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Abstract 

Livestock systems play a key role in global sustainability challenges like food security and climate 

change, yet, many unknowns and large uncertainties prevail. We present a systematic, spatially 

explicit assessment of uncertainties related to grazing intensity (GI), a key metric for assessing 

ecological impacts of grazing, by combining existing datasets on a) grazing feed intake, b) the spatial 

distribution of livestock, c) the extent of grazing land, and d) its net primary productivity (NPP). An 

analysis of the resulting 96 maps implies that on average 15% of the grazing land NPP is consumed 

by livestock. GI is low in most of worlds grazing lands but hotspots of very high GI prevail in 1% of the 

total grazing area. The agreement between GI maps is good on one fifth of the world’s grazing area, 

while on the remainder it is low to very low. Largest uncertainties are found in global drylands and 

where grazing land bears trees (e.g., the Amazon basin or the Taiga belt). In some regions like India 

or Western Europe massive uncertainties even result in GI > 100% estimates. Our sensitivity analysis 

indicates that the input-data for NPP, animal distribution and grazing area contribute about equally 

to the total variability in GI maps, while grazing feed intake is a less critical variable. We argue that a 

general improvement in quality of the available global level datasets is a precondition for improving 

the understanding of the role of livestock systems in the context of global environmental change or 

food security.  

 

Plain Language Summary 

Livestock systems play a key role in global sustainability challenges like food security and climate 

change, yet, many unknowns and large uncertainties prevail. We present a systematic assessment of 

uncertainties related to the intensity of grazing, a key metric for assessing ecological impacts of 

grazing. We combine existing datasets on a) grazing feed intake, b) the spatial distribution of 

livestock, c) the extent of grazing land, and d) the biomass available for grazing. Our results show 

that most grasslands are used with low intensity but hotspots of high intensity prevail on 1% of the 

global grazing area, mainly located in drylands and where grazing land bears trees. The agreement 

between all maps is good on one fifth of the global grazing area, while on the remainder it is low to 

very low. Our sensitivity analysis indicates that the input-data for available biomass, animal 

distribution and grazing area contribute about equally to the total variability of our maps, while 

grazing feed intake is a less critical variable. We argue that a general improvement in quality of the 

available datasets is a precondition for improving the understanding of livestock systems in the 

context of global environmental change or food security. 

Keywords: uncertainty, grazing intensity, net primary production, animal distribution, livestock 

grazing, grazing area, global livestock systems 
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1. Introduction 

Many sustainability challenges relate to global livestock production systems. Livestock provides 17% 

of the global energy provision to humans, and builds the basis of livelihood for many in developing 

countries [Herrero et al., 2009]. Moreover, grazing systems, i.e., ecosystems subject to grazing like 

grasslands and shrublands where ruminant livestock species feed predominantly from grazing-land 

borne biomass, cover about 40% of the global terrestrial ice-free land surface [Souttie et al., 2005; 

Erb et al., 2007] and are responsible for one third of the total ecological energy flow appropriated by 

humans [Haberl et al., 2007]. Intensive grazing and livestock production is often associated with 

ecological detriments, from greenhouse gas emissions (livestock contribute for 12% of the total 

anthropogenic GHG emissions [Gerber et al. 2013]) to overgrazing, degradation and environmental 

pollution [Steinfeld et al., 2006; Herrero et al., 2015]. 

 

Despite the importance of the ruminant livestock sector for food security and global change the 

scientific community agrees that uncertainties and data gaps prevail [Ramankutty et al., 2008; 

Kümmerle et al, 2013; Petz et al., 2014; Erb et al., 2016], yet their magnitude is not well known. 

These knowledge gaps hamper the analysis and understanding of the role of grazing systems in the 

Earth system as well as assessments of their contribution to human well-being. In the light of future 

sustainability challenges like population growth, dietary changes, climate change and the objective 

of substituting fossil fuels with biomass it is essential to improve our understanding and knowledge 

on the magnitude of uncertainties. 

A range of indicators exists that allows analysts to describe the environmental impact of grazing. 

These include percent utilization of available biomass for grazing, forage standing biomass at the end 

of the grazing period, swardheight, litter amount, availability of old standing biomass, stocking 

rate/density or the heterogeneity of grazing [Holechek et al., 1998; Allen et al., 2011]. Unfortunately, 

data on most of these indicators are rare at local scale and even more globally. In addition, these 

indicators can only serve as a proxy for the land use impact of grazing, because livestock feed often 

contains other sources of feed such as crop residues, byproducts, or forage crops [Schader et al., 

2015]. Assessing the impacts of grazing at large scales is thus generally limited to simpler statistics, 

such as grazing intensity (GI), defined as the amount of grazing per unit of primary productivity (i.e., 

percent utilization per available Net Primary Production (NPP; [Bouwman et al., 2005; Haberl et al., 

2007; Petz et al., 2014]). To account for the impact of natural disturbances on the availability of NPP, 

we apply estimates of actual (currently prevailing NPP). Focusing on NPP as a reference measure, in 
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contrast to livestock density or grazing harvest per unit area, has the advantage that it introduces an 

unambiguous baseline that is purely dependent on natural conditions. Thus, using NPP for 

calculating GI allows researchers to account for differences in climate and soils, which vary widely in 

natural grasslands, and so to provide a meaningful measure for grazing pressures on ecosystems 

[Bouwman et al., 2005; Haberl et al., 2007; Petz et al., 2014; Erb et al., 2016]. 

Calculating GI requires spatially explicit information for supply of biomass and demand for forage. 

