in equation 1 to estimate minimum and maximum fossil groundwater fractions. $^{14}C_{\text{Holocene}}$ and $^{14}C_{\text{fossil}}$ share an identical end-member at the 11,700 year boundary. The shared 11.7 ka endmember, and the large atmospheric radiocarbon variations over each end-member interval, lead to highly uncertain F_{fossil} calculations for some samples.

In each aquifer, we pinpointed two depths where we observed transitions from Holocene groundwater to pre-Holocene fossil groundwater, and used these depths as upper and lower limits in the bar graphs shown in Fig. 1. The first (shallower) recorded transition depth specifies
a depth below which the majority (>50%) of well water samples from a given aquifer must contain some fraction of fossil groundwater (i.e., over half the samples have a minimum fossil groundwater fraction of greater than zero). The second (deeper) recorded transition depth represents a depth below which the majority (>50%) of sampled well waters from a given aquifer system must contain mostly fossil groundwater (i.e., over half of the samples deeper than the depth have a minimum fossil groundwater fraction of greater than 50%).

Where oxygen stable isotope data are also available, we confirmed the depth to fossil groundwater by comparing the 18O/16O ratio in groundwater to a new global map of δ^{18}O in late-Pleistocene precipitation; where δ^{18}O = ($[^{18}$O/16O sample] / [18O/16O standard ocean water] – 1)×103 ‰. Late-Holocene and late-Pleistocene precipitation δ^{18}O values are detectably different (>1 ‰) over the great majority (~87%) of the global landmass, enabling use of depth-δ^{18}O plots as a qualitative secondary indicator of the depth to fossil groundwater.

Determining post-1953 groundwater fractions.

To calculate the fraction of modern, post-1953 groundwater in a sample we used globally-interpolated precipitation tritium for years spanning the pre-bomb era (prior to 1950) to 2010 from Ref. 24. Global precipitation 3H estimates derive from >60,000 monthly 3H measurements made at 738 globally distributed stations (data provided by the International Atomic Energy Agency: iaea.org/water). We then weighted the monthly precipitation 3H data against the long-term average monthly precipitation rate to estimate an annually integrated precipitation 3H value at each well site. Once a precipitation tritium record was developed for each well location (from Ref. 24), we decay-corrected the precipitation tritium input curve to the date that each sample was collected. As in our radiocarbon-based calculation, we assume that
some amount of dispersion takes place in the aquifer and apply a 10-year running average before calculating maximum and minimum possible $^3H_{\text{post-1953}}$ values (Supplementary Fig. S5). We then applied the range of possible decay-corrected, post-1953 precipitation 3H values as one end-member in a two-component mixing model, and pre-1953 precipitation 3H as the other component:

$$F_{\text{post-1953}} = \frac{3H_{\text{sample}} - 3H_{\text{pre-1953}}}{3H_{\text{post-1953}} - 3H_{\text{pre-1953}}}$$ \hspace{1cm} \text{Equation 4}

where $^3H_{\text{sample}}$ is the measured 3H in the groundwater sample, and $^3H_{\text{pre-1953}}$ and $^3H_{\text{post-1953}}$ are the local meteoric water tritium activities that have been decay-corrected to the time of sampling for either (i) prior to 1953 ($^3H_{\text{pre-1953}}$), or years after 1953 ($^3H_{\text{post-1953}}$). The year 1953 was selected as a threshold20 so that the overwhelming majority of possible $^3H_{\text{pre-1953}}$ values fall below analytical detection limits, leading us to assume $^3H_{\text{pre-1953}} \approx 0$. We assume subterranean tritium production leads to secular equilibrium tritium contents that do not exceed the common analytical detection limit of 0.8 tritium units.

Estimating groundwater age-storage volumes.

In Fig. 2 of the main text, we present ranges of fossil and post-1953 groundwater with depth. The ranges shown represent averages of the minimum and maximum fossil groundwater (or post-1953 groundwater) fractions at each depth interval. For example, the range of fossil groundwater from 0 m to 25 m depth shown in Fig. 2a is 3%-52%, where 3% is the average minimum fossil groundwater fractions among all n=627 wells screened in the uppermost 25 m of the crust, and 52% is the average maximum fossil groundwater fraction for these n=627 well waters.
Data availability

Compiled isotope data are available in the primary references listed in Tables S1 and S2 and in tabulated form from www.isohydro.ca.

Acknowledgements

This project was supported by an NSERC Discovery Grant to S.J. (no. 5668).

Contributions

S.J. and J.W.K. analysed the compiled groundwater isotope data and wrote initial drafts of the manuscript. S.J. and D.P. analysed the compiled groundwater well construction data. All authors discussed results and edited the manuscript.
Fig. 1. Prevalence of fossil groundwater in global aquifers. (a) Depth to the fossil groundwater transition in 62 aquifers. The shallow depth (top of orange bar) represents a depth below which most wells (>50%) contain detectable fossil groundwater (minimum fossil groundwater fraction >0%). The deeper depth (top of red bar) represents a depth below which most wells (>50%) are dominated by fossil groundwater (minimum fossil groundwater fraction is >50%). Fossil groundwater becomes dominant at a median depth of 200 m, an upper-lower quartile range of depths of 115-290 m, and a 10th-90th percentile range of depths of 70-430 m. We note that the lower limit of our graph (600 m) does not necessarily represent the lower boundary for any of our 62 study aquifers, nor do the depths covered by red and orange bars imply that the groundwater quality is high or that the aquifer is productive at these depths.
Fig. 2. Variations of fossil (red) and post-1953 groundwater (blue) with depth. Panels a and b show statistical distributions of fossil and post-1953 groundwater binned at various depths. Panels c and d show the cumulative distribution with depth of stored fossil groundwater (pre-Holocene; red in panel a) and modern groundwater (post-1953; blue in panel b); that is, these panels represent the fraction of total groundwater overlying a given depth (data have been corrected for porosity changes with depth following Ref. 1). The coloured areas represent the estimated maximum and minimum range, calculated using all groundwater samples within a given depth bin (average of the maximum and minimum estimates of fossil groundwater and post-1953 groundwater for a given range of well depths).
Table 1. Radioisotope (14C, 3H) evidence for post-1953 and fossil groundwater mixing

<table>
<thead>
<tr>
<th>Presence of fossil groundwater</th>
<th>Total 14C samples with 3H data</th>
<th>Presence of post-1953 groundwater</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Present (3H>0)</td>
</tr>
<tr>
<td>May contain no fossil water (possibly 0%)</td>
<td>n=984</td>
<td>74%</td>
</tr>
<tr>
<td>Must contain fossil water (>0% and possibly <50%)</td>
<td>n=179</td>
<td>49%</td>
</tr>
<tr>
<td>Must contain mostly fossil water (>50%)</td>
<td>n=365</td>
<td>50%</td>
</tr>
</tbody>
</table>

Fossil groundwater:
- Present (>0%) in most wells below here
- Dominant (>50%) in most wells below here

Aquifer