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Abstract The ubiquitous lakes across China’s Yangtze Plain (YP) are indispensable freshwater resources
sustaining ecosystems and socioeconomics for nearly half a billion people. Our recent survey revealed a
widespread net decline in the total YP lake inundation area during 2000–2011 (a cumulative decrease of
�10%), yet its mechanism remained contentious. Here we uncover the impacts of climate variability and
anthropogenic activities including (i) Yangtze flow and sediment alterations by the Three Gorges Dam (TGD)
and (ii) human water consumption in agricultural, industrial, and domestic sectors throughout the down-
stream Yangtze Basin. Results suggest that climate variability is the dominant driver of this decadal lake
decline, whereas studied human activities, despite varying seasonal impacts that peak in fall, contribute mar-
ginal fraction (�10–20% or less) to the interannual lake area decrease. Given that the TGD impacts on the
total YP lake area and its seasonal variation are both under �5%, we also dismiss the speculation that the
TGD might be responsible for evident downstream climate change by altering lake surface extent and thus
open water evaporation. Nevertheless, anthropogenic impacts exhibited a strengthening trend during the
past decade. Although the TGD has reached its full-capacity water regulation, the negative impacts of human
water consumption and TGD-induced net channel erosion, which are already comparable to that of TGD’s
flow regulation, may continue to grow as crucial anthropogenic factors to future YP lake conservation.

1. Introduction

China’s Yangtze Plain (YP, Figure 1a), one of the World Wildlife Fund (WWF) terrestrial ecoregions, is an
�140k km2 fluvial belt encompassing the middle and lower reaches of the Yangtze River, home to �20%
(12k km2) of the freshwater lake area in East Asia (inferred from the Shuttle Radar Topography Mission
Water Body Dataset (SWBD)) [SWBD, 2005]. Distributed ubiquitously across the YP, these lakes are underpin-
ning components of the biophysical environment [Du et al., 2011; Fang et al., 2005; Ma et al., 2014; Yang
and Lu, 2013], providing the primary surface water storage to sustain local ecosystems, food security, and
socioeconomic development for nearly half a billion people (inferred from the LandScan High Resolution
Global Population Data) [Oak Ridge National Laboratory, 2008]. Influenced by the East Asian monsoon, most
of these lakes exhibit great intraannual variation in inundation area, which interacts with the Yangtze River
by nature [Wang et al., 2013]. However, intensive anthropogenic activities in the past decades, including the
world’s largest hydroelectric project, the Three Gorges Dam (TGD) [China Three Gorges Construction Year-
book Commission, 2004; Nilsson et al., 2005], may have significantly altered the natural hydrological regime
of the Yangtze River and its relation with the alluvial environment, leading to severe vulnerabilities for
today’s YP lake system [Du et al., 2011; Fang et al., 2005; Feng et al., 2013; Qiu, 2011; Wang et al., 2014a,
2013].

Our recent survey [Wang et al., 2014a], using �17k satellite images, further questions the resilience and
future stability of this critical lake system by uncovering a widespread decline of the total lake inundation
area across the YP from 2000 to 2011 (a cumulative decrease of 930 km2 or 9.3%; Figure 1b). This decadal
decline occurred concurrently with (i) serial meteorological droughts in the Yangtze hydrological basin
[Feng et al., 2011a, 2013; Liu et al., 2013; Qiu, 2011; Wang et al., 2014a; Z. X. Zhang et al., 2015; Z. Z. Zhang
et al., 2015], (ii) increasing water withdrawal and consumption driven by China’s rapid economic expansion
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[Changjiang Water Resources Commission, 2000–2011; Wada et al., 2013; Yang et al., 2015], and (iii) the initial
and yearly intensifying upstream water/flow regulation at the TGD [China Three Gorges Construction Year-
book Commission, 2011; Ou et al., 2012; Wang et al., 2013]. Despite a positive precipitation anomaly in 2010,
the decreasing trend in lake area is significant in all seasons, with the most substantial decrease in fall (1.2–
1.4% yr21) which coincides with the TGD water storage season. To effectively conserve this crucial freshwa-
ter storage, we need an immediate and thorough understanding of the explicit impact of each identified
major factor, which hitherto remains largely unclear or contentious (see literature summary in supporting
information Table S1).

Here we present a comprehensive investigation of the underlying mechanisms driving the decadal lake
area decline across the YP. By integrating in situ measurements, remotely sensed observations, and a cali-
brated hydrological model, we quantify the influences of both climate variability and major anthropogenic
activities including (i) Yangtze flow and sediment alterations by the TGD and (ii) human water consumption
(i.e., net withdrawal) from the agricultural, industrial, and domestic sectors throughout the Yangtze Basin
downstream of the TGD (hereafter ‘‘downstream Yangtze Basin’’; Figure 1a). Our findings provide a timely
advancement in assessing recent human interventions on the critical Yangtze hydrological system, and con-
tribute additional scientific guidance to water resource managements in populated and rapidly developing
regions during the global epoch of the Anthropocene [Crutzen, 2002].

Figure 1. Monitored Yangtze hydrological basin and lake systems. (a) The Yangtze Basin downstream of the TGD (�784k km2). The monitored lake system across the YP (green) includes
water bodies whose connections to the Yangtze River are natural (light blue) or controlled by floodgates (dark blue) [see Wang et al., 2014a for detailed statistics]. The outline of the
Three Gorges Reservoir (TGR, red) is modified from the extent in the Global Reservoir and Dam Database, Version 1.1 (GRanDv1.1) [Lehner et al., 2011a, 2011b]. (b) Ten day dynamics of
aggregated lake area in the YP, 2000–2011. Significant decreasing trends are revealed for both 2000–2011 (black) and the post-TGD period alone (i.e., after the initial TGD impoundment
in June, 2003; red). Two common monotonic fitting methods, the best fit simple linear regression (SLR) and the nonparametric Kendall-Theil (KT) robust line [Theil, 1950], are used to
compute all interannual trends throughout this paper. Values and significance levels produced by both methods are overall consistent. For simplicity, only SLR trends are reported in the
main paper, while associated KT trends are given in supporting information. (c) Mean annual cycles of aggregated lake area in the YP during the pre-TGD and post-TGD periods (blue
and red, respectively; lines represent means and shades standard deviations).
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2. Background

2.1. Lake System in the Yangtze Basin Downstream of the TGD
We conceptualize the contemporary lake system in the Yangtze Basin downstream of the TGD (a total lake
area of �15k km2) into three distinct groups (Figure 1a) [Wang et al., 2014a]. Nearly 80% of the lakes in area
are hosted by the YP (inferred from SWBD). These lakes are naturally influenced by the hydrological regime
of the Yangtze River; however, after decades of artificial channel diversion, land reclamation, and floodgate
management, only �20% in area remain freely connected to the Yangtze River today, hereafter referred to
as ‘‘natural lakes’’ (or Class I). Such lakes include China’s two largest freshwater lakes (i.e., Poyang and Dongt-
ing), Lake Shijiu, two oxbow lakes, and one flood storage zone. The other lakes on the YP have been artifi-
cially gated for flood-control, agricultural, or water-supply purposes, thus leading to partial to complete
disconnection from the Yangtze River. They are hereafter referred to as ‘‘controlled lakes’’ (or Class II). The
remaining 20% of the total lake area (Class III) is found in the form of man-made reservoirs in the tributaries
upstream to the YP. Although unaffected by the Yangtze River, these reservoirs can regulate tributary flows
which impact water supply to the downstream YP lakes.

2.2. Decadal Lake Area Changes
This study builds upon our previous finding of lake area dynamics in the downstream Yangtze Basin from
February, 2000 to December, 2011 using MODIS Terra daily surface reflectance imagery (MOD09) [Wang
et al., 2014a, 2014b]. Studied lakes cover all water bodies larger than 20 km2 across the downstream Yang-
tze Basin, including 185% of the total lake area within the YP (i.e., 100% and 81% of Class I and II lakes,
respectively). These lakes were organized into 90 regions including 6 regions for Class I, 56 for Class II, and
28 for Class III (lake regions in Classes I and II shown in supporting information Figure S1). In each lake
region, water extents were mapped from high-quality, cloud-free MODIS images with a targeted average
mapping frequency of one snapshot per 10 days. Detailed lake mapping methods and quality assurance are
provided in Wang et al. [2014a].

Our lake mapping revealed that nearly 70% of the total YP lake area (23 out of 62 Class I and II lake regions)
underwent evident decline in this recent decade. By aggregating time series of inundation areas in all YP
lake regions (Figure 1b), we calculated a significant net decreasing rate of 77.5 km2 yr21 (0.8% yr21) from
2000 to 2011 (a total decrease of 9.3%). To better contextualize TGD influences on the observed lake
decline, we divided the complete monitoring period (2000–2011) into pre-TGD and post-TGD periods
before and after the TGD’s initial water impoundment (i.e., June 2003). Consistent with the interannual trend
in 2000–2011, a significant lake area decrease of 60.1 km2 yr21 (or 0.6% yr21) persists in the post-TGD
period. By comparing the mean annual cycles of lake area between the two periods, we identified an evi-
dent year-round drop of 641.8 (6280.9) km2 or 6.2 (62.7)% after the TGD operation (Figure 1c), hereafter
referred to as ‘‘the post-TGD lake decline.’’