Supply is a function of the extent of grazing land and its productivity. At the demand side, estimates 

on the biomass harvested directly by ruminants or by mowing are required. This can be calculated, 

for instance, as the product of livestock numbers and forage demand per animal in a given area.  

Robust data on a key indicator such as GI is a requirement to reliably assess the impacts of grazing 

on ecosystems, analyze potentials for food production or greenhouse gas mitigation and is thus 

essential to formulating effective policies. Yet due to large uncertainties, most available data related 

to grazing are deemed inappropriate for informing policies or investment decisions that aim at 

improving the efficiency of the livestock sector [World Bank, 2014; Petz et al., 2014]. For example, 

estimates of global land area used for grazing range from 27 to 47 Mio km²; a similar range of 

estimates can be found for other metrics, such as biomass grazed by livestock and NPP available for 

grazing. Specific maps are usually prepared by different institutions and often based on different 

classification methods and input data [Fritz and See, 2008; Verburg et al., 2011], which hampers 

comparability. The choice of database is thus decisive for study results [McCallum et al., 2006; Fritz 

and See, 2008] and the lack of information on the underlying uncertainties and or robustness of data 

is aggravating this difficulty [Verburg et al., 2011; Hunter, 2005]. This calls for a better understanding 

of how uncertainties related to input-data propagate in the modelling process and how this 

influences global GI estimates.  

Here we present a systematic and comprehensive uncertainty and sensitivity analysis for calculating 

and mapping GI globally. By combining a range of data on (a) global grazing area, (b) NPP, (c) grazing 

feed intake of ruminant livestock, and (d) data on livestock distribution, we derive 96 maps of GI. We 

identify geographic hotspots and potential sources of uncertainties for different input-data products 

and discuss possible ways for improvement. Our results aim at providing background information for 

prioritization efforts for future research activities that allow to narrow the uncertainty ranges 

related to the amount and pattern of global GI and we discuss how these uncertainties impact the 

assessment of global GHG balances.  
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2. Methods 

2.1. Grazing intensity model 

We here define grazing intensity (GI) as the ratio of grazed biomass per unit of aboveground NPP 

[Bouwman et al., 2005; Haberl et al., 2007; Petz et al., 2014]; Equation 1). Because grazed biomass 

and NPP can be measured in the same biophysical units, e.g., gCm-2 yr-1, GI represents a ratio, 

expressed in percent [%]. Four individual input-data sets are required to calculate GI: i) feed intake, 

calculated as the amount of biomass consumed by livestock in a region, usually available at the 

country level, ii) the spatial pattern of biomass grazing/livestock distribution, iii) the extent and 

pattern of grazing land, and iv) the NPP available for grazing in a grid-cell:  

    
  

   
                    

    

    
  (1) 

where Fi = biomass feed intake, TLU = Tropical livestock units per grid-cell (1 TLU is equivalent to 

250 kg live-weight), area = grazing area per grid-cell and aNPP = aboveground NPP available for 

grazing in a grid-cell. Fig. 1 shows a flowchart of the GI map calculations and the various data sources 

used. As a first step, national data on grazing demand following three different literature sources 

were converted into grazing demand per TLU [Bouwman et al., 2005; Krausmann et al., 2008; 

Herrero et al., 2013). Grazing demand relates to the following livestock species: cattle, buffalo, sheep 

and goat which make up for approximately 90% of the total estimated feed-demand of all domestic 

livestock as reported by FAO statistics including horses, camels, asses, mules etc. We established a 

map of grazing feed intake based on two different datasets for the spatial distribution of grazing 

demand [FAO, 2007; Erb et al., 2007]. The resulting spatially explicit grazing feed intake is then 

related to estimates of aNPP of grazing land, calculated by combining four sources for grazing area 

[Erb et al., 2007; IIASA and FAO, 2012; Ramankutty et al., 2008; Klein-Goldewijk et al., 2011] and four 

NPP estimates [ESGF, 2014; Sitch et al., 2003; Gerten et al., 2004; Zhao et al., 2005]. The 

combination of all available datasets resulted in the calculation of 96 spatially explicit GI maps. 
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2.2. Input-Data 

Feed intake  

We use three estimates for the global feed-demand of ruminant livestock from Krausmann et al. 

[2013], Bouwman et al. [2005] and Herrero et al. [2013], respectively. These datasets estimate the 

daily animal feed-demand at the national and regional level approximately for the year 2000; the 

latter two further distinguish livestock production systems. All three approaches follow the so called 

“grazing gap method” (see e.g., Krausmann et al. [2008]), which calculates total feed intake (for 

instance as a function of milk and meat output or of milk yield or slaughter weight per animal) and 

subtracts the amount of market feed, fodder crops and crop residues used as feedstuff. Statistics, 

such as the FAO [FAOSTAT, 2015], report on the amount of market feed (e.g., on cropland products 

or residues from food processing), as well as the amount of fodder crops produced at the country 

level. No statistical data is available for cropland residues (e.g., straw) used as feedstuff, but national 

and regional level estimates exist [e.g., Wirsenius, 2000; Herrero et al., 2013]. The difference 

between total feed intake and all known feedstuff is assumed to originate from grazing lands.  

