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PREFACE

Evolution and growth of natural and manmade processes
have impressed human beings from the very beginning. What is
evolution? Is it the passage from an initial to a higher
stage? What does "higher" mean in a world of many objectives?
Is "higher" bound to the existence of monotonous indicators
like entropy, or is it "gambling" within a predetermined com-
binatoric multifold of possibilities?

Questions of this kind arise from the phenomena in our
environment, from the spring-off of new species, but also from
processes in our manmade technological world. How is the
transition of basic innovation to technology and use of the
corresponding products by society, what forecast can be made
from increasing CO, in the atmosphere on the impact on climate,
from features of séismologic waves on future events etc. That
means there is a strong connection between evolution processes
and the emphasis of systems analysis as a help for strategic
actions.

This paper deals with general considerations about possible
growth mechanisms as a base for creating valid growth models.
But the main goal is to show how the parameters in growth models
can be estimated using on one hand a fuzzy approach together
with vector optimization and on the other hand a Bayesian
approach. It can be seen that both approaches are useful and
applicable and we get informations from one approach which the
other one cannot give us. We studied already the growth of
cracks in materials, processes well described in [10]. Pre-
liminary results are contained in [13].

Research will be continued to identify the superposition
of driving forces and of coupled systems in which oscillations
can arise because of time delays between their driving-force
pulses. o
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DYNAMIC PROBLEMS OF EVOLUTION

M. Peschel, W. Mende, N. Ahlbercndt
M. Voigt, U. Grote

1. SAUSAGE MODEL AND DRIVING FORCES
1.1 Basic Notions of Growth Theory

We assume that the growth of any system is connected with
increasing values of one or more corresponding state variables,
as for example the number of individuals in a population, the
GNP in an economy, the number of cells in an organ, or the bio-
mass in a plant. Thus we demand the existence of a monotonous
indicator of growth. Every growth has on the one hand autono-
mous features manifesting driving forces from inside of a system;
on the other hand a growth process reflects environmental fea-

tures arising from exogenous influences.

We consider as a first approximation a growing system within
a uniform environment. The environment supplies the system with
resources and takes off the "garbage" from the system (heat,
excreta, outputs in the form of products, etc.). It makes no
difference if we include the restricted resources within the
system and thus consider the whole system to be autonomous.
However, we obtain a more fruitful insight into the interaction
with the environment if we also consider the environment as a

growing system and try to consider evolution processes in two



coupled systems in which one of them is dominant. More compli-
cated evolution processes occur if we consider a network of
coupled systems. The general demands on the behavior of such
networks are formulated in Section 4. The most important prop-
erties of growing systems depend on the interaction of stochastic

and deterministic influences (growth under uncertainty).

We assume that the whole phenomenon of growth can be de-
composed into a deterministic trend (using a reference model for
the trend description) and a stochastic influence. The decompo-
sition is the inverse to the interaction of both components;
therefore in general we need an interaction model. 1In this paper
-we assume an additive superposition depending on the unknown
parameters of the reference model. 1In general the interaction
should be described with the help of an aggregation rule from
fuzzy set theory. How this can be done we show for the example

of generating driving forces for the trend. (/8/,/9/)

The driving force is generally understood as the complex of
all physical reasons leading to the "observed" growth rates of
the determinstic trend. In our case we always describe the trend
by an ordinary differential equation of first order, the right
side of which is considered as a model of the physical driving
force. This differential equation shows us a qualitative be-
havior in the phase space of the differential equation. We be-
lieve that important features of the growth, especially bifurca-
tion phenomena, where our trajectory can split up into some
different trajectories, can be well understood by the correspond-
ing qualitative behavior of the differential equation. But in
general it might also be the case that stochastic influences
essentially influence the bifurcation behavior; then it would be

necessary to consider the branching of stochastic processes.

These questions are connected with the problem of modeling
well the continuous and discontinuous phenomena of growth pro-
cesses, which are very important for a better understanding.
Sometimes discontinuities are produced by the changing character
of the driving forces. This is often the case when growth is

produced by introducing basic innovations into the use of society.



The difference between driving forces is an expression of the

use of quite different technologies.