In contrast to lake decline within the YP, significant increasing trends were observed in nearly 70% of the
total lake area (14 out of the 28 lake regions) beyond the YP during 2000–2011, leading to a net increasing
rate of 9.2 km2 yr21 (a cumulative increase of 7.3%) in the aggregated inundation area of Class III reservoirs
(change statistics for all individual lake regions provided in Wang et al. [2014a]). This contrast between lake
and reservoir changes is also verified in terms of water storage across the entire Yangtze Basin from 2000 to
2014 by Cai et al. [2016].

3. Materials and Data Sets

Daily water regulations of the TGD (i.e., inflows and outflows) during 2000–2011 are acquired from the
China Three Gorges Corporation [www.ctgpc.com.cn]. To quantify TGD’s impacts on the complete down-
stream reach, we collect hydrological measurements at 15 gauging stations along the Yangtze River imme-
diately downstream from the TGD (st. 1) to Zhenjiang (st. 15) close to the estuary, including Chenglingji (st.
5) and Hukou (st. 10) at the outlets of Lakes Dongting and Poyang, respectively (see supporting information
Figure S1 for station locations and IDs). Daily station levels and discharges during 2004–2011 are acquired
from the Yangtze Waterway Bureau data available at www.cjhdj.com.cn. More descriptions of the gauging
stations and discharge/level acquisition can be found in Wang et al. [2013].
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Daily climate variables (e.g., precipitation and mean air temperature) are retrieved from the ERA-Interim
reanalysis climate data archive [Dee et al., 2011] (European Center for Medium-Range Weather Forecasts
data available at apps.ecmwf.int/datasets) to force the PCRaster Global Water Balance (PCR-GLOBWB)
hydrological model for streamflow simulation. We refer to van Beek et al. [2011] and Wada et al. [2011a,
2011b, 2014b, 2016] for detailed model parameterization and routing scheme. To account for uncertain-
ties in climate variables, we also obtain multiple precipitation and temperature data sets (refer to sup-
porting information Figure S2) for the time series comparison between lake area and different climate
variables.

Human water consumption is estimated considering the effects of not only population growth but also eco-
nomic increase and changes in irrigated areas over the studied period at 0.18 spatial resolution [Wada et al.,
2014b, 2016]. Historical daily water withdrawal and consumption for agricultural, industrial, and domestic
sectors are estimated by using the latest available global data sets of socioeconomic (e.g., population and
GDP), technological (e.g., energy and household consumption and electricity production), and agricultural
(e.g., the number of livestock and irrigated areas) drivers [Wada et al., 2011a, 2011b]. A flow chart that
describes how we compute sectoral water consumptions from various data sources is provided in support-
ing information Figure S3. The estimated sectoral water withdrawals (or gross water demand) have been
calibrated against country statistics reported in the FAO AQUASTAT (Food and Agriculture Organization
(FAO) data are available at www.fao.org/nr/water/aquastat/main) for China in order to obtain a more accu-
rate intensity of annual water use over the study period 2000–2011.

4. Methods

We follow a schematic impact chain (Figure 2) to assess the contribution of each driving factor on the
observed YP lake decline. This impact chain illustrates how the TGD, human water consumption, and
climate variability affect critical hydrological variables (e.g., river flow, level, sediment transport, and
channel cross-sectional geometry), and how the alterations propagate downstream to affect the YP
lake system. Uncertainty analysis and limitations for each impact are provided in detail in supporting
information.

4.1. Scenario Setup and Discharge
Simulation
To facilitate method descriptions, we
introduce five model scenarios which
assume the exclusion of none to sev-
eral anthropogenic factors from the
downstream Yangtze Basin (Table 1).
Each scenario defines a unique setting
for surface flow, which then leads to
differences in water level and lake
area. Three separate runs with the
PCR-GLOBWB model are performed to
simulate daily discharges in the down-
stream Yangtze Basin during 2000–
2011 under the regulated, pristine, and
realistic scenarios, respectively. These
runs are forced by the same climate
condition but vary in anthropogenic
inputs. In the first run (regulated sce-
nario), the initial Yangtze flows (i.e.,
immediately downstream of the TGD)
are calibrated by observed daily TGD
outflows, in order to compute down-
stream discharges under TGD’s flow
regulation (denoted as qr ). In the

Figure 2. Schematic chain illustrating anthropogenic and climate factors and their
downstream impacts on the YP hydrological regime. The thickness of each arrow
connector reflects the number of factors that may accumulatively influence the
next factor. Blue solid connectors represent impacts on the natural (Class I) lakes
while grey dotted connectors represent impacts on the controlled (Class II) lakes.
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second run (pristine scenario), the Yangtze flows are initiated by observed TGD inflows to simulate the natu-
ral downstream discharges driven by climate forcings alone (qn). The use of TGD inflows assumes that
recent human activities in the upstream Yangtze Basin do not alter the overall tendency of Yangtze dis-
charges to the TGD, which is fairly corroborated by supporting information Figure S4 and recent efforts
using both modeling and satellite remote sensing [e.g., Birkinshaw et al., 2016; Cai et al., 2016] (see more in
section 5.3). In the third run (realistic scenario), observed TGD outflows are used to calibrate the initial Yang-
tze flows (as for regulated scenario), and estimated daily sectoral water consumptions (see section 3) are
routed along the downstream drainage network together with climate variables. In other words, this run
includes both climate variability and studied anthropogenic factors (i.e., TGD and human water consump-
tion) to simulate more realistic discharges in the downstream Yangtze Basin (q). By comparing daily time
series of q with station measurements, we identify time-lag errors of up to �7–8 days in the simulated
Yangtze flows, which are shorter than our focused 10 day time scale. These lag errors appear consistent
among all three model runs and are removed from our simulations [see Wang et al., 2013 for details]. Lag-
free simulations are next used to further derive discharges under the other two scenarios (unregulated and
consumed), which are explained in the following sections. For clarity, we use lower case Roman letters to
denote variables from modeled scenarios, upper case from observations (including gauging and satellite
measurements), and Greek letters for relations/functions among variables. All symbol notations in this study
are summarized in Appendix A.

4.2. Assessing Impacts of the TGD
Since its initial water impoundment in June 2003, the TGD has altered the downstream Yangtze regime in
two primary ways: regulating the Yangtze water flow and reducing sediment load to the downstream Yang-
tze channel (Figure 2) [Wang et al., 2013]. According to the theory of stream channel hydraulic geometry
[Leopold and Maddock, 1953], TGD-induced Yangtze flow changes trigger instant alterations of the Yangtze
level (with an impact lag time of �12 days to the estuary) [Wang et al., 2013], a critical variable of controlling
water interactions between the Yangtze River and its freely connected fluvial lakes [Guo et al., 2012; Liu
et al., 2013]. Previous studies [e.g., Liu et al., 2013; Wang et al., 2014a; Ye et al., 2014; Zhang et al., 2014] sug-
gested that the inundation areas of Lakes Poyang and Dongting (both in Class I) are largely determined by
their outlet/boundary conditions, here measured as Yangtze water levels at the confluence with the lake
outflow. On the other hand, reduced sediment loads from the TGD lead to chronic erosion/incision along
the downstream Yangtze channel [Dai and Liu, 2013; Xu and Milliman, 2009; Yang et al., 2006, 2007], which
gradually changes the hydraulic geometry of river cross sections, including the stage-discharge (SD) rating.
Changed Yangtze levels due to both flow regulation and channel erosion alter natural water gradients at
lake outlets, thus enabling further changes in lake inundation pattern. Following such an impact chain, we
adopt a three-step procedure to assess the influences of both TGD water regulation and induced net chan-
nel erosion on the YP lake area.

The first step identifies individual lakes that are constantly or at least conditionally impacted by the Yangtze
River. This is done by examining the empirical relationship between daily inundation areas (A) and outlet
water levels (L) for each lake region (in both Classes I and II). As described above, we consider a lake outlet
to be the confluence of the Yangtze River and lake outflow, which may be slightly downstream from the
lake pour point. Given any lake, if its outlet generally coincides with one of the 15 gauging stations (refer

Table 1. Model Scenarios With Different Inclusions of Anthropogenic and Climate Factorsa

Scenario Definition Flow Level Area

Observed Remote Sensing or In Situ Measurements Q L A

Three Gorges Dam (TGD)
Human Water Climate

Modeled Flow Regulation Channel Erosion Consumption Variation

Realistic* � � � � q l a
Regulated* � � 3 � qr lr ar

Unregulated 3 � � � qu lu au

Consumed 3 3 � � qc5qu lc ac

Pristine* 3 3 3 � qn ln an

aDischarges under scenarios with ‘‘*’’ are directly simulated by the PCR-GLOBWB. ‘‘�’’ and ‘‘3’’ indicate inclusion and exclusion of the
associated factors, respectively.
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back to section 3), levels measured at that gauging station are used directly to represent L; otherwise, levels
measured at a nearby gauging station are adjusted by the simulated discharge changes from that nearby
station to the lake outlet, and used as a surrogate of lake outlet levels. For the latter situation, we have

L5uy u21
y L�ð Þ1q2q�

� �
(1)

where uy denotes the in situ SD rating curve in a given year (y) at a nearby surrogate station (uy is cali-
brated yearly in order to reflect channel geometric changes through time), u21

y the inverse yearly SD rating,
L� daily level measurements at the surrogate station, and q and q� daily discharges at the lake outlet
(i.e., lake-river confluence) and the surrogate station, respectively, simulated under the realistic scenario
(Table 1). Importantly, L is not an estimate of the lake outlet level, but the level at the surrogate station if it
had the same flow as the outlet (calibrated as u21

y L�ð Þ1q2q�Þ. By doing so, we are able to associate the
variation of surrogate station level with that of lake boundary condition without necessarily acquiring the
exact outlet level. We ensure that the Yangtze River section between each lake outlet and its surrogate sta-
tion to be as mass conserved as possible (i.e., no other substantial tributary confluence) in order to minimize
the uncertainty caused by simulation errors. Names and locations of the gauging stations used for all YP
lake regions are provided in supporting information Table S2. Yearly SD rating curves for these gauging sta-
tions can be found in Wang et al. [2013] and their fitting statistics in supporting information Table S3.

