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Kyoto protocol and detection of emissions

Kyoto –
binding commitments to limit or reduce the emissions of six GHGs
or groups of gases (CO2, CH4, N2O, HFCs, PFCs, and SF6). 

Each Party of the protocol calculates how much of gases its country emits by
adding together estimates/reported emissions from individual sources. 

Often estimated/reported emissions are inaccurate: 
M. Gillenwater & F. Sussman & J. Cohen: Practical Policy Applications of 
Uncertainty Analysis for National Greenhouse Gas Inventories.

In many countries, agreed emission changes are smaller than their underlying 
uncertainty. 

In IPCC practice, emission/emission changes are reported, but without
rigorous signal detection



S

The key questions:

1. Whether reported emissions outstrip uncertainty and can  

be “verified/detected” ?

2. What percentage of all possible emissions can be

detected within a given time ?

The KP requires that net emission changes be “verified” on the

spatial scale of countries by the time of commitment, relative to 

a specified base year.



Uncertainty (variability) matters 

Source: M. Jonas et. al.
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Variability matters 
Net Emissions

95th confidence = δ2±a
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Practical examples

Longer data time series on FF, LUC and OU taken from global carbon budget:

http://lgmacweb.env.uea.ac.uk/lequere/co2/carbon_budget.htm

Fossil Fuel Emissions (FF) are estimated from data on the global 
consumption of coal, oil, and natural gas. 

The Land Use Change (LUC) are estimated using a bookkeeping model 
updated in August 2006 using revised data from the FAO of the United Nations. 

The mean Ocean Uptake (OU) for 1959-2005 is estimated using
an ocean general model forced by observed atmospheric conditions
of weather and CO2 concentration. 

The terrestrial uptake is estimated as a residual of all the sources minus
the ocean uptake and atmosphere increase 
(Assessment Report 4, WG 1, Ch. 7, 2007, p. 519).

http://lgmacweb.env.uea.ac.uk/lequere/co2/carbon_budget.htm
http://cdiac.esd.ornl.gov/trends/landuse/houghton/houghton.html
http://www.bgc-jena.mpg.de/%7Ecorinne.lequere/interannual/


Variability of emissions:
“fast” and “slow” emissions dynamics

Net Terrestrial Balance

y = 0.1019x + 2.7158
R2 = 0.9845

y = 0.0544x + 1.5985
R2 = 0.9132

y = 0.0236x + 1.3588
R2 = 0.9015

y = 0.0239x - 0.2415
R2 = 0.6931

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

1959.5

1964.5

1969.5

1974.5

1979.5

1984.5

1989.5

1994.5

1999.5

2004.5

Time

Fl
ux

es
 to

 B
al

an
ce

 [P
g 

C
/y

r]

ff_plus
ffplus_smooth
atm_growth
atm_smooth
ocean_sink
ocean_smooth
net_terr
net_terr_smooth

Fossil Fuels:
strong dynamics,
small variability

Net terrestrial:
slow dynamics,
large variability

http://lgmacweb.env.uea.ac.uk/lequere/co2/carbon_budget.htm

http://lgmacweb.env.uea.ac.uk/lequere/co2/carbon_budget.htm


Data series
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Slow dynamics vs large variability:
Net terrestrial uptake, 1960-1970

More emissions below average ! δ2±a
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More emissions above average ! δ2±a

Slow dynamics vs large variability:
Net terrestrial uptake, 1985-1995
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More emissions below average ! δ2±a

Fast dynamics vs small variability:
Fossil fuel emissions, 1960-1970
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More emissions above average ! δ2±a

Fast dynamics vs small variability:
Fossil fuel emissions, 1985-1995
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The need for “detection” of emission shapes

1. In 1960 to 1970, the terrestrial system was mostly a sink.

2. Average flow -0.13. Higher likelihood of flows larger than average.  

3. More of probability mass below average

4. In 1985 to 1995, it turned to source. Average flow 0.6.

5. More of probability mass above average.



Emission signal: detectability
Detect time when emission outstrips the uncertainty
represented by a symmetrical interval
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Emission signal: detectability
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Stochastic detection of emission signal
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E-sided vs stochastic detection,
slow dynamics and large variability:

Net terrestrial uptake, 1965 – 1985

Years

E-sided approach: 7.9 
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Example 1.
F(t1) -0.13 Pg C yr-1
F(t2) 0.18 Pg C yr-1
ε(t1) 0.16 Pg C yr-1
ε(t2) 0.39 Pg C yr-1
dt 20 Pg C yr-1

dε=ε(t2)-ε(t1) 0.23 Pg C yr-1
|dFnet|=|F(t2)-F(t1)| 0.32 Pg C yr-1

VT 7.9 yr

1965–1985

E-sided vs stochastic detection,
slow dynamics and large variability:

Net terrestrial uptake, 1965 – 1985



E-sided vs stochastic detection,
fast dynamics vs small variability:

Fossil fuel emissions, 1965 – 1985
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Economic implications of emissions uncertainties:
stochastic detection techniques

1. Emissions are tradable commodities. 

2.  Variability of emissions is a key element for pricing commodities:

2.a. Inclusion of various systems (forestry and land use CDMs) in emission trading  
markets: Carbon Market Europe, 21, 2006. (Available on request)

2.b. Slow dynamic systems (forestry, land use) long response times.
(The “must” for an appropriate emission detection technique - affects prices.)

2.c. Emissions banking: temporal discounting of emissions
2.d. Emissions borrowing
2.e. Initial allowance allocation: 

grandfathering,
equal emissions per capita,
equal emissions per unit GDP;
spatio-temporal discounting of emissions uncertainties, fairness. 

Stochastic detection: what percentile of possible emissions is detectable  
within a given time interval. This allows to compare and rank the parties 
in terms of their compliance potential (risks of not compliance).



Emissions banking and borrowing

Emissions banking:  complements emission trading programs

Allows inter-temporal trading of emissions

Effective banking improves environmental performance and reduces cumulative 
compliance costs

Banking provides flexibility to deal with many uncertainties associated with 
emissions trading market

http://www.pewclimate.org/docUploads/emissions_trading.pdf

Alternative emission trading schemes: 

(1) reduction credit trading, 
(2) emission rate averaging, and
(3) cap-and-trade programs, 

Reliability of emissions estimates plays essential role in Inter-temporal 
discounting and trading of emissions



A deterministic and a stochastic technique is proposed to
find the cost-effective vector of emissions through adaptation
of emission charges in successive steps.

 Ermoliev, Y., G. Klaassen and A. Nentjes (1996): The design of cost effective
ambient charges under incomplete information and risk. In: E.C. van Ierland and K. Gorka (eds.)
Economics of Atmospheric Pollution, NATO ASI Series, Partnership Sub-Series,
2. Environment, V. 14, 123–151, Springer, Berlin, Germany.

Applications of emission detection and
verification techniques for emission control policies 

 Ermoliev, Y., M. Michalevich and A. Nentjes (2000): Markets for tradable emission
and ambient permits: A dynamic approach. Environ. Res. Econ., 15, 39–56.

Sequential trading schemes in pollution permit markets are 
discussed in stochastic settings. The paper emphasized the 
need for an appropriate treatment of uncertainties and risks
associated with emissions by designing specific risk-adjusted
goal functions. Was shown that in order to reach the least-cost
solution, the parties must reduce their emissions uncertainties.  

 Godal O., Y. Ermoliev, G. Klassen and M. Obersteiner (2003): Carbon trading with
imperfectly observable emissions. Environmental and Resource Economics, 25, 151–169.



 Scheme of sequential bilateral trade (in cap-and-trade scheme)
takes into account safety constraints, i.e., risks of underestimating
and overestimating real emissions.

 Global least cost solution for all parties. 

 Cooperation through the bilateral trading reduces not only the 
aggregate cost, but this is achieved in a mutually beneficial way
reducing individual costs.

 All participating parties create the stable coalition.

 In sequential trading, a stochastic detection technique (SDT) provides    
information as to what percentile of emissions and variability of a party is  
detectable in a certain time. 

 The (SDT) “informs” the economic model of sequential bilateral trading
as to how much and what is the likelihood of “free” emissions that a
party can trade. 

Sequential bilateral trading of emissions



Summary
Stochastic detection technique:
Percentage of possible emissions detectable within a given time

Contrary to e-sided, captures variability of emissions

Applicable for/to evaluation of carbon related financial instruments

(emission trading, investments, Kyoto related mechanisms)

On-going research:
Development of specific risk-adjusted pricing procedures for emissions-related products

Clean Development Mechanisms (CDM), Joint Implementation (JI) projects. 

CDM (including emission trading) insurance: emissions uncertainties are prices.

Insurance of “skewed” risks of emissions trading is similar to Catastrophic risks 
insurance.

Emission trading and endogenous discounting: credibility of parties is translated 
into discounting of emissions permits

Principles for allocation of emissions allowances: pros and cons of grandfathering, 
fairness, temporal discounting of emission reduction technologies  
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