Consideration of experiences with the evolution of real

systems leads to the hypothetical Sausage Model of Evolution.

Monotonous
indicator
of evolution

A
X

Variation from
nondeterministic
influences n

Deterministic reference
trend curve x*

FIGURE 1l: A SCHEMATIC REPRESENTATION OF THE SAUSAGE MODEL OF EVOLUTION

Sources of the nondeterministic influences:

General

autonomous stochastic variations from internal processes;
variations from internal control processes (internal
feedbacks) to stabilize the motion between two equi-
librium stages (steady states);

from the area of trajectories of local bifurcations;
stochastic influences from the environment;

constraints from the environment.

features of the dynamic evolution process:

The motion between two steady states is in general a
nonequilibrium motion with large exchange of resources

(matter, energy, etc.) with the environment. Resources
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constraints are important with a moderate influence
of stochastic factors from the environment.
- A more or less reliable decomposition of the motion

into a deterministic trend

*
x = f(t,p) P = PysPpr---/Pg
and a stochastic disturbance n seems to be possible.

Very often an additive decomposition is assumed

In general we should use an appropriate model of the interaction

* . .
between x and n. Dynamic models of evolution thus consist of:

- a deterministic trend model f(t,p);

- a model for the stochastic influences n as a stochastic
process n = n(t,q);

- a model of interaction between the trend and the sto-

chastic influence.

The parameters p of the trend and g of the stochastic process
must be identified from measurements with the help of an efficient

fitting procedure.

The trend between two steady states passes through the

following three stages:

(1) Internal growth; organization within the system for
exploring all environmental resources, which seem to
be unrestricted.

(2) Acceleration of the use of all possibilities; the
growth process manifests itself in increasing growth
rates. The system streams into the space of possibi-
lities like a compressed gas into an empty volume.

(3) Saturation; the constraints from external resources
are felt more and more. The growth rates are decreasing
and the system approaches a steady state. 1In this phase
the system tries to find new and qualitatively different

possibilities for a new evolution shift in the future.
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Very often the equilibrium reached is unstable in the
following sense. The future evolution can split into a finite
number of quite different trajectories (bifurcation point).

From a deterministic model f(t,p), under favorable conditions
the different possibilities can be foreseen, but a mechanism
for the choice of the future trajectory is unknown. The external
stochastic influence now plays an important role and in fact de-

termines what is going to occur in the next future.

Thus any growth process has a phase of continuous evolution
followed by a discontinuous switching, a phase of revolution.
If we want to model the switching process, we need a model of the
part of the environment engaged in the interaction with the sys-

tem considered.

What are the realistic possibilities of forecasting? Every
forecasting procedure assumes that the following condition is
fulfilled: the internal law of growth must implicitly be expressed
in the measurements. Any procedure to find the law with the help
of which the forecast is done can only amplify the constrast be-

tween the law and the nonimportant secondary influences.

For this contrast, enough information in the form of con-
secutive measurements must be given. Therefore we can contrast
the trend f (t,p) against noise n(t,q) and vice versa to use this
information during the duration of one transfer for forecasting,
but we cannot contrast the law of switching without observing

the environment in detail.
The problem of finding models for driving forces.

We concentrate on finding and "explaining" the trend tra-
*
jectory x = f(t,p) of an evolution process. We assume that the

trend is generated by an ordinary differential equation

X (one-dimensional or multivariate) is the growth indicator
(a state variable).
. *

dx .
o =T is the growth rate and
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*®
F(x ,y) is the driving force (a production function) for the

stimulating and inhibiting influences on the growth.

FIGURE 2: A GROWING SYSTEM AS A NODE UNDER THE INFLUENCE OF STIMULATING
AND INHIBITING AUTONOMOUS AND EXTERNAL DRIVING FORCES

. . . * * . . . .
With increasing YorX, the state x 1increases, and with increasing

*
Y_/X_ the state x* decreases.

The problem is how to find a relevant model for the produc-
tion function of an existing growth process. We are convinced
that for the solution of this problem the fuzzy set theory can

make a valuable contribution.