The approach by Krausmann et al. [2013] is based on linear correlations between intake per head 

and milk yield or carcass weight for cattle and buffaloes and region specific factors for sheep and 

goats and estimates of grazed biomass at the spatial resolution of countries. This dataset does not 

distinguish individual livestock systems. Bouwman et al. [2005] assess feed intake for two 

aggregated groups of ruminants (cattle and buffaloes; sheep and goat) and provide data on animal 

feed-demand covered through roughage and feed-crops based on output of meat and milk. Feed-

demand for buffaloes is included in the estimate for cattle. The data by Bouwman et al. [2005] 

distinguish pastoral and mixed livestock systems based on the Livestock Production Systems data 

product from Serè and Steinfeld [1996] at the level of world-regions (17 regions, which we aggregate 

to 11; see SI). Herrero et al. [2013] estimate biomass consumption of ruminants (sheep & goat and 

cattle & buffaloes) based on information on feed-composition (grains, occasional, stover and grass) 

obtained from comprehensive literature research and calculated by the RUMINANT model. The 

authors use information on the availability of grass based on EPIC model results for humid and 

temperate regions and rain-use efficiency concepts in drylands, data on the availability of grains for 

livestock feeding from FAO and the use of crop residues and stover (estimated using harvest indices 

and literature derived coefficients). The data is available for 8 livestock production systems 

[Robinson et al., 2011] and at a spatial resolution of 28 world-regions.  
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All Data on grazing feed-demand have been converted to feed-demand per TLU by dividing the 

absolute feed-demand by the total number of TLU per world region. Using livestock units essentially 

enables the comparison of different types of livestock (e.g., sheep, cattle, goats, buffaloes) and 

allowed us to easily downscale feed intake from the national level to the grid, using gridded-

livestock information (see below).  

Animal distribution 

The spatially explicit allocation of national or regional grazing demand data was performed using two 

different approaches. Both reproduce official FAO livestock numbers for the year 2000 at the 

national level.  

Based on information on TLU numbers per livestock species and the Gridded Livestock of the World 

maps (GLW; [FAO, 2007]) for the distribution of cattle, buffaloes, sheep and goats, we calculated a 

map of TLU per grid-cell. The gridded-livestock map applies a wide range of auxiliary variables in a 

multiple regression analysis to allocate animal numbers to a certain grid-cell, which introduces 

uncertainty. One of those auxiliary variables is the Normalized Difference Vegetation Index – NDVI. 

Some authors [e.g., Petz et al., 2014] argue that it is not straightforward to combine this data-set 

with data on NPP. We apply the data product regardless of those critiques because NDVI is only one 

variable among a large list of indicators used in the underlying modeling process. In addition, an 

exploratory analysis indicated that the actual correlation between the Gridded Livestock of the 

World data and NPP layers is very weak. This map is the basis for the calculation of the animal feed-

intake, which is calculated by multiplying the number of TLUs per grid-cell with the estimated feed-

intake per TLU.  

The second approach is based on the method outlined in Haberl et al. [2007], allocating national 

level grazing feed-demand estimates to individual grid-cells based on an aboveground NPP and a 

grazing land quality map [Erb et al., 2007]. This approach follows the notion by Oesterheld et al. 

[1992] that highly suitable land is more intensively grazed than less suitable land [Haberl et al., 2007; 

Oesterheld et al., 1992]. The approach assumes that all grazing land is subject to grazing, but not 

proportionally to its actual production but rather with decreasing intensity from highly suitable to 

least suitable grazing land classes. A suitability map for grazing land is constructed by using a 

combination of data on aNPP and land cover and management information from the Global Land 

Cover 2000 map (GLC 2000 [Bartholomé and Belward, 2005]). Areas identified as being managed by 

the GLC2000 including cultivated and managed areas, mosaics of cropland/shrub and or grass, and 

mosaics of cropland/tree cover and other natural vegetation or natural grasslands or natural 
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grasslands with a productivity above 200 gC m-2 yr -1 are labeled highly suitable. Areas that bear 

tree-cover or grass-tree mosaics above 200 gC m-2 yr -1 are defined being of medium suitability, 

areas with the same land-cover but a productivity below 200 gC m-2 yr -1 of low suitability and areas 

where shrub cover or sparse herbaceous cover is the dominant land-cover according to the GLC and 

where productivity is below 200 gC m-2 yr -1 as very low suitability [Erb et al., 2007]. To distribute 

animal numbers, we first extracted the NPP available for grazing for each of the suitability classes 

and second, distributed the estimated feed-intake to the classes by applying weights (e.g., highest 

suitability class first, followed by medium, low and very low suitability – weights are 10,6,3,1) and 

utilization limits for the individual grazing suitability classes (75%, 70%, 70%, and 55%). The 

suitability limits are taken from Erb et al., [2007], who based their assumptions on a profound 

literature research. Naturally, this approach results in a relatively higher correlation of available 

aNPP for grazing and animal distribution/grazing intensity because aNPP is used to assign feed-

demand to the grid-cell. Yet, in contrast to the other approach, the resulting GI maps show a much 

more homogeneous picture and hotspots of very high GI are much less dominant. 

Grazing area 

We use four maps on the extent of grazing land in the year 2000: (a) Erb et al. [2007], (b) HYDE - 

Klein Goldewijk et al. [2011], (c) Ramankutty et al. [2008] and (d) GAEZ from IIASA and FAO [2012]. 