In the second step, daily outlet level changes induced by both flow regulation and net channel erosion dur-
ing the post-TGD period are estimated using (i) yearly updated SD rating curves established from station
measurements and (ii) hydrological model simulations calibrated by the TGD flows. We refer to Wang et al.
[2013] for more detailed methods of calculating Yangtze level changes. In brief, two hypothetical scenarios
are formulated to account for both TGD impacts on each lake outlet level (Table 1): an unregulated scenario
assuming no flow regulation from the TGD but changing/actual cross-sectional geometry in the down-
stream Yangtze channel, and a consumed scenario assuming no flow regulation and no channel geometric
changes since the TGD’s closure (i.e., only under human water consumption). TGD-induced flow changes
along the downstream Yangtze River (Dqr ) are estimated as qr2qn, which are further subtracted from in
situ Q to derive discharges without TGD’s water regulation (qu). When gauging records are unavailable, e.g.,
during June–December, 2003, we attempt to calibrate q using rescaling relations between measurements
and simulations available from 2004, and use it to substitute for Q. For each outlet, daily water levels under
the unregulated scenario (lu) are then estimated by qu using yearly rating curves (we conservatively assume
the rating curve for June–December, 2003 to be identical to that of 2004; see supporting information for
uncertainty analysis), while levels under the consumed scenario (lc) are estimated by qu using the fixed rat-
ing curve in 2004 representing the benchmark channel geometry right after TGD’s closure:

lu5uy quð Þ (2)

lc5u0 quð Þ (3)

where u0 denotes the SD ratings in the benchmark year of 2004, and qc � qu as we consider flows to be
invariant to channel changes.

In the third step, TGD-induced daily area changes in each lake region (i) are estimated by outlet level
changes using the established A-L relations (g):

Dar5
g Lð Þ2g luð Þ; i 2 I-01 to I-06; II-06; II-11; II-17; II-35

0; i 2 others

(
(4)

Dae5
g luð Þ2g lcð Þ; i 2 I-01; I-02; I-04; I-05; II-11

0; i 2 others

(
(5)

where Dar and Dae denote lake area changes induced by flow regulation and net channel erosion, respec-
tively. As further described in section 5.1, TGD-impacted area changes are considered for 10 out of 62 YP
lake regions (supporting information Figure S1) where A and L show evident relations (see Figure 3 and sup-
porting information Table S4). Dae is assessed on 5 lake regions (I-01, I-02, I-04, I-05, and II-11) which consti-
tute 91.0% of the total area of the 10 TGD-impacted lake regions, whereas the remaining 5 much smaller
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regions are excluded because their outlet levels are represented by nearby surrogate stations (see support-
ing information Table S2) where annual rating shifts may not reflect the precise channel geometric changes
at the lake outlets. The total YP lake areas under no TGD influences (consumed scenario) are thus aggre-
gated from the estimates of individual lake regions (ac):X

i2YP
acð Þi5

X
i2YP

A2Dar2Daeð Þi (6)

It is worth noting that cross-sectional changes in the downstream Yangtze River are dominantly but not
completely attributed to the TGD. For example, Yang et al. [2014] estimated that the TGD explains over 70%

Figure 3. Relationships between mapped daily lake inundation areas and observed outlet Yangtze levels (2004–2011). Evident relations are identified in all Class I lakes, i.e., (a–f) I-01
(Poyang), I-02 (Dongting), I-03 (Shijiu), I-04 (Heiwa Ancient Channel, connected oxbow lake), I-05 (Yangtze Ancient Channel, connected oxbow lake), and I-06 (Dangwu, Nanwu, Daocao),
and four Class II lakes, i.e., (g–j) II-06 (Caizi, Baitu, and Xizi), II-11 (Shengjin), II-17 (Huanggai), and II-35 (Chenhu). Refer to supporting information Figure S1 for locations of lake regions
and gauging stations.
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of the observed post-TGD (2003–2012) erosion along the Yangtze River between Yichang (st. 2) and Datong
(st. 12), and nearly 90% of the reduced sediment discharge between 2001–2002 and 2003–2012 at
Datong (st. 12). Therefore, even though our estimated Dae is assessed conservatively from the year 2004
and for 5 out of the 10 Yangtze-impacted lake regions, it may include contributions of (i) other human fac-
tors such as water impoundment in dams except the TGD, soil conservation, sand dredging, water diversion,
and urbanization and (ii) climate-induced changes in surface runoff and thus sediment flow [Yang et al.,
2015, 2014].

4.3. Assessing Impacts of Human Water Consumption
As the TGD alters water flow and sediment supply along the Yangtze River, only lakes freely connected to
the main stem are under constant influence by the TGD. Human water consumption, nevertheless, occurs
and accumulates along both the main stem and tributaries, thus producing a broader impact on the fluvial
lake area across the YP. However, lacking sufficient documentation on local lake control, we restrict our
assessment of the impacts of human water consumption on the inundation area of natural (Class I) lakes
alone. Theoretically, this may result in a conservative estimate of the consumption-induced impacts across
the YP but provides an original comparison of the relative influences between the TGD and water consump-
tion on the critical natural lake system.

We progressively quantify the impacts of human water consumption on the Yangtze flow, lake outlet level,
and lake inundation area, based on the same logic flow as used for assessing TGD impacts except that no
change of channel cross-sectional geometry is considered as a consequence of human water consumption
(Figure 2). Although water is consumed both upstream and downstream to the TGD, most consumption
occurs in the densely populated downstream [Wada et al., 2014b]. Upstream consumption likely exerts a
limited influence on the YP lake dynamics [Birkinshaw et al., 2016], given that upstream climate variation
alone seems to already explain the observed interannual decrease in the TGD inflow (supporting informa-
tion Figure S4). For this reason, we further emphasize the impact of human water consumption that is gen-
erated and then propagates in the downstream Yangtze Basin.

For each lake outlet, daily water levels assuming no human water consumption or the TGD (ln under the
pristine scenario) are estimated as

ln5u0 qc1Dqcð Þ (7)

where Dqc is calculated as qr subtracting q, representing daily sectoral consumptions accumulated through
the Yangtze main stem and tributary catchments up to the river-lake confluence. Daily impacts of human
water consumption on inundation area (Dac) in each natural lake region are estimated as

Dac5g lcð Þ2g lnð Þ (8)

The total inundation areas in the natural lake system (Class I) under no human impacts (pristine scenario)
are thus aggregated from the estimates of individual lake regions (i):

X
i2I

anð Þi5
X

i2I
ac2Dacð Þi (9)

To determine the contribution of human water consumption to the post-TGD decline (i.e., phase drop from
pre-TGD to post-TGD mean annual cycles; refer back to Figure 1c), we further reconstruct the post-TGD lake
inundation area under the condition of pre-TGD water consumption (ac0), in addition to the condition of no
water consumption. Such results inform the contribution explicitly attributed to the net change of water
consumption between the pre-TGD and post-TGD periods. For this purpose, we adopt the same approach
as described above, except that Dqc in equation (7) is replaced by DqDc representing daily consumption
changes between the two periods:

DqDc5 Dqcð Þpost2 Dqcð Þpre (10)

where Dqcð Þpost denotes daily water consumption in the post-TGD period and Dqcð Þpre the mean daily water
consumption in the pre-TGD period.
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4.4. Assessing Impacts of Climate Variability
As we illustrate in Figure 2, Class I lake inundation area responds to outlet level which varies with lake-
Yangtze confluence flow, whereas Class II inundation area is less influenced by the Yangtze River but more
controlled by water supply from the tributary catchments. For either class, understanding natural river dis-
charge across the downstream Yangtze Basin is a prerequisite for calculating lake area changes driven by
climate variation.