1.2 Generation of production functions

with the help of fuzzy sets

A production function is a static relationship between an

output variable u and some input variables UqsUgyeee Uyt

u = F(u1,u2,...,uk)

Uy —

U2—————————W F—>

U

FIGURE 3: PRODUCTION FUNCTION AS A STATIC INPUT-OUTPUT RELATIONSHIP



We suppose something is known or reasonably assumed about the
individual influence of input uj on the output u. This 'knowl-
edge' is modeled by a scalarizing function

with the following properties: ujr
corresponding to maximal effect on u (stimulating or inhibiting).

is a reference level of uj

) 4 Stimulation | Inhibition 1}

l /

FIGURE 4: FUZZY DESCRIPTION OF A STIMULATION AND AN INHIBITION

We interpret the scalarizing function pj(uj-ujr) as a member-

ship function of u._ which is considered to be a fuzzy set.

jr
In case I we meet the fuzzy set ujr and in case II the

fuzzy complement Ejr of the reference level ujr' Then pj(uj -
ujr) is a measure of the degree to which the concrete value uj
belongs to the corresponding fuzzy set ujr or ujr' The output
u is produced by the cooperation of U Ugyes . Uy .

The fuzzy set u the favorable output, must then be the

ref’

conjunction of all fuzzy sets u.

jr as components

stim.

* * u. ..
u = N Uu. Q. = ]
ret Jr T {Gjr inhib.



In the language of membership functions, the membership function
p(u.o¢) is then

o (u conj [01(u1r),oz(uzr),-~-,ok(ukr)]

ref)

The production function is a monotonous increasing function of

o(uref):
F(u1lu21"'luk) = g[O(uref)] .

In the simple case, g(p) = p, we obtain the following production

function model:

F(u1,u2,...,uk) = /\pj(uj - ujr)
Very often the component functions pj depend on parameters pj
which must be adjusted or which are used with exponents ej >0
(relative weights of the different influences). Sometimes it
is convenient to use a threshold function for the generation of
the individual membership functions oj(uj). Let ujl be a lower
level, and uju an upper level of uj. Both levels are unwanted,

i.e. should be described by complementary fuzzy sets:

ojz(uj) or oju(uj)

- (a. = o (U = UL N P S
Py (uy) Py @y =uyp) A Py, Uy, —uy)

i
pj(uu) pjly)

min{p(u).o(u,})

w"f %a%
'q

o

f
Y

u

FIGURE 5: FUZZY THRESHOLDS
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Some possible realizations of fuzzy conjunctions:

conj

conj

where V¥ (u)

Remark:

The form F(

(p1lp2""lpk)

(01102r-~-rok)

Il

(i1li2' L]

v~y
i

o1

p.)1]

1

is any monotonous function.

u1,u2,...

S

)

min (pi1,piz,...

pig)

,uk) must be consistent with the

measurement procedure and the estimation process for

the components' membership functions.

2.

DRIVING FORCES OF POWERFUNCTION PRODUCT TYPE

2.1

Hyperbolic and Parabolic Growth Laws

Special case of univariate autonomous growth

dx _ _
EE = F(X) =
Mx-xl) =
omu-x) =
S —> .
We get
ax  _ _
at - K{x xQ
Stimulated growth
%% = K(x-—xQ
E = x - X,
t -
K/(g t
_ kt
E - EO e
Kk (t_+t)

Kp (x—xl) A p(xu
(x-xl)k
mu—xﬂ
)kmu-xﬂ
)k

TAk=-1)
) for k > 1

for k = 1

1/01-

(1-k) for k < 1

_x)

hyperbolic
exponential

parabolic

ku
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/(4
< = 1/dx=1r) T e

£ = 1/(515-1|k—1|K) P £y = X - X

e

Hyperbolic and parabolic growth differ remarkably because hyper-

bolic growth approaches infinity in a finite time tg

Both modes

of behavior are separated by the exponential growth law.

Saturated growth

E = kixy -0”
£ = X, = X g% = -KE2
[ K/(tg'Pt;/Q£—1) for ¢ >
E = < go e-kt for 2 =
k(t —t)1/(1'2) for 2 <

~ g

1 hyperbolic
1 exponential

1 parabolic

Hyperbolic and parabolic saturation differ remarkably because

parabolic saturation reaches the steady state in a finite time

t..
3

saturation law.