All maps are available at a spatial resolution of 5 arc minutes (approximately 10x10 km at the 

equator), but differ strongly due to differences in the underlying methodology [Erb et al., 2016]. The 

maps by Erb et al. [2007] and GAEZ are based on a similar methodology, both employing a 

“subtractive approach”: In each grid-cell, all known land uses (cropland, forestry, and infrastructure 

as well as untouched, unused land) are subtracted from the total area, resulting in a remainder area 

which is defined as being predominantly used for grazing. Naturally, this includes a wide range of 

ecosystems (e.g., grasslands, steppe, savannas, shrubland, and forest) and hence constitutes an 

inclusive estimate. A noteworthy difference relates to the exclusion of areas void of land use. The 

map by Erb et al. [2007] excludes areas with an aboveground productivity below 20 g dm/m²/yr 

(based on a dynamic vegetation model, LPJ-DGVM [Gerten et al., 2004; Sitch et al., 2003]), and 

wilderness areas using information from Sanderson et al. [2002], while the GAEZ map only excludes 

water bodies, barren lands as well as areas where productivity is below 10 g dm/m²/yr. In contrast, 

the maps from HYDE and Ramankutty et al. [2008], refer to permanent pastures only and represent 

thus exclusive estimates. Both maps are based on a combination of national level statistics and 

remote-sensing derived proxies on the extent of permanent pasture and both exclude areas beyond 

50° north. The map by Ramankutty et al. [2008] uses detailed statistical information on 16000 spatial 
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units and corrects for obvious errors of the FAO dataset (e.g., Saudi Arabia; see Discussion), while 

the HYDE dataset uses only national level data on permanent pastures from FAO.  

Net Primary Production 

Four different estimates of actual NPP for the year 2000 were used: (a) the Remote-sensing derived, 

MODIS-based NPP map by [Zhao and Running, 2010], the model outputs of (b) LPJmL and (c) 

ORCHIDEE, both Dynamic Global Vegetation Models (DGVMs), and (d) the map from Haberl et al. 

[2007]. MODIS NPP data is based on a large number of satellite derived indicators like FPAR (Fraction 

of Photosynthetically Active Radiation) and LAI (Leaf Area Index), temperature, solar radiation and 

vapour pressure data, MODIS land-cover classification and a lookup table for biomes [Zhao et al., 

2005]. The ORCHIDEE model [Krinner et al., 2005] models carbon, water and energy fluxes based on 

12 Plant Functional Types (PFTs) including agricultural C3 and C4 grasses. The LPJmL model simulates 

the dynamics of natural and agricultural vegetation for 13 crop functional types (CFTs) including 

pasture and 12 PFTs [Bondeau et al., 2007]. LPJmL is a more comprehensive version of the LPJ-

DGVM [used in the Haberl et al., 2007 study) and includes agricultural land use and management 

such as irrigation [Sitch et al., 2003; Gerten et al., 2004; Aus der Beek et al., 2010] but the simulation 

of the natural PFTs is based on the original LPJ-DGVM. [Sitch et al., 2003]. The estimate by Haberl et 

al. [2007] is based on an LPJ-DGVM derived map for potential NPP (i.e., the NPP assumed to prevail 

in the absence of land use; [Haberl et al., 2014], and applies assumptions on the reduction of NPP 

due to land conversion (e.g., a change from forests to grazing land) for NPP increases due to 

fertilization and irrigation as well as for NPP decreases due to land degradation [Zika and Erb, 2009]. 

For all four NPP maps, we only consider the aboveground fraction of total NPP (aNPP) by assuming 

an aboveground to total NPP proportion of 60% [House and Hall 2000]. We do not consider spatial 

changes because applying the available data would introduce further uncertainty and would not 

impact the uncertainties prevailing between data products. All NPP data were converted to dry 

matter biomass applying a carbon-content factor of 50% [Haberl et al., 2007; Gibbs, 2006; Mackey, 

2008].  

2.3. Sensitivity Analysis 

Based on a sensitivity analysis (SA) we examine the importance of each input parameter for the total 

output variation (variance of GI [Saltelli, 2003; Saltelli et al., 2010]. SA analyzes and quantifies the 

statistical variance resulting from varying the respective input parameters [Marino et al., 2008; 

Thiele et al., 2014]. We present the results of the total effect sensitivity indices, which describe the 

fraction of total variance that can be explained by the variation in the respective parameter and its 
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interaction with other parameters [Saltelli, 2003; Monod et al., 2006]. 

All results are provided for 11 world-regions including Central Asia and Russia (CA&RUSSIA), Eastern- 

and South-Eastern Europe (E&SE EUR), Eastern Asia (EA), Latin America (LAM), Northern Africa and 

Western Asia (NAWA), Northern America (NA), Oceania (OCE), Southeast Asia (SEA), Southern Asia 

(SA), Sub-Saharan Africa (SSA), Western Europe (WEUR).  

3. Results 

3.1. Variability in NPP, grazing area and feed intake 

The input-data for modelling global GI show large variations, not only locally, but also at the 

aggregated level. Large differences between the individual approaches prevail for grazing area, feed-

demand and available NPP (Table 1). Area varies between +23% and -39% from the arithmetic 

average, feed-demand by +27% and -13% and estimates of available NPP by 68% and -37%. The 

available NPP per area on average is highest for South-Eastern Asia (526 gC/m-2/yr) and lowest in 

Northern Africa and Western Asia (95 gC/m-2/yr). Feed intake at the regional level lies clearly below 

the available NPP in almost all regions with the exception of Southern Asia, which also shows the 

highest number of TLU km²- (214.7). We do not present numbers on animal distribution here, 

because both methods reproduce the same FAO figures at the national level and hence do not show 

any variation.  

 

3.2. GI-estimates 

The global median of our 96 GI maps is 15 % and ranges from 6% to 30%, with inner quartiles 

between 11% and 19% (Figure 2b). Yet, the spatially explicit distribution (Figure 2a) reveals that GI is 

below 5% on more than half of global grazing lands (20.5 Mio km² of 38 Mio km²), and between 5 

and 10% on another 17% (6.4 Mio km²). On only 1% of grazing lands median GI is higher than 70%.  

Much of the grid-level variation is maintained at the aggregated regional level (see Figure 2b), but 

the upper quantile (of regional GI estimates) remains well below 50% in most world-regions. 