Accordingly, we use simulated daily discharges under the pristine and realistic scenarios (Table 1) to assess
the climate impact on the YP lake system. Different from the previous assessments, no gauging calibration
is performed downstream of the TGD in order to exclude the impacts of nonstudied factors such as land
cover land use changes (e.g., afforestation, soil conservation, and urbanization), water regulation in tributary
reservoirs, and water diversion and transfer. Although these factors are not explicitly evaluated, the scale of
their integrated impacts on the YP lakes may be implied by the fraction of lake area changes unexplained
by our studied climate and human factors.
4.4.1. Natural (Class I) Lakes
Our previous assessments of human factors rely on in situ SD rating curves, which allows the inversion of
human-induced flow changes to level changes with a precise adaptation of channel geometric shifts at
each outlet station. However, the acquired station observations are limited to the post-TGD period, which is
overall drier than the pre-TGD period, thus precluding a reliable rating extrapolation into high-flow condi-
tions during the pre-TGD. Given this limitation, we use the A-q relations available during the entire study
period of 2000–2011 to directly estimate climate-induced lake area changes, instead of using SD ratings
and then A-L relations.

We assume that q under the realistic scenario, which combines both climate and anthropogenic impacts,
can approach a sufficient explanation of the observed area variation in Class I lakes. Thus, for each lake
region, daily lake areas (a) from 2000 to 2011 are estimated from the relationship (w) between mapped A
and confluence q at the lake outlet; the estimation residuals are next adjusted by their seasonal relations (n)
with lake catchment flow (q0):

a5w qð Þ1n q0ð Þ (11)

The residual adjustment using catchment flow attempts to partially remedy the limitation of using simu-
lated confluence flow as a substitute for outlet level: the latter is a result of complex lake-river hydrodynam-
ics not fully captured in our routing scheme. Detailed equations for w and n are given in supporting
information Table S5. Daily lake areas under the pristine scenario (an) are then estimated by inputting simu-
lated natural discharges (qn) to w and n.

Two solutions are next applied to evaluate the combined impact of climate variation and human activities.
Solution 1 simply uses a estimated by q, while Solution 2 aggregates an and our previously quantified
human impacts (i.e., Dar , Dae, and Dac) which involve in situ SD ratings and thus the impact of Yangtze
channel changes.
4.4.2. Controlled (Class II) Lakes
The climate impact on each controlled lake region is assessed by the natural water supply from the
lake catchment, simulated as daily qn exiting the lake pour point (i.e., lake outflow). We use simulated
outflow instead of inflow, in order to take into account evaporative loss above the lake region. To inte-
grate the climate impact on the controlled lake system, we define a unitless index termed as relative
discharge (rq) by averaging standardized daily qn from all lake regions based on the weight of mean
lake size:

rq5
X

i2II
Ai � sq
� �

i

h i
=
X

i2II
Ai (12)

where Ai denotes the mean inundation area in any lake region i during 2000–2011 and sq the standardized
daily qn from lake region i.

Lacking sufficient documentation about local lake water management, we are unable to explicitly partition
Class II lake area changes into climate and anthropogenic contributions. Instead, our analysis seeks to
understand whether the observed interannual lake changes are closely related to climate variation even
with the existence of human seasonal management. For this purpose, we further explore Spearman’s rank
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correlations (q) between rq and aggregated A on both 10 day and annual time scales. A significant positive
correlation, if corroborated, suggests a likely important role of local climate in driving the decadal area
decline in the controlled lake system. Such a method is also applied to understand the climate impact on
the observed area increase in reservoirs beyond the YP (Class III lakes).

4.5. Uncertainty Analysis
We quantify the uncertainty from each of our above mentioned assessments, and integrate these multiple-
source uncertainties to infer 95% confidence intervals for all major estimations (see section 5). The uncer-
tainty sources include (i) yearly SD rating curves for estimating lake boundary levels (supporting information
Table S3), (ii) lake A-L functions for estimating human-induced lake area changes (supporting information
Table S4), and (iii) lake A-q functions for estimating climate-induced lake area changes (supporting informa-
tion Table S5). Results from sources i and ii are combined to propagate the overall uncertainty of each esti-
mated human impact (TGD flow regulation, net channel erosion, and human water consumption). The
result of uncertainty source iii is used to further validate the fidelity of using simulated discharge to estimate
lake inundation area and to compute the uncertainty of climate impact. Detailed uncertainty analysis is pro-
vided in supporting information, which also discusses lake mapping errors and the validations of simulated
discharge and human water consumption. Our uncertainty analysis, however, does not include all possible
error sources, such as simulation uncertainties when downstream gauging observations are absent (e.g.,
June–December 2003) and human-induced discharge changes upstream to the TGD.

5. Results

We reveal the quantified impact of each anthropogenic or climate factor as contributions to the change of
lake area seasonality, the post-TGD lake decline (i.e., phase drop from pre-TGD to post-TGD mean annual
cycles), and the interannual decreasing trends after 2000 and the TGD’s initial operation.

5.1. How Much Does TGD Contribute to the Yangtze Lake Decline?
As shown in Figure 3, evident correlations between inundation area (A) and outlet level (L) exist in all six
natural (Class I) lake regions. These relations can be generalized by single or compound quadratic functions
(with most r2 values close to or greater than 0.80), depicting changing sensitivity of DA to DL from low-flow
to high-flow seasons (see supporting information Table S4 for fitting equations and statistics). No significant
relations are found in the majority of controlled (Class II) lakes except four regions (II-06, II-11, II-17, and II-
35), confirming a constant water management for most controlled lakes. Given such evidence, we consider
that direct TGD impacts are limited to natural lakes and the four identified controlled lake regions. In gen-
eral, the sensitivity of DA to DL tends to be weakened as L lowers. For several small regions (i.e., I-03 to I-06,
II-17, and II-35), A appears to have little or no relation with L below certain thresholds (left of the dashed
lines in Figures 3c–3f, 3i, and 3j), which may be partially due to our mapping uncertainties using MODIS
imagery (see supporting information for uncertainty analysis). For each of these regions, when L falls below
the identified threshold, we assume that the concurrent lake water surface is disconnected from the Yang-
tze River and thus not directly influenced by the TGD.

Figure 4 presents, to our best knowledge, the first reconstruction of the post-TGD mean annual cycle of
aggregated lake area across the YP assuming no TGD influence. This result indicates an altered intraannual
pattern in lake inundation area, primarily manifested by the changes under TGD’s seasonal water dispatches
[China Three Gorges Construction Yearbook Commission, 2004; Ou et al., 2012; Wang et al., 2013]. In such an
annual cycle, the Three Gorges Reservoir (TGR) starts to reduce Yangtze flow and elevates the reservoir level
around mid-September–October (namely the water-storage dispatch) in order to prepare for power genera-
tion. As a result, water levels along the entire downstream Yangtze River decrease by an average of �0.2–
1.0 m (a longitudinal range between Yichang and Zhenjiang gauging stations; see supporting information
Figure S1 for station locations). These TGD-induced Yangtze level reductions temporally coincide with the
natural flow recession, and thus accelerate water drainage from the connected lake system, causing an
average decrease in total lake inundation area to be 235.7 km2 or 2.2% (Figures 4a and 4b). This decrease is
equivalent to 19.9% of the intraannual lake area variation across the YP, and explains 33.4% of the post-TGD
lake decline observed in this storage season.
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The TGR water level is steadily lowered under the following water-supplement dispatch in January–March.
Opposite the previous water storage season, increased outflow from the TGD elevates the downstream
Yangtze level by �0.1–0.6 m, which slightly increases the YP lake area by 55.0 km2 or 0.6%, accounting for
4.6% of its intraannual/seasonal variation. This area increase counteracts 11.4% of the concurrent post-TGD
lake decline, and thus alleviates water scarcity during the winter monsoonal dry season. The TGD further
releases water under the predischarge dispatch in May–early June to increase TGR’s summer flood storage.
This continuous flow release increases the downstream Yangtze level by �0.1–0.7 m, which reinforces its
natural level rise during the spring rainy season. The TGD-induced Yangtze level rise tends to constrain out-
flows from the connected lakes to the Yangtze River and thus increases lake area by 87.6 km2 or 0.9%. This
influence is equivalent to 7.4% of the intraannual lake area variation, and similar to the winter water-
supplement dispatch, counteracts the post-TGD lake decline by 9.3%. Finally, during the flood-control dis-
patch in July–August, the TGD stabilizes the Yangtze outflow and mitigates flood pressure by reducing the
natural level variation along the downstream Yangtze River by �14.0–36.0%. Consequently, the lake area
variation in the flood season was reduced by 18.1%, despite a negligible impact on the concurrent lake area
mean (7.3 km2 or <0.1%).