Both modes of behavior are separated by the exponential

Exponential growth combined with exponential saturation -

the logistic growth law

%% = K(x-—xz)(xu'-x)
X - X
_ 2
° X T %
a& _ 3 -
3¢ = Re(1-8 K = K(x
go ekt
& = Kt
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FIGURE 6: THE DRIVING FORCE OF THE LOGISTIC GROWTH CURVE

If the exponents k and % have physical significance, and we are
convinced they have, then the exponential growth law is unstable
and separates into two stable modes: the hyperbolic and para-

bolic modes.

2.2 Growth Behavior of Chain Structures

— 1

X
x° —= o (x%)go {x')
dt

1
1 —=f, (x!)g, (x?)
dt 1 91

L |
dxk K1 )

k —= £, (x¥)g, (x
dt k '3

FIGURE 7: CHAIN-COUPLED SYSTEMS
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Assumptions %
i, S _ 1
(1) fi(x ) = 0 = Fi(x) J D) du
%0

is monotonously increasing.

(3) £ (u) < £.(u)

i+1

where fi(u) converges against f(u).

(4) 9541 () < g; (a)
where gi(u) converges against g(u).

(5) For the initial conditions, xg on the different

levels must hold

i+, < i i+1 o
Fipp(xg ) SFLxp) T x50 S x

we demand that xé converges against Xy

Then we can conclude:

From x 71 (£) < x*(t), it follows that x

Let us stop the chain on level n putting xn(t) = xg and denoting

11"1(

the corresponding state variables by x t). Then we have

n
-1
1T 8) = P (F (k) + g, (xp) (£ -tg)) > xg
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Let us now stop on the next higher level n +1 and compare

xln+1 (t) with xlli(t). Now we have
t
in _ -1 i i+1 n
x (ty = Fi [Fi(xo) + Jgi(x )dt}
o
t
i n+1 -1 i i+1 n+1
(t) = Fi [?l(xo) + J l(x )dt] .
o
From xl+1n+1 = xl+1n it follows that
xi n+1 > xin
What is occurring on level n?
t
nu+l _ =1 n n+1
X = Fn [Fn(xo) + fgn(x0 )dt]
%o
n _ nn
> Xg = X
With a growing stop-level index n, xlll(t) can only increase.

This means that on every level 1i, xlll(t) is a nondecreasing

sequence of functions

As a result we get the following diagram:

~N ~N
X1—1 n(t) < x1-1 n+1(t)
For very large n we have
t
xP ) = F_1[F(x0) + Jg(xl+1rﬂ dt]

or 0
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t . .
Fxln(t) _ Fx1+1 n(t) _ J [g(xl+1 n) —g(xl+2 n)]dt

o

If the "convergency" of x* B (t) after index n follows from this

condition, then the limit follows the equation

t
x(t) = }?‘-1 F(xo) + fg(x)dt
o
or
g—t = f(x)g(x) *

Thus consecutive systems decouple, and expose a behavior described
by the equation *. Consequently, a chain of coupled exponential

systems:

dx _ 1x1+1

on higher levels i. Thus hyperbolic growth arises out of ex-

ponential growth. If we combine such a chain with an exponential
system
0
dx _ 0.1
dE T Kox Ko ¥ K

we get arbitrary hyperbolic growth.

3. GROWTH IN THE LONG RUN AND COUPLED GROWTH PROCESSES

In the long run we have to expect the reference structure
of the kind shown in the figure below taking into account bi-

furcation.
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3

FIGURE 8: SCHEMATIC REPRESENTATION OF BIFURCATION PHENOMENA IN EVOLUTION
PROCESSES

The different trajectories can be considered as "middle curves"

of gquite different clusters of future behavior.

A posteriori we observe one of these possible trajectories
or several if we have a population of a large number of similar
systems. The next figure shows one such trajectory together

with the corresponding curve for the driving force.

A

X

FIGURE 9: A SEQUENCE OF GROWTH PUSHES TOGETHER WITH THE CORRESPONDING
SUPERPOSITION OF DRIVING FORCES
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For the determination of the "best" reference curve we have to

solve the wellknown "peak-resolution" problem.