Exceptions are South Asia, South-Eastern Asia and to a much smaller extent Western Europe, where 

the third quantile exceeds 100%. This corresponds well with the observed interquartile range (IQR, 

e.g., the difference between the 75th and 25th quartiles) which is largest in Southern Asia (e.g., > 

400%-points) followed by South-Eastern Asia (67%-points), Western Europe (27%-points), Northern 
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Africa and Western Asia (18%-points). In most other regions, the IQR lies well below 20%-points.  

The variability of the 96 GI estimates in relation to the median estimate (Figure 3a), measured as the 

interquartile range over the median (e.g., IQR/Median as a measure of spread of variables around 

the median, where the IQR is defined as the difference of the upper and lower quartiles) reveals a 

quite large variation in most regions. Up to 23% of the total grazing area shows a very large 

variability (e.g., IQR/median > 3) of GI estimates. This includes major parts of the world’s arid and 

semi-arid regions like the Sahara, the Sahel zone, the Namib and Kalahari, the Atacama, the Arabian 

Peninsula, large parts of central Asia or central Australia and areas where forest is the dominant 

land-cover (e.g., the Amazon and Congo basin or the Taiga and boreal belt). Moderate variability 

(e.g., IQR/median between 1 and 3) occurs on approximately 55% of worlds grazing lands, mainly in 

the boreal North of Canada. A relatively high agreement (e.g., IQR/median < 1) occurs on 22% of 

grazing land, for instance in regions with high intensive agriculture like the prairie in North America, 

the Cerrado in Latin America, grazing land in central Europe and Asia on natural forestland.  

In addition, Figure 3b shows grid-cells where GI exceeds 100% in at least one of the 96 GI maps, 

covering 27% (or 10 Mio km²) of the global grazing area. This happens when the estimated feed 

intake from grass exceeds the actually available aNPP in a grid-cell. The area where this pattern is 

dominant (e.g. where at least one half of all GI maps exceed 100%) is much smaller and covers only 

1% (or 0.35 Mio km²) of the global grazing area, mainly in Southern Asia (India, Pakistan) and to a 

smaller extent in Western Europe. Of particular interest is the hotspot in Western Europe, because 

the variability between the maps (Fig. 3a) is relatively low, yet most maps yield highly unrealistic 

results (e.g., GI > 100%).  

3.3. Sensitivity Analysis 

Figure 4 shows the contribution of each of the four input-parameters to the total output variance in 

percent. These results do not reflect uncertainties explicitly related to the modelling process of the 

input data (e.g., grazing area, aNPP, etc.) but show how the observed differences between those 

products propagate in the modelling process and how this influences results. On the global level 

NPP, area and livestock distribution are about equally important, contributing 35%, 31% and 27%, 

respectively, to the total output variation (e.g., variation of all GI maps at the global level). 

Uncertainty of grazing feed-intake estimates, by contrast, plays a comparably minor role at the 

global average. Uncertainty related to area is a major contributor in Oceania (58%), Western Europe 

(55%) and South Eastern Europe (46%). The contribution of livestock distribution is moderate to high 

in most regions, with the highest contribution observed in Eastern and South-Eastern Europe (55%) 
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followed by Eastern and South-Eastern Asia (44%). NPP plays a considerable role in Central Asia and 

Russia (48%), Sub-Saharan Africa (45%) and Southern Asia (44%).  

4. Discussion  

We find the global median GI to be 15%, but variations are large. The regional level picture reveals 

that on 80% of the global grazing area, median GI is found to be well below 15%. Hotspots of very 

high GI (>50%), which make up for only 2.5% of the world’s grazing lands, are mainly located in 

Western Europe, central USA, Northern Africa, the Arabian Peninsula, India and Pakistan, the Sahel 

and Eastern Asia. This is well in line with the results from other studies, like Petz et al. [2014] who 

find similar hotspots of high GI located in the Sahel, India, Middle East, Northern Africa and the 

Arabian Peninsula. However, their estimate on the total global biomass consumption through 

grazing animals of 4% differs drastically from the 15% for our median GI estimate. Likely reasons for 

this are that their study is limited in extent (e.g., it does not cover important hotspots in Europe and 

Northern America) and their correction of grazing feed-demand estimates in case of insufficient 

biomass supply (e.g., they correct feed-demand in grid-cells where NPP supply is insufficient). On the 

other hand, our estimated 15% of biomass extraction is well in line with the results from the global 

study on human appropriation NPP by Haberl et al. [2007] who find that humans extract on average 

17% of the available biomass on grasslands.  

Our results highlight the massive uncertainties associated with the combination of available data 

products. A crucial example for such uncertainties are grid-cells where the combination of different 

demand and supply calculations results in a GI >100%. In these grid-cells, the estimated available 

biomass is not sufficient to cover the estimated grazing biomass feed-intake (see Figure 2a and b). 