Meanwhile, reduced sediment loads released from the TGD lead to slow but enduring channel incision
along a large portion of the downstream Yangtze River [Dai and Liu, 2013; Wang et al., 2013; Yang et al.,
2006]. Over time, the lowered Yangtze level complicates the seasonal impacts on lake inundation induced

Figure 4. Anthropogenic and climate impacts on intraannual lake area variation during the post-TGD period (June 2003 to December 2011). Illustration of the impacts on aggregated
inundation area in (a–c) all YP lakes and (d–f) natural lakes alone. Assessed impacts are compared on the context of the observed post-TGD lake decline. (a, d) Ten day mean annual
cycles of observed and modeled lake areas (shaded areas illustrate lake area standard deviations). ‘‘HWC’’ represent human water consumption and ‘‘DHWC’’ the change of HWC from
pre-TGD to post-TGD periods. Green, black, and orange lines (illustrating ‘‘No TGD flow regulation,’’ ‘‘No TGD (flow or erosion),’’ and ‘‘No TGD or DHWC’’) are closely above each other.
Dots illustrate modeled post-TGD lake areas assuming pre-TGD conditions, i.e., (i) no TGD and (ii) water consumption and climate both the same as those in the pre-TGD period. (b, e)
Ten day mean annual cycles of relative human impacts (‘‘concurrent lake areas’’ in Figure 4b refers to estimated lake areas assuming no TGD’s flow regulation). (c, f) Mean seasonal contri-
butions to the observed post-TGD lake decline (error bars illustrate standard deviations of assessed impacts within each season).
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by flow regulation. With reference to the initial channel condition in 2003–2004, the net downstream
erosion during our studied post-TGD period counteracts the Yangtze level increases expected in winter
and spring by an average of �48% (varying from 225.1% to 138.8% among different stations) and �35%
(–13.3% to 80.4%), respectively. The expected level decrease in fall is, on the contrary, further reinforced
by �13% (–12.5% to 57.4%). Such erosion-induced impacts appear less evident on lake area (Figures 4a
and 4b), with average counteraction of 31.7% in winter and 4.7% in spring, and reinforcement of 3.5% in
fall (Figure 4c). Combining both impacts of flow regulation and net channel erosion, the TGD slightly
reduces the total YP lake area by an annual mean of 1.7% (maximally 3.5%) and the intraannual lake area
variation by 2.8% (Figure 4b).

We further summarize TGD’s contributions to seasonal lake declines in Table 2 by including 95% uncertainty
intervals and probabilistic confidence that the observed lake declines are attributed to the TGD alone (see
supporting information for detailed uncertainty analysis). The integrated impact of the TGD contributes
149.7 km2 or 19.8% to the post-TGD lake decline in fall but yields no evident explanation of the observed
decline in the other seasons, or only accounts for a marginal 2.5% of the average annual decline. This is also
corroborated by all seasonal p values of 4% or less, indicating low statistical probabilities that our assessed
TGD impacts, despite inevitable uncertainties, could result in the observed YP lake decline.

As an important note, TGD’s seasonal water regulation was gradually intensified from the initial impound-
ment until the full-operation capacity was first achieved in 2010 [see Wang et al., 2013 for TGD hydrograph];

Table 2. Estimates of Anthropogenic and Climate Contributions to Post-TGD Lake Declinea

Post-TGD Lake Decline

Seasonal Means (km2)

Annual Mean (km2)Winter Spring Summer Fall

All Yangtze Plain Lakes
Observed 2547.1 2777.8 2484.7 2756.5 2641.5

Anthropogenic Impacts (Cumulative)
TGD flow regulation 37.3 (6517.4) 62.8 (6420.3) 4.2 (6454.9) 2144.6 (6538.8) 210.1 (6486.0)

26.8 (694.6)% 28.1 (654.0)% 20.9 (693.8)% 19.1 (671.2)% 1.6 (675.8)%
p. 0.027 p.< 0.001 p. 0.035 p. 0.026 p. 0.011

Channel erosion 25.4 (6519.4) 59.9 (6424.9) 20.7 (6462.1) 2149.7 (6543.0) 216.3 (6490.4)
24.7 (694.9)% 27.7 (654.6)% 0.1 (695.3)% 19.8 (671.8)% 2.5 (676.5)%

p. 0.031 p.< 0.001 p. 0.040 p. 0.029 p. 0.013

Natural (Class I) Lakes
Observed 2428.4 2613.3 2417.8 2728.1 2546.9

Anthropogenic Impacts (Cumulative)
TGD flow regulation 34.8 (6511.7) 59.4 (6415.3) 4.1 (6450.6) 2138.4 (6534.2) 210.0 (6481.1)

28.1 (6119.5)% 29.7 (667.7)% 21.0 (6107.9)% 19.0 (673.4)% 1.8 (688.0)%
p. 0.076 p. 0.002 p. 0.067 p. 0.031 p. 0.029

Channel erosion 23.3 (6513.6) 56.9 (6419.9) 20.4 (6457.9) 2143.1 (6538.6) 215.8 (6485.6)
25.4 (6119.9)% 29.3 (668.5)% 0.1 (6109.6)% 19.7 (674.0)% 2.9 (688.8)%

p. 0.085 p. 0.002 p. 0.074 p. 0.033 p. 0.032
Water consumption 30.7 (6514.9) 50.2 (6420.1) 223.4 (6455.8) 2155.2 (6538.9) 224.4 (6485.6)

27.2 (6120.2)% 28.2 (668.5)% 5.6 (6109.1)% 21.3 (674.0)% 4.5 (688.8)%
p. 0.081 p. 0.002 p. 0.090 p. 0.037 p. 0.035

Climate impact 2574.2 (6742.3) 2410.0 (61222.4) 2324.6 (61340.3) 2594.9 (61575.0) 2475.9 (61262.0)
134.1 (6173.3)% 66.9 (6199.3)% 77.7 (6320.8)% 81.7 (6216.3)% 87.0 (6230.8)%

p. 0.700 p. 0.744 p. 0.892 p. 0.868 p. 0.912
Both Impacts Combined

Solution 1 2511.1 (6742.3) 2341.8 (61222.4) 2356.4 (61340.3) 2785.8 (61575.0) 2498.8 (61262.0)
119.3 (6173.3)% 55.7 (6199.3)% 85.3 (6320.8)% 107.9 (6216.3)% 91.2 (6230.8)%

p. 0.877 p. 0.758 p. 0.949 p. 0.960 p. 0.958
Solution 2 2543.5 (6903.4) 2359.8 (61292.6) 2347.9 (61415.7) 2750.1 (61664.6) 2500.3 (61352.2)

126.9 (6210.9)% 58.7 (6210.8)% 83.3 (6338.8)% 103.0 (6228.6)% 91.5 (6247.3)%
p. 0.860 p. 0.786 p. 0.945 p. 0.985 p. 0.962

aContributions to seasonal and annual means of lake area decline are provided for (i) studied anthropogenic factors alone, where the
impacts of TGD’s flow regulation, net channel erosion, and change of human water consumption (between pre- and post-TGD periods)
cumulatively add up, (ii) climate variation alone, and (iii) anthropogenic and climate factors combined. All contributions are quantified
in terms of mean magnitude, uncertainty, and significance, which are reported in each cell as (i) area change in km2 followed by its 95%
confidence interval (CI) in parentheses (the upper row), (ii) area change as percentage of post-TGD decline (the middle row), and (iii)
probability of the observed decline as a result of this contribution (the lower row), calculated as the p value of a one-sample z test that
examines the difference of the observed decline from our estimated mean with its uncertainty. Two alternative solutions (see section
4.4.1) are used to summarize anthropogenic and climate contributions with highly consistent results.
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therefore, our discussed seasonal impacts thus far represent the average effect of the TGD operation during
the studied post-TGD period. The yearly amplified lake area reduction induced by TGR’s water-storage dis-
patch accelerated significantly the post-TGD decreasing trend in fall by 33.8 km2 yr21 or 42.5%, accounting
for 29.8% of the observed decreasing trend in fall (supporting information Figure S5 and supporting infor-
mation Table S6). Nevertheless, as TGR’s initial impoundment reduced the downstream lake area in June,
2003 and the following cyclic water release increased the downstream lake area in both spring and winter,
TGD’s flow regulation turns out to have little negative contribution to the overall interannual lake area trend
across the YP (Figures 5a and 5b and Table 3). Regardless of the seasonal variation in flow regulation, the
Yangtze channel has constantly deepened since the closure of the TGD due to scouring, and together with
flow regulation, contributes 4.2 (66.6)% of the observed decreasing trend in the YP lake system during
2000–2011 and 5.9 (616.3)% during the post-TGD period. Similarly, we take into account our estimation
uncertainties to calculate negligible probabilities (<0.1%) of the causality between the TGD and observed
interannual lake decreasing trends (Table 3). Echoing our previous findings, these results suggest that the
TGD operation has evident seasonal impacts on the downstream lake inundation, but is not a dominant fac-
tor to the recent lake decline across the YP.

5.2. How Does the TGD Compare to Human Water Consumption?
In the densely populated Yangtze Basin, about 40–50% of human water withdrawal is consumed without
being returned to the river network [Changjiang Water Resources Commission, 2000–2011; Wada et al.,
2014b, 2013]. Such water consumption (60–70% via agricultural irrigation) leads to local flow reductions
which propagate downstream to substantive totals likely comparable to TGD’s regulation. Despite a slightly
decreasing irrigation demand in the recent decade, the total water consumption remained to rise in the
Yangtze Basin due to expanding industrial and domestic sectors [Changjiang Water Resources Commission,
2000–2011; Yang et al., 2015]. Thus, assessing the impact of human water consumption appears critical to
developing a thorough understanding of the decadal YP lake decline. As stated in section 4.3, we focus on
natural (Class I) lakes due to a lack of water management data for the controlled (Class II) lakes.