Obviously the driving force F(x) is an aggregation of the
driving forces ¢i(x) of the different shifts. In general, the

following questions arise.

(1) What kind of driving force determines a single growth

period?

We are convinced that in many cases generalized logistic
curves
L

1 (% -x)

K(x'-xl u

are of importance. In many cases of existing software, especi-
ally that coming from statistics, Gaussian driving forces are
assumed:

K exp [-(x -a)%k] . /3/,/12/

From previous experience in fuzzy clustering, the following pulse

form can be recommended

K
a + K(x-—xo)

C

Driving forces that are often used in agriculture but also in
economics are

K x° e” X
(2) What kind of aggregation rule should be applied to com-

bine the individual driving forces ¢i(x) with the overall

driving force F(x)?

The relevant aggregation rule should reflect in the correct
manner the physical interaction between consecutive phases of

the evolution process.
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If we interpret ‘ﬁ(x) as a membership function of the
"fuzzy set" optimum individual driving force, we should use an
appropriate disjunction rule:

F(x) = \/‘Pi(x) .
i

very often indicated by + or max:

F(x) = ]@(x)
F(x) = max ¢;(x) .
1

Very frequently it is assumed that the growth in adjoining phases
is qualitatively of the same kind. Then we should use for ¢i(x)

a standard form specialized only by a set of parameters:

F(x,p) = ZAiw(x,pi)
or
F(x,p) = m?x Aiw(x,pi)

(3) How is a reference model in the long run fitted to the

set of measurements?

We follow two different routes which are described in de-

tail in Section 5.

(a) Fuzzy approach with vector optimization;

(b} Bayesian approach.

Up to now we have considered only univariate growth. Now
we continue with a more complex system consisting of two coupled

growing nodes.
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dly)

‘a%ﬂ

‘guy)

¢{x)

FIGURE 10: INTERACTION OF TWO COUPLED GROWING SYSTEMS

How must the autonomous and interactive driving forces be
combined to get the acting driving forces of the nodes? Obvious-
ly we can apply conjunction, taking into account the fact that
the forces work simultaneously, but we can also apply disjunc-
tion if we think of a superposition of the corresponding forces.
It is appropriate at this time to study the behavior of the

following reference system:

k 2
dx _ _ 11 11 k1o 212
dt - Ki(E=xeq) T xgq -x) - Ly -ygy) Ty, -y)

k 2 k L
d - 22 22 21 21
= Ky -myp) Tyt 0 - Lyxmxgy) Cl(xgy - %)

Expectations of the results of our research:

(1) The system should expose a bifurcation structure of

possible trajectories in the phase space.

(2) Under certain conditions for the parameters every single
node should show a characteristic long term run of a

growing system (sequence of s-formed transfers).
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The long term runs of the two nodes should show us a

certain delay time.

Under certain conditions for the parameters the evolu-
tion process of the whole system should show oscillations

(comparable with the Kondrjatev cycle in economics).

Possible examples of coupled evolution processes:

(1)
(2)

(3)

(4)

production system and social system in macroeconomy;

in an ecosystem the interaction between a useful popu-

lation and pest system;

the interaction of different processes influencing a

heavy disease for example, coronary heart disease;

interaction between the growth of cracks in a material

and the accompaying acoustic emission.

4. DEMANDS OF A SOFTWARE INSTRUMENT FOR THE IDENTIFICATION,
SIMULATION AND ANALYSIS OF COMPLEX SYSTEMS EVOLUTION

Law for autonomous evolution of nodes.

Mechanism of how the environment of a node is prepared
for interaction with other nodes.

Interaction between nodes and the formation of cluster
structures (virtually) under the action of the dialectics
of affinity and aversion.

Stabilizing of some clusters as new particles (entities)
if certain reactivity conditions are fulfilled.
Destabilizing mechanism contra-acting an increasing
complexity.

Occurrence of different types of particles on a given
level of aggregation because of bifurcation phenomena.

By iteration of this process, the generation of aggre-
gated particles of different levels.

The trajectory of the whole system in every of its
aggregation levels can also be considered as an evolution
process.