For the median GI map (median of all 96 maps), this occurs on approximately 1.2% of the total 

grazing areas worldwide (see Figure 23a). The analysis of all 96 maps shows that GI exceeds 100% in 

at least one out of the 96 GI maps on almost 27% of the total grassland area. However, it is 

biophysically impossible that biomass harvest exceeds biomass supply (note that our calculation 

procedure only takes forage from grazing lands into account, feedstuff from other sources is 

excluded; see Method section), because grazed biomass origins mainly from herbaceous and thus 

annual plant components (such as leaves). Hence, a GI > 100% is clearly the result of an 

accumulation of uncertainties from the various input data sets. An overestimate of harvested 

biomass or feed demand, or an underestimation of grazing land extent and its productivity, or both, 

lead to this mismatch.  
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Beyond those grid-cells with GI >100%, we observe a considerable variation of GI estimates in many 

parts of the world. Relating the interquartile range to the median GI, a non-parametric measure of 

spread equal to the coefficient of variation and sensitive to outliers, we observe a large variation or 

low agreement, particularly in arid and semi-arid regions (e.g., the Atacama, the Sahel, Arabian 

Peninsula, Near East), which corresponds well with the hotspots of very high GI in some cases (e.g., 

Northern Africa, Near East, Western India). In contrast, agreement is relatively good in regions 

known for rather intensive land-use around the world, e.g., the central USA, the Cerrado in Latin 

America, most parts of Western Europe, Eastern Asia or Australia. Yet, a high agreement (e.g., low 

IQR/median) does not necessarily imply that GI estimates are reliable. The agreement is for instance 

relatively high in prevailing hotspots of very high GI (>100%) of Western Europe (e.g., Netherlands) 

and Northern America. Even in India (where the most dominant hotspot of GI > 100% is located), 

agreement is moderate, indicating systematic error in these areas occurring in all input-data, but 

particularly in estimates of grazing area, animal distribution and NPP as indicated by the sensitivity 

analysis. This is supported by findings of other studies on GI. Chang et al. [2016], for instance, also 

find that estimated biomass supply is not sufficient to cover grazing feed-demand in particular 

regions of India and Pakistan where the bulk of the observed deficits is located (50%) and Petz et al. 

[2014] come to a similar conclusion by locating high GIs in these regions. 

One explanation for the high agreement yet implausibility of the result in the western European 

hotspot (e.g., Netherlands) could for instance be that most Earth System Models do not consider 

land use [Quillet et al., 2010; Haberl et al., 2007] and therefore underestimate available NPP in these 

regions. An example for this is for instance increases in productivity through fertilization or the mere 

impacts of grazing on patterns of productivity (e.g., by promoting compensatory plant growth in the 

short term; [Hayashi et al., 2007; Noy-Meir, 1993]), both complex issues depending on multiple 

factors and facing a lack of data at the global level [Kümmerle et al., 2013]. In contrast, an 

underestimation of the available NPP due to systematic problems in modelling approaches [Chang et 

al., 2016] in combination with an underestimation of the fraction of other feeds (e.g., roadside 

grazing, household wastes and other non-reported feeds; [Bouwman et al., 2005] is the most likely 

explanation causing the hotspots in GI in India and Pakistan.  

The uncertainty we highlighted here on the GI indicator applies similarly to other important variables 

such as the quantification of greenhouse gas emissions and nitrogen utilization. Better 

understanding the root cause of these uncertainties like variations in spatial scale, methods and 

definitions [Herrero et al. 2016] is essential to improve current estimates, because the agricultural 

sector makes up for 14.5% of all human induced emissions [Gerber et al., 2013]. Uncertainty about 
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the grassland extent for instance, makes it inherently difficult to allocate CO2 emissions from land 

use change to ruminant production although many studies, e.g. Gibbs et al. [2010], see in pasture 

expansion a key driver of deforestation. Others, e.g. Roman-Cuesta et al. [2016], show that the 

presence of deforestation dominates total uncertainty in GHG balance estimates (up to 98% of total 

uncertainty), which render land-use change and grassland area estimates an important factor 

[Thornton, 2010; Herrero et al., 2013; Fetzel et al., 2017]. 

The lack of sound data about management issues like the GI, timing and length of grazing is a major 

source of uncertainty. Such information is essential because it influences patterns of soil carbon 

storage and biomass growth [Conant and Paustian, 2002; Smith et al., 2008; Soussana et al., 2013]. 

Uncertainty about the current grazing intensity also blurs the projections of potential intensification 

in the future, and hence make it difficult to estimate future pasture expansion needs, while some 

studies, e.g. Popp et al. [2017], project that grasslands will have to shrink substantially to provide the 

area for afforestation and biomass for energy production, both necessary for climate change 

stabilization. Grazing intensity not only influences carbon flows and stocks but also feed-

composition, a parameter that directly impacts estimates of methane emissions (CH4) from enteric 

fermentation. CH4 emissions are the most important source of greenhouse gas emissions related to 

ruminant production (e.g., 18% of the total anthropogenic CH4 emissions) and depend substantially 

on the feed-composition [Herrero et al., 2013; Herrero et al., 2016]. This latter point relates also to 

the aNPP and grassland management because it is not only the quantity but also the quality of the 

forage which will impact ruminant GHG emissions, and indirectly also nitrogen use linked to a 

particular management strategy (e.g. manure management).  

Assessing the full impact of these uncertainties on GHG emission balances was beyond the scope of 

this study but our results clearly highlight that attempts to estimate crucial indicators like GHG or 

nitrogen balances are flawed by uncertainties from currently available grazing related data products. 

Future research initiatives should focus on the assessment of the impact of these uncertainties on 

GHG emission data and in particular on the improvement of the currently available data basis. In the 

following paragraphs, we discuss major drawbacks of currently available data products for modelling 

GI and their estimated contribution to the total output uncertainty on basis of our sensitivity 

analysis.  
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Known caveats related to input-data 

Known uncertainties in animal numbers or animal distribution are related to census statistics, which 

are often not uniform in quality across countries [FAO, 2001; FAO, 2007]. In many developing 

countries, a lack of resources for statistical surveys result in the under-representation of nomadic 

and transhumant pastoralists (e.g., countries in Africa, Asia, South America; [FAO, 2007], which can 

result in an underestimation of total animal numbers or influence the spatial distribution of animals 

because pastoralists and animals move around. Another source of uncertainty is the methodology 

underlying the Gridded-Livestock of the World map [FAO, 2007; Robinson et al., 2011]. Although the 

map is based on a multiple regression analysis and applies a large number of predictor variables, the 

resulting uncertainty is high owing partly to the fact that spatial scales and census units used to 

spatially explicit downscale animal numbers are not constant. For instance, the size of the underlying 

spatial units varies according to the availability of data. In addition, the exclusion of areas deemed 

unsuitable for grazing (itself based on a large number of input-data) introduces further uncertainty 

[FAO, 2007].  