During our studied post-TGD period, human water consumption from the agricultural, industrial, and
domestic sectors reduced the average annual flow along the downstream Yangtze River by �0.3–6.0%,

Figure 5. Anthropogenic and climate impacts on interannual lake area dynamics during 2000–2011. The contribution of each studied factor to the observed lake area decreasing trend
during (left) (a, c) 2000–2011 or (right) (b, d) 2003–2011 (post-TGD) is quantified as a monotonic SLR line fitted on the modeled 10 day lake area series assuming no such impact, in all
(top) (a, b) YP lakes or (bottom) (c, d) natural lakes alone. ‘‘No climate’’ illustrates the trend in lake area assuming no climate variation, calculated from the time series of observed lake
areas (A) subtracting modeled realistic lake areas (a). Each shaded area illustrates a 95% CI for the generated linear trend arising from our estimation uncertainties (refer to supporting
information for detailed uncertainty analyses). Figure insets show the full extent of observed 10 day lake dynamics overlaid by estimated monotonic trends and CIs.
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leading to a level decrease of �0.1–3.0%. Such level decrease is significant enough to reduce the total natu-
ral lake area by 77.2 km2 or 2.6% (Figure 4d). Unlike the TGD’s influence, the impact of human water con-
sumption stays negative in all seasons, which equals 81.5% of the TGD-induced lake area decrease in fall
and completely counteracts the TGD-induced lake area increase by nearly 3 times in winter. Averaged annu-
ally, the consumption-induced lake area reduction exceeds the TGD impact by 61.3 km2 or nearly 5 times.

However, the regional human water consumption increased at a slow rate during the study period (�1–3%
yr21; supporting information Figure S6). The consequential lake area decrease, therefore, adds only mar-
ginal contributions to both the post-TGD decline (Figures 4d–4f and Table 2) and the interannual trends
(Figures 5c and 5d and Table 3). On the studied natural lake system, anthropogenic impacts (combining
both the TGD and human water consumption) account for 21.3%, 5.6%, and 4.5% of the post-TGD decline
in fall, summer, and annual average, respectively (Figure 4f), and explain 5.5 (66.9)% and 6.5 (616.8)% of
the decreasing trends for 2000–2011 and the post-TGD period, respectively (Figures 5c and 5d). Incorporat-
ing our estimation uncertainties (Tables 2 and 3), we shows an upper bound probability of only �9%
(mostly under 5%) that the combined human impacts equal the observed lake area changes. The dominant
factor that has driven the primary lake decline across the YP, therefore, appears to be exogenous to these
studied human activities.

5.3. Is Climate a Dominant Factor to the Yangtze Lake Decline?
Climate variations in precipitation, temperature, and evapotranspiration contribute to natural changes in
fluvial lake inundation by driving local meteorology and altering surface runoff. Since entering the current
millennium, the Yangtze Basin has been plagued by a series of extreme climate events, e.g., the summer

Table 3. Estimates of Anthropogenic and Climate Contributions to Lake Decreasing Trendsa

Interannual Lake
Decreasing Trend

2000–2011 2003–2011 (Post-TGD)

Rate (km2 yr21, % yr21) Contribution Rate (km2 yr21, % yr21) Contribution

All Yangtze Plain Lakes
Observed 277.5, 20.8 260.1, 20.6

p.< 0.001 p. 0.022
Anthropogenic Impacts (Cumulative)

No TGD flow regulation 277.4 (65.1), 20.8 (60.1) 0.1 (66.5)% 262.6 (69.8), 20.6 (60.1) 24.1 (616.3)%
p.< 0.001 p.< 0.001 p. 0.026 p.< 0.001

No channel erosion 274.3 (65.1), 20.7 (60.1) 4.2 (66.6)% 256.5 (69.8), 20.6 (60.1) 5.9 (616.3)%
p.< 0.001 p.< 0.001 p. 0.040 p.< 0.001

Natural (Class I) Lakes
Observed 273.8, 22.4 258.1, 21.9

p.< 0.001 p. 0.023
Anthropogenic Impacts (Cumulative)

No TGD flow regulation 273.6 (65.0), 22.4 (60.2) 0.3 (66.8)% 260.3 (69.7), 22.0 (60.3) 23.9 (616.7)%
p.< 0.001 p.< 0.001 p. 0.014 p.< 0.001

No channel erosion 270.5 (65.0), 22.3 (60.2) 4.4 (66.8)% 254.4 (69.7), 21.8 (60.3) 6.3 (616.8)%
p.< 0.001 p.< 0.001 p. 0.023 p.< 0.001

No water consumption 269.7 (65.1), 22.2 (60.2) 5.5 (66.9)% 254.3 (69.8), 21.8 (60.3) 6.5 (616.8)%
p.< 0.001 p.< 0.001 p. 0.024 p.< 0.001

Climate Impact
No climate variability 26.9 (612.7), 20.2 (60.4) 90.7 (617.2)% 21.6 (619.0), 20.1 (60.6) 97.3 (632.7)%

p. 0.149 p. 0.298 p. 0.397 p. 0.871
Both Impacts Combined

Solution 1 23.2 (612.7), 20.1 (60.4) 95.7 (617.2)% 21.5 (619.0), 20.1 (60.6) 97.4 (632.7)%
p. 0.310 p. 0.621 p. 0.427 p. 0.878

Solution 2 22.8 (613.6), 20.1 (60.4) 96.3 (618.5)% 2.2 (621.3), 0.1 (60.7) 103.7 (636.7)%
p. 0.331 p. 0.690 p. 0.270 p. 0.841

aEach cell in columns ‘‘rate’’ shows both absolute and relative interannual rates (in km2 yr21 and % yr21, respectively), with 95% CIs
(in parentheses), of the observed or estimated 10 day lake area series with cumulative removal of each factor, calculated by both SLR
(reported in this table) and KT robust line (supporting information Table S7), followed by p value quantifying the significance of fitted
decreasing trends (i.e., probability that the estimated rate equals zero). ‘‘Contribution’’ shows the change of interannual rate by each fac-
tor as percentage of the observed lake decreasing rate, followed by the probability of the observed decreasing rate as a result of this
contribution, calculated as the p value of a one-sample z test that examines the difference of the observed lake decreasing rate from
our estimated rate with its uncertainty. Here, ‘‘no channel erosion’’ and ‘‘no water consumption’’ indicate that Yangtze channel cross-sec-
tional geometries and downstream human water consumption during the post-TGD period remain at the pre-TGD levels (i.e., the year
2004 for channel geometry and the average of �2000-2003 for water consumption), respectively. Two solutions are used to integrate
both anthropogenic and climate contributions as described in section 4.4.1.
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floods in 2002 and 2010 [Shankman et al., 2012] and the prevalent droughts in 2006 and 2011 (with a half-
centenary minimum of spring precipitation in 2011) [Cai et al., 2016; Wang et al., 2014a], which are signifi-
cantly correlated with the El Ni~no-Southern Oscillation (ENSO) [Z. Z. Zhang et al., 2015]. Was such climate
variability influential enough to lead to the YP lake decline that is poorly explained by direct human
interventions?

To seek the answer, we simulate daily flows incorporating both anthropogenic and meteorological influen-
ces (realistic scenario), and test whether these flows can approach a thorough explanation of the observed
post-TGD decline and decreasing trends in the natural lake system (refer back to section 4.4). Modeling lake
areas from surface flows involves various uncertainties stemming from the complexity of river-lake hydrody-
namics and inundation hysteresis (detailed model performance and uncertainty analysis given in support-
ing information). Despite these uncertainties, our estimated Class I lake areas, including the impacts of
climate variability, TGD operation, and human water consumption, agree well with our remote sensing
observations (Figure 6), and capture an average of 91.2% of the post-TGD decline and over 95% of the
decreasing trends (Figure 5d and Solution 1 in Tables 2 and 3). The contribution of climate variation alone is
then separated by the established flow-area model using flow simulations driven only by climate forcings
(pristine scenario).

We reveal that climate variation across the downstream Yangtze Basin contributes an average of 87.0% of the
post-TGD lake decline (i.e., 134.1% in winter, 66.9% in spring, 77.7% in summer, and 81.7% in fall) (Figure 4f
and Table 2), and 90.7 (617.2)% and 97.3 (632.7)% of the decreasing trends during 2000–2011 and post-TGD
periods, respectively (Figures 5c and 5d and Table 3). By testing these contributions with their estimation
uncertainties, we infer a moderate to high confidence (with most probabilities ranging from 70% to over 90%)
that the assessed climate impacts are statistically equivalent to the observed lake declines (Tables 2 and 3).

Since simulated pristine discharges reflect an integrated effect of various climate factors, we next compare
the time series of mapped lake areas with precipitation and temperature separately, in order to obtain a
qualitative understanding of which factor may be more responsible for the lake decline. As illustrated in
supporting information Figure S2, the Yangtze Basin experienced a general decrease in precipitation but
increase in temperature during 2000–2011. Precipitation appears to drive the overall lake dynamics,
reflected by a significant positive correlation between lake area and precipitation (in both full time series
and anomalies). The severe drought anomalies in 2006 and 2011, in particular, led to strikingly low lake
areas, which are critical determinants to the decadal lake decline. At the same time, increasing temperature,
which negatively correlates with lake area, tended to enhance evapotranspiration and reduce surface run-
off, leading to a deteriorated drought in the lake system across the YP.