Another shortcoming is apparently related to the spatial scale of feed intake estimates, which are 

only available at the level of world regions, nations and/or livestock production systems. All these 

assessments are based on a crude top-down grazing gap approach, which assesses the amount of 

grazing as the difference between ruminant feed demand and feed supply from cropland and other 

sources such as industry [Bouwman et al., 2005; Haberl et al., 2007; Krausmann et al., 2013]. Such 

aggregated data can result in distortions, because they operate with general multipliers and thus 

cannot take local level variations [Chang et al., 2016] or biomass flows from other grid-cells due to 

forage trade or moving animals) into account. Yet, our sensitivity analysis suggest that this factor 

actually plays a rather small role when compared to other factors, also because the spatial variation 

is low in regional level data.  

One of the most important factors driving uncertainty in GI maps is grazing area. In Oceania and 

Western Europe, it even makes up for more than 50% of the total variation and in many regions, it 

remains unclear if grazing takes place at all. This is particularly true for remote areas, where more 

inclusive approaches like the Erb et al. [2007] maps and even more so the IIASA and FAO [2012] map 

assigns grazing land, while the two maps by Klein Goldewijk et al. [2011] and Ramankutty et al. 

[2008] follow the strict FAO definition of permanent pastures. The difference between these two 

approaches makes up for as much as 12.8 Mio km² or approximately 10% of the terrestrial ice-free 

surface [Erb et al., 2016] and shows that definitional issues, e.g., whether areas subject to sporadic 

or non-permanent grazing should be included or not, play a key role. Other than that, the large 
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disagreement between existing grazing maps can be attributed to variations in classification 

methodologies [Fritz and See, 2008; Dendoncker et al., 2008], the use of different satellite sensors, 

variations in training and ground-reference data as well as errors in georeferencing [Fritz et al., 2011; 

McCallum et al., 2006], and point to the fact that much room for improvement relates to the current 

monitoring capabilities of this key land-use type. 

Our sensitivity analysis suggests that NPP is a key contributor to total output variability (Table 1) of 

GI estimates in Central Asia and Russia (48%), Sub-Saharan Africa (45%) and Southern Asia (44%; 

Figure 4). The wide range of existing approaches to estimate NPP causes large variation and large 

uncertainties in resulting GI maps. A comparison of modelled NPP data to satellite derived estimates 

or ground level measurements reveals large variations. This seems to be particularly true for 

agricultural land, where a wide range of agricultural practices result in weak correlations between 

NPP estimates from the ORCHIDEE model and remote sensing derived FAPAR (fraction Absorbed of 

the Photosynthetically Active Radiation; [Maignan et al., 2011]. Most hotspots of high GI uncertainty 

are located in regions where cropland plays an important role (e.g., mixed livestock production 

systems; see Figure 2a). In addition, modelled NPP estimates depend strongly on assumptions 

underlying the modelling process, which might introduce systematic errors. One argument is for 

instance that many models systematically underestimate available NPP in arid areas because they do 

not consider water resources other than rainfall (e.g., groundwater, rivers, lakes or irrigation; [Chang 

et al., 2016]., or place and species-specific factors such as rooting depth [Potter et al., 2012]. NPP is 

clearly one explanation for the found hotspots of very high GI uncertainty in drylands, such as those 

in Southern Asia, Sub-Saharan Africa or Northern Africa and Western Asia.  

Other limitations relate to the so-called PFT (Plant Functional Type) modelling approach, underlying 

the NPP input-data sets from ORCHIDEE, LPJmL and LPJ [Haberl et al., 2007], where groups of 

species with presumably similar characteristics (e.g., morphological, physiological, biochemical, 

reproductive and demographic; [Arneth et al., 2014; Yang et al., 2015; Woodward and Cramer, 1996] 

are assigned to classes. Small differences between and large variation within groups [Van Bodegom 

et al., 2012] cause overlap and hamper the definition of PFT groups. In addition, high altitude 

ecosystems are often poorly modeled because topography is not considered and the approach 

regularly fails to adequately represent local scale competition [Quillet et al., 2010]. Another issue 

relates to prediction of vegetation in tropical areas, which has been found to be highly uncertain 

because tree-grass competition and fires are often not represented well and could result in an 

underrepresentation of grasses [Baudena et al., 2015]. 
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A general problem related to NPP estimates not considered in this work due to the limited 

availability of data is that it is often not straightforward to link the NPP signal to grazing because it 

represents a mixture of different PFT types (e.g., trees, shrubs, grasses, etc.). Thus, not the entire 

aNPP is accessible to grazers. In grasslands, most feed intake includes herbaceous species only 

[Havlik et al., 2015]. In shrub-dominated regions shrubs are an important source of feed (up to 40-

50% of the total feed-demand [Sanon et al., 2007]) yet, where trees are dominant (e.g., the Amazon 

and Congo basin or the Taiga), the inclusion of NPP from trees could result in an overestimation of 

biomass available for grazing, which could cause a systematic underestimation of GI in these regions. 

We do not include this due to data quality issues (e.g., the available data is not evenly distributed 

and often based on coarse assumptions). This does not seriously impact our results because it would 

only change the estimated relative GI, but would not influence the magnitude of uncertainties 

between the data products.  