To further evaluate the combined human and climate impacts on the natural lake system, we aggregate the
climate contribution to our quantified impacts of TGD’s flow regulation, net channel erosion, and human
water consumption (Solution 2 in Tables 2 and 3), as an alternative solution to the estimates directly using sur-
face flows (Solution 1 as described above). In the latter, human impacts on lake inundation area are directly
inferred from simulated flow changes rather than from calibrated Yangtze level changes induced by flow
changes, and thus take no explicit account of the impact of Yangtze channel erosion. However, except minor

Figure 6. Validation of estimated Class I lake inundation areas with MODIS observations. (a) Ten day time series with SLR trends. (b) Cross-validation. Errors in the estimated lake areas
(a in equation (11)) reflect uncertainties that may be propagated from climate data, human water consumption, discharge simulation, lake mapping, and area-discharge fitting. Estimates
align generally well with MODIS observations, with 195% of the observed interannual decreasing trend replicated by the estimates (Figure 6a), �2% mean bias, 13–17% RMSE, and
�0.90 r2 (Figure 6b). The overall estimation accuracies are similar for both the pre-TGD and post-TGD periods, despite slightly lower mean bias and RMSE for the pre-TGD period and a
higher r2 for the post-TGD period.
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impact increments in Solution 2, both results are highly consistent, which account for over 91% of the
observed post-TGD lake decline and explain almost completely the observed lake decreasing trends.

Due to strict floodgate management, the controlled (Class II) lakes in the YP exhibit a seasonal inundation pat-
tern considerably different from the meteorological cycle (Figure 7); even so, their inundation area agrees
closely with natural catchment water supply (rq) on the annual time scale (Figure 7f). By aggregating the annual
means of both natural and controlled lake areas (Figures 7b and 7f), we find a 0.97 rank correlation coefficient
between the interannual dynamics of YP lake area and natural water supply, which further suggests a substan-
tial role of local climate in driving the decadal area decline across the YP lake system.

Concurrent with the discussed factors, numerous reservoirs in the tributary catchments appear to have
intensified water impoundments. This is manifested by, for example, the expanding area of 28 Class III lakes
(i.e., major reservoirs in the downstream Yangtze Basin) in Figures 7i–7l [also see Wang et al., 2014a] and the
increasing total storage in 108 reservoirs bigger than 0.1 km3 across the entire Yangtze Basin by Cai et al.
[2016]. Reservoir regulations downstream of the TGD cause additional interventions with tributary water
supply to the YP lakes [Long et al., 2015], and water impoundments in the upstream catchments may reduce
the natural inflow to the TGD, which is not fully considered in our model simulations (refer back to section
4.1). Cai et al. [2016] concluded that during 2000–2014, TGR’s water impoundment alone accounts for more
than 80% of the storage increase in all 108 large reservoirs across the Yangtze Basin. The net storage
increase in these reservoirs except the TGR is about 0.4 Gt yr21 [Cai et al., 2016], equivalent to only 0.1% of
the annual Yangtze flow entering the downstream basin. By adding middle-sized and small reservoirs, Yang
et al. [2015] showed that the total water storage in all reservoirs across the Yangtze Basin, including their
surface evaporative loss, probably increased by �9.5 Gt yr21 during 2000–2011, which is equivalent to
�2.4% reduction of the Yangtze flow to the downstream basin and about �1.7 times greater than TGD’s
flow regulation. Inferred from the limited impact of TGD’s flow regulation we have quantified, the aggre-
gated contribution of the other reservoirs to the YP lake decline (at least for Class I) is likely below �5%.

If we assume that half of the water storage increase in all reservoir except the TGR occurred in the upstream
Yangtze Basin, this will reduce the Yangtze flow to the downstream basin by less than �1%. This miniscule
influence also supports our previous assumption that the observed trend in TGD inflow is largely attributed
to upstream climate variation. More corroborations are suggested in (i) supporting information Figure S4,
which shows a fairly good agreement between our simulated natural flows and observed TGD inflows and
(ii) another modeling study by Birkinshaw et al. [2016], which applied the hydrological model SHETRAN with
station climate data observed in the upstream Yangtze Basin to obtain an excellent match between simu-
lated and measured flows before 2006 immediately downstream of the TGD.

Our assessments do not take into account a range of other anthropogenic factors such as urbanization, affor-
estation, and sand dredging, which may be responsible for our estimation uncertainties and the remaining
gap in our unexplained lake area decline. For instance, several studies [Feng et al., 2011b; Jiang et al., 2015; X.
J. Lai et al., 2014; Sun et al., 2012; Xu and Milliman, 2009; Yang et al., 2014] imply that intensive sand dredging
during our study period has led to detectable lake bathymetrical changes, which could negatively affect lake
inundation area (e.g., about 20.6% yr21 for Lake Poyang as we verify in supporting information Figure S7).

As some studies [e.g., Feng et al., 2013; Wang, 2013] have questioned, altered lake area by the TGD changed
the supply of open water evaporation, which may have in turn affected the local climate and thus the
downstream lake area. Nevertheless, given an average TGD impact of less than �4% in concurrent lake area
or �3% in lake area seasonality (Figure 4), the speculated influence on the downstream climate, particularly
compared to the scale of ENSO variability, is likely limited or even negligible. Therefore, we conclude that
the observed decadal lake decline across the YP is a primary consequence of local climate variability, rather
than direct anthropogenic interventions.

5.4. Outlook for the Yangtze Lake System Under a Fully Operational TGD
We have shown that the dominant driver of the recent Yangtze lake dynamics stems from climate variation;
however, human water regulation and consumption exert persistent impacts on lake inundation, and thus
remain important factors to lake management and conservation. Starting in the fall of 2008, the TGR
attempted the final pilot impoundment and eventually reached its designed ultimate water level (175 m
asl) in October 2010 [China Three Gorges Construction Yearbook Commission, 2011; Ou et al., 2012; Wang
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Figure 7. Comparisons of observed lake inundation area and simulated natural water supply. (a–d) Class I. (e–h) Class II. (i–l) Class III. (left) Interannual dynamics in 10 day series (Figures
7a, 7e, and 7i) and annual means (Figures 7b, 7f, and 7j). (right) Annual mean cycles. Axis labels for Classes II and III are consistent with those for Class I. Blue and red: pre-TGD and post-
TGD periods, respectively. Grey: natural relative discharge (rq) (see definition in section 4.4.2). Calculation of rq for Class I lakes follows the same method for Classes II and III (equation
(12)), except that Class I qn is the lake-Yangtze confluence flow in order to include the Yangtze River impact on the lake boundary condition. The climate dominance on Class I is further
supported by the significant agreement between lake area and rq on both 10 day and annual time scales (Spearman’s rank q50:93; p < 0:01 (Figure 7a)), which is consistent with the
agreement between lake area and precipitation in supporting information Figure S2. Intraannual patterns of Class II and III areas are discrepant from those of rq (Figures 7e, 7g–7i, and
7k–7l), implying substantial seasonal human control. Class II area, however, agrees well with rq on the annual time scale (q50:87; p < 0:01 (Figure 7f)), suggesting a dominant climate
impact on the general interannual after trend. This is similarly supported by the phase drop in mean annual cycles of both lake area (Figure 7g) and rq (Figure 7h) despite their opposite
seasonal patterns. Different from the YP lakes, Class III area shows a significant interannual increase, contrasting with the general decrease in rq (Figures 7i–7l). This contrast implies inten-
sified human water regulations in these tributary reservoirs, which may reduce downstream water supply and contribute to the YP lake decline.
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et al., 2013]. The downstream Yangtze regime has since been regulated under TGD’s full-capacity water dis-
patch scheme. To discern the maximal influence of TGD’s water regulation, we summarize the mean annual
cycles of aggregated lake area across the YP during 2009–2011 (Figures 8a–8d). The revealed intraannual
impacts are generally double to triple the influences averaged in the studied post-TGD period (see statistics
including seasonal impacts on major natural lakes, Poyang and Dongting, in supporting information Table
S8). The total lake inundation area across the YP is increased by up to 2.7% in winter and spring, and
decreased by 0.1–6.5% in fall. The natural processes of lake seasonal growth and recession are accelerated,
i.e., by approximately 5–10 days in spring and 15–25 days in fall, respectively, and the lake area stabilized
by 19.8% in summer. As an overall outcome of TGD’s full-capacity regulation, the seasonal variation of YP
lake inundation area is slightly reduced by 4.9% with a negligible impact on the annual mean (0.1 (62.1)%).

Although the TGD has currently reached its full regulation, downstream Yangtze channel erosion remains a
chronic process [Yang et al., 2006, 2014]. As of 2009–2011, the net channel erosion had counteracted 48.7%
and 30.5% of the lake area increase expected by TGD’s full water dispatches in winter and spring, respec-
tively, and reinforced 14.1% of the lake drainage in fall (Figure 8d). As channel erosion continues in the next
four to five decades or so [Yang et al., 2006], its negative impact will be further amplified and thus increas-
ingly critical to the surrounding lake and wetland system. By simply applying the regulated Yangtze flows in
2009–2011 to the channel geometry in 2012, we observe slightly additional lake decline (supporting infor-
mation Figure S8) as a result of ongoing channel incision even during a period of 1–3 years.

The effect of future climate on the Yangtze Basin is still uncertain [Birkinshaw et al., 2016; Gu et al., 2015; Liu
et al., 2008; Schewe et al., 2014; Shankman et al., 2012], but local and transbasin water consumptions, which
are major anthropogenic inducers of hydrological drought [Wada et al., 2013], may likely increase with ris-
ing water demand from population growth, economic expansion, and living standard improvement in the
coming decade(s) [Wada et al., 2014a; Zhao et al., 2007; Ercin and Hoekstra, 2014; Jiang, 2009]. During 2009–
2011, human water consumption led to an annual reduction of 79.6 (652.4) km2 or 3.0 (61.9)% of the total
inundation area in the natural lakes (Figures 8e–8h). The seasonal reduction already accounts for 30.6% of
TGD’s full water storage effect in fall and almost completely offsets the benefit of TGD’s water release in
winter (by 96.4%). As we suggest, climate variability may likely drive the overall lake dynamics in the near
future; however, if the impacts of human water consumption and Yangtze channel erosion continuously
strengthen and exceed the constraint of TGD’s flow regulation, anthropogenic influences will only become
more important to the critical lake systems across the YP.

6. Discussion and Concluding Remarks

Our results reveal an overdue explanation of the recent decadal lake decline in the YP through quantitative
attributions to major anthropogenic factors (i.e., the TGD and human water consumption) and climate vari-
ability. We conclude that direct human activities are not a primary cause of this decline; neither can TGD-
induced lake area changes likely alter the regional climate variability which we estimate to be the dominant
factor triggering the observed lake decline. Despite a different focus, our overall conclusion is consistent
with the recent finding from Yang et al. [2015] that climate variability explains most of the decrease of Yang-
tze River flow in the post-TGD decade compared to a longer pre-TGD period from 1950s.

Several limitations may be addressed in future improvements. First, we focus on the changes in inundation
area, rather than water storage, in selected major lake regions accounting for +85% of the total YP lakes in
both area and storage (volume estimated from the HydroLAKES dataset [Messager et al., 2016]). However, since
TGD’s impacts on lake inundation area are small, we speculate that its impacts on the total lake water storage
across the YP are likely limited as well. Second, our assessed anthropogenic factors exclude water regulations
in tributary reservoirs, land cover land use changes, and lake bathymetric alterations, although their integrated
impact is somewhat implied by lake area changes unexplained by our studied factors. Third, our conclusion of
the climate dominance on the YP lake changes is based on the assumption that recent human activities in the
upstream Yangtze Basin do not alter the intrinsic trend in TGD inflow, which is generally corroborated by our
analysis and existing literature. Fourth, we emphasize direct human impacts on the Yangtze hydrological
regime, which do not include human-induced climate change. A more thorough separation between natural
and human impacts requires a better understanding of how recent climate variation is coupled with, and possi-
bly induced by, other anthropogenic forcing in broader and longer contexts.
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In addition, our applied hydrological model, PCR-GLOBWB [van Beek et al., 2011; Wada et al., 2014b, 2016,
2011a, 2011b], although being widely accepted in both global and regional studies, has inevitable limita-
tions in routing scheme and parameter regionalization [Weiland et al., 2015], and our discharge simulations
are forced only by the ERA-Interim reanalysis climate data. To remedy some of these limitations, we cali-
brate simulated streamflow using gauging measurements (for assessing human impacts), evaluate modeled
lake inundation areas against remote sensing observations, and quantify multiple uncertainties to infer con-
fidence intervals for all estimates. Future work using multimodel ensemble and observed climate data may
be necessary to verify and hopefully further secure our primary conclusions.

Despite an emphasis on disaggregating anthropogenic and climate factors, our results also signify that
anthropogenic impacts are nontrivial on the seasonal scale and have strengthened persistently over the
past decade. In particular, the expedited lake drainage due to TGD’s increasing water storage, which is

Figure 8. Anthropogenic impacts on intraannual lake area variation during the TGD full-operation period (2009–2011). Illustration of
impacts on (left) (a–d) all YP lakes and (right) (e–h) natural lakes alone. (a, e) Ten day mean annual cycles of observed and modeled lake
areas (shaded areas illustrate lake area standard deviations). (b, f) Ten day mean annual cycles of human-induced lake area changes (left
axis) and those changes as percentages of the intraannual lake area variation without TGD’s flow regulation (right axis). (c, g) Ten day
mean annual cycles of human-induced lake area changes as percentages of concurrent lake areas without TGD’s flow regulation. (d, h) Sea-
sonal means of all studied human impacts (error bars illustrate standard deviations of assessed impacts within each season).
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observable by gravimetric satellites [Long et al., 2015; Long et al., 2017], leads to �40% acceleration of the
climate-induced lake decrease in fall. Although TGD’s full water regulation (since 2009) alters only marginal
portions (less than 6.5%) of the total YP lake area, its seasonal impacts, including water drainage in fall and
submergence in winter and spring, become amplified (up to �10–20%) when examined on individual natu-
ral lakes such as Dongting and Poyang (supporting information Table S8). Such greater regional impacts call
for immediate adaptation to the disturbed submerging pattern (e.g., reevaluation of the newly proposed
Poyang Lake Dam) [Jiao, 2009] in order to better protect the vital wetland ecosystems that still remain natu-
rally connected to the Yangtze River.

As we show, the negative impacts of Yangtze channel erosion and human water consumption are compara-
ble to that of TGD’s water regulation. This is so even though our estimates are validated to be conservative
and we take no account of water consumption in the upstream Yangtze Basin or lake bathymetric changes
due to expedited water drainage, sediment mining, and tributary damming [Feng et al., 2011b; Jiang et al.,
2015; X. J. Lai et al., 2014]. Growth of these impacts likely proceeds regardless of TGD’s full water regulation,
particularly considering (i) the ongoing boom in dam construction across the Yangtze Basin [Zarfl et al.,
2015] which continues exacerbating downstream sediment deficiency and (ii) the recently initiated South-
to-North Water Transfer/Diversion Project (Liu et al., 2013; Office of the South-to-North Water Diversion Pro-
ject Commission of the State Council data are available at www.nsbd.gov.cn/zx/english) allowing additional
water and sediment loss via transbasin transfer [Yang et al., 2002].

Increasing human impacts accompany future climate uncertainties in the Yangtze Basin. Our study period
ends in the dry anomaly year of 2011, which was followed by higher precipitation and continuously rising
temperature during 2012–2016 (supporting information Figure S2). Despite a partial alleviation from the
precipitation, significant declining trends in both YP lake area and storage persisted till at least 2014 [Cai
et al., 2016]. The future stability and integrity of the YP lake system will largely depend on the frequency
and intensity of climate anomalies, which are broadly related to the ENSO modulation. To this end, we fore-
see the necessity of future lake conservation efforts, by seeking optimized coordination among water regu-
lation, consumption, and diversion under projected climate change and socioeconomic development
within and beyond the Yangtze Basin.

Appendix A: List of Variable and Function Notations

Symbol Definition

A Lake area mapped from MODIS imagery
a Lake area under the realistic scenario (see Table 1 for all model scenarios)
ac Lake area under the consumed scenario
ac0 Similar to ac but under human water consumption during the pre-TGD period
an Lake area under the pristine scenario
ar Lake area under the regulated scenario
au Lake area under the unregulated scenario
Dac Lake area change induced by human water consumption
Dae Lake area change induced by net channel erosion
Dar Lake area change induced by TGD’s flow regulation
L In situ Yangtze level
L� Yangtze level at surrogate station
l Lake outlet level under the realistic scenario
lc Lake outlet level under the consumed scenario
ln Lake outlet level under the pristine scenario
lr Lake outlet level under the regulated scenario
lu Lake outlet level under the unregulated scenario
Q In situ Yangtze flow
q Yangtze flow under the realistic scenario
q� Yangtze flow under the realistic scenario at surrogate station
q0 Lake catchment flow under the realistic scenario
qc Yangtze flow under the consumed scenario (qc � qu)
qn Yangtze flow under the pristine scenario
qr Yangtze flow under the regulated scenario
qu Yangtze flow under the unregulated scenario (qu5Q2Dqr )
Dqc Flow change induced by human water consumption

(continued)
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Appendix (continued)

Symbol Definition

DqDc Net change of Dqc between the pre-TGD and post-TGD periods
Dqr Yangtze flow changes induced by TGD’s water regulation (Dqr5qr2qn)
rq Relative discharge (see equation (12))
sq Standardized discharge (see equation (12))
uy Stage-discharge rating curve in year y
u21

y Inverse stage-discharge rating curve in year y
u0 Stage-discharge rating curve in the benchmark year 2004
g Empirical relation between lake area (A) and outlet level (L)
w Empirical relation between lake area (A) and confluence flow (q)
n Empirical relation between residual in w and lake catchment flow (q0)
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