5. Concluding remarks 

Our results highlight large uncertainties in current attempts to map GI and highlight the need to 

substantially improve quality of all available data products. This is an essential precondition to 

reliably analyzing grasslands role in future food security and sustainability challenges like the 

reduction of GHG emissions. The livestock sector plays an important role for food security today 

[Herrero et al., 2013] and will continue to do so in the future [Bouwman et al., 2005]. Hence, 

improving databases and the functional understanding of grazing, its patterns, drivers and 

constraints, is key. One way forward could be to combine currently existing data products to create 

higher-quality maps and promote the establishment of comprehensive ground-measurements for 

validation [Kümmerle et al., 2013; Erb et al., 2016]. A promising approach to establish such a 

database is for instance the GeoWIKI project where citizen scientists help to improve land-cover data 

[Fritz et al., 2012]. An important first step is, however, to establish a standardized validation and 

sampling scheme across disciplines [Kümmerle et al., 2013] to ensure that available data products 

are reliable and of equal quality. 

This is the critical prerequisite for quantifying current and future impacts as well as trade-offs, but 

also for identifying synergies related to livestock systems and their role in the Earth system. We 

urgently need reliable spatial data on grassland related topics to inform regional policies and 

management strategies [Petz et al., 2014; Campbell and Stafford Smith, 2000]. GI provides essential 

information about the impacts of grazing on a central ecosystem variable (NPP), yet, it cannot 

comprehensively describe impacts of grazing on the respective ecosystem and the large variations in 
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the available data hamper the interpretability of results. Other, more detailed indicators (e.g., about 

grazing cycles, litter, fraction of grazed and ungrazed plots, information on old/dead standing 

biomass, etc. [Holechek, 1998]) could help to provide a more holistic picture and to reliably assess 

sustainability thresholds. Yet in the light of our results the improvement of the quality of the 

currently available data on NPP, grassland area and livestock distribution is most urgent.  
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Table 1: Variations in relevant input-data: Arithmetic average of aNPP, grazing area, and feed intake and variation in % 
from the mean. See Si for more detailed information. * for TLU per km², only one estimate is available. 

 

 NPP 
Tg C/yr 

NPP 
gC/m²/yr 

Area  
10^6 km² 

Feed-intake  
Tg C/yr 

Feed intake 
Mg C/yr/TLU 

TLU/km²
* 

Central Asia 
and Russia 

 902    (-45/+67%) 180 5.0  (-37/+36%) 28    (-28/+31%) 0.9 6.3 

Eastern & 
South Eastern 
Europe 

 140 
    

(-40/+70%) 337 0.4  (-24/+31%) 31    (-42/+34%) 1.0 75.7 

Eastern Asia 876    (-53/+64%) 196 4.5    (-20/+18%) 136    (-16/+21%) 1.1 28.9 

Latin America 2685    (-27/+71%) 418 6.4    (-23/+22%) 346    (-37/+48%) 1.4 39.5 

Northern 
Africa & 
Western Asia 

152    (-58/+59%) 95 1.6    (-34/+53%) 34    (-35/+35%) 0.9 22.5 

Northern 
America 

855    (-43/+71%) 215 4.0 (-39/+62%) 131    (-18/+11%) 1.2 28.1 

Oceania 672    (-42/+79%) 171 3.9  (-29/+33%) 77    (-18/+15%) 1.6 12.5 

South Eastern 
Asia 

349    (-30/+81%) 526 0.7    (-
90/+101%) 

37    (-20/+38%) 0.7 76.2 

Southern Asia 187   (-101/+58%) 127 1.5    (-35/+83%) 236    (-39/+24%) 0.7 214.7 

Sub-Saharan 
Africa 

3082    (-38/+62%) 325 9.5  (-25/+25%) 215    (-20/+26%) 1.4 16.3 

Western 
Europe 

285    (-17/+82%) 342 0.8   (-48/+41%) 111 (-19/+30%) 1.2 112.6 

World 10185 (-37/+68%) 266 38.3    (-39/+23%) 1382    
 

(-13/+27%) 1.1 32.9 
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Figure 1: Schematic representation of the calculation procedure for assessing grazing intensity (GI). Fd = grazing feed 

demand, TLU = tropical livestock units per grid-cell, NPP = aboveground NPP.  
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Figure 2: Spatial pattern of grazing intensity (GI), (a) spatial pattern of the median GI and grazing area, (b) Box plots of GI 

variation at the world-region level. Note the logarithmic scale on the y-axis. The bold line represents the median of observed 

GI values at the grid-cell level; boxes represent the 25
th

 and 75
th

 quartiles, whiskers represent the 5
th

 and 95
th

 percentiles. 

Because GI cannot exceed 100%, values above 100% indicate areas with large uncertainties related to the input 

parameters. For explanation see text. 
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Figure 3: Spatial pattern of grazing intensity (GI) uncertainty. a) Inter Quartile Range IQR/median GI, a non-parametric 
measure for the dispersion of variables (e.g., GI estimates) b) Percentage of 96 GI estimates where GI is higher than 100% 
and affected grazing area. This occurs in grid-cells where the estimated NPP is not sufficient to cover the grazing feed-
demand.  
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Figure 4: Total effect sensitivity indices for world regions: coefficients represent the fraction of total variance explained by 

each input component (grazing area, livestock distribution, feed intake, and NPP, respectively) and its interaction with the 

other input-variables by quantifying the statistical variance resulting from the variation of the respective input parameters 

using total effect sensitivity indices following Saltelli [2003] and Saltelli et al. [2010]; see SI.  

 