Study and balance of the dynamic equilibrium on every
aggregation level.
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5. IDENTIFICATION OF THE PARAMETERS IN EVOLUTION MODELS

We deal first with a special case of this general problem.
A trend of the form

E = Fx,p)

is taken as a reference. If the measurements are the growth
velocities (or the growth rates) (%%)' at points X;, We use an
i

additive reference model

Y = F(xi,p) +n,

with noise variables n;.

If the measurements are sampes of trajectories Y = x(ti),
we have to integrate the differential equation. The generally
unknown initial condition should be included in the set of un-

known parameters p. Then we use the following reference model:

y; = =x(t;) +ny

In general we allow that we have at every point X; or ti some

information about the distribution of the corresponding noise n;.
If this is not the case we should combine consecutive measure-

ments or apply moment methods.
Thus the information is given in the form shown in the

following figures.

A A
Fix,p) x(t)

FIGURE 11l: CHARACTER OF A PRIORI INFORMATION FOR GROWTH-RATE RESP. TIME
TRAJECTORY MEASUREMENTS
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In this paper we assume that the different noise variables ng
are "independent"” of each other. Because this assumption leads

to some problems we will eliminate it further on.

5.1 Fuzzy Identification Approach

(Peschel, VOigtr /1/1/2/1/3/)

We interpret the a priori information to each sample point
as an elementary membership function “ﬁi(n;ni) belonging to the
noise variables n;. ¢Zi(n;ni) is a measure of the degree to
which the concrete value is expected to occur. It is a relative

measure and therefore only the ratios
]
“pi(n;ny)/ 64 (ainyg)

are of interest.

on]

Position n
*

0

FIGURE 12: FUZZY DESCRIPTION OF A NOISY VARIABLE

*
The position n; is a substitute for the deterministic value;
the uncertainty r is a measure of fuzziness; the force K.l and
the area F, are both reliability measures often occurring in

combination with each other.

We assume a priori knowledge about the reliability of our
measurements and transform first all elementary membership

functions in such a way that they reflect this a priori knowledge
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We prefer to use a standard concept for the elementary member-

ship function with a set of adjustable parameters:

*
i = ajfly-n;,q)

*
a, are given and reflect the reliability; n;,q; are given or

estimated. Taking into account the additive reference then
= * }
“’Ai = ai‘P{ni— [ni—]:"(xi,p‘)],qi

Now we consider all n; to be comparable with each other and
replace them by a common variable n; ~n,, i.e., we consider

them as different descriptions of the same fuzzy variable n.

Gathering all the information contained in these different
descriptions of the same fuzzy variable n using the disjunction
rule of fuzzy sets we obtain the membership function of the

fuzzy model-error estimation:
* *
¢ (n) = \i/ai«’{n - [n; -Fx;,p)]1,q;}

This is not the best error model because it still depends on

the adjustable parameters
*
{ni,qi,P} = P

*
¢ (n) = v¥(n,P)

With max. aggregation
®*{n,p)

& >
n

FIGURE 13: AGGREGATION OF ELEMENTARY MEMBERSHIP FUNCTIONS TO THE MODEL-
ERROR MODEL
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Now we formulate some reasonable demands on a "good" error

model in the language of objectives (/4/,/5/.,/6/.,/7/) .

(1) The asymmetry of the model error relative to n = 0
should be very small: Qq-

(2) The breadth of the model error, the resulting uncertain-

ty 0of the model, should be very small: Q2.

(3) The steepness of the slope of the model error pulse

should be very high: Q3.

(4) The top of the model error pulse should be equally flat

as well as possible: Q, etc.

Having agreed on the corresponding criteria we have to initiate
a seeking procedure after the set of unknown parameters P to
arrive at a set of efficient solutions in the sense of Pareto

optimality; we have to solve a vector optimization task
(p) ~— extremum

For this concept we have elaborated a first version of a soft-
ware package /11/, the first modules of which have been success-
fully checked and applied, but at the moment only for the case

of our s-form evolution with a power-product driving force:

2

F(x,p) = K(x-—xl)k(xu-x)

5.2. Bayesian Identification Approach
5.2.1 General Approach

For the reference points xi(1 <i <N) we assume the measure-
ments yij(1 <j <n5). These are used to fit a deterministic trend
f(xi,BT) = fi(BT) with unknown parameter vector BT = (b1,b2,..qbq).
An additive reference between measurements and error samples
nij 1s assumed:

T ~ . .
. N = . .. < < H < B
Yl,J fl(B ) + nlj 1 i N; 1 j <m

We suppose that the errors Hij are statistically independent, and
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that they have a common but unknown expectation ng and unknown

non-stationary variances Rij'

To simplify the estimation problem for the Ri we assume

jl
that they are constant in intervals:

In(i.j) = {i.E[kn'+1rkn'+Sn] ! E[1rmi]}
1<nsM<<N

< ni,j> = ng ¥i,j

,-ng) > = R 1s.. 5. ., vi,je I

< (nj5 -ng) (M n %1i'%55

13 J

5.2.2 Description of the Method

In the Bayesian approach, the a posteriori probability
density function of the unknown parameters is determined on the
basis of an assumed a priori probability density of these param-
eters and the common density of all measurements. The measure-

ment errors M,. are supposed to be independent Gaussian vari-

ij
ables with a density

~ _ =1,=% Rpy o 2
p(nij) = (ZWRn ) exp [--7—(nij-nE) 1
¥i,j EIn(i,j)
np and Rn’ with n=1,2,...,M are to be estimated.

The unknown parameters BT ngs R1""’RM are assumed to be

’

independent stochastic variables, i.e.

M

T _ T
Por (B /ng/Rys-.o Ry) = P (B )Ppr(nE)uI=11Ppr(Rn)

with the following concepts fcr the a priori densities

1 2
P__(n exp (- RE/ZKE)

pr E) = (2ﬂKE)
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Lo
—§E-+1
QOn 5L0n/2 2On Rn >
ZR— Rn exp—TR— for Rn/O
On On
Ppr(Rn) -
0 else

Making use of the Bayesian rule, the a posteriori density of all

unknown parameters is given by

T - 1<i<N
PPOS(B ‘g Ry, Ry) = p|B ,nE,R1,...,RMI/{yij}._
]—1 ...mi
T M
= CP__(B)P__(n ) I P_ (R ) I p(n;:)
pr Pr o Elg=r PE 0y ger M
Lo~ _ T .
with njy = Y55 £;(B") as the reference signals.

First we concentrate on estimating the trend parameters BT

and the common bias n

E
p8T,n) = |ar aR.P___ (BY,n_,R )
pos IE 1["'[ RMPOS IE, 1[~-o,R—M -
0 0
This leads to
M X
T _ T n
Ppos(B ’nE) = C Ppr(B ) Ppr(nE)uE1fn(/7;)
with
2 _ - _ 2
*n <(yi] fi nE) :>n
-2 /2
X 2 n
e (fn) - [1 - (e ]
Qn = ROn + M + 2
£
— - ,2 On
Yn <(Y1] yi) >n + ﬁbnMn
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Kn+Srl

M = Z m,
n i=K +1 ©
n

where we have introduced the notations

— — 1 M4
k = P = —_— k..
1 ij ml i£1 ij

1 Kngsn
<k. > = — m.k.
1 n Mn i=Kn+1 11

We can interpret the functions fn as group membership functions
by comparison with the fuzzy set approach. They correspond to

the frequently used concept

1

v (x) =
n
1+ bn|x|un
-zn/z
If we put My = Qn and bn = v, , both types of membership
functions have the same properties: same amplitude in x = 0,

nearly the same half lifetime and the same slope for x »> %t o,

From the above derived expression for
T _ _ 1 T
p(B",ng) = exp [- 5 Q(B",ng5)]
we get the cost function
2 - 2
n M <(y;, -f. -n_)™>
T BT E E + 1 1 E n]

Q(B",n_) = =24nP__(B") + — + ) £ _4n
E pr £ uZq D

Comparison of the polyoptimization approach with the cost

function concept

We approximate

— 2 — 2
on [1 . <(y; - f; - ng) >n] ~ Sly; - f; -ng) >y

Y Yn

n

which corresponds to
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~%,/2

X X_ 2 X Ln 2

—n = —-n = Ff _n = ex - = X
fn(,/yn) 1 +(‘/_Yn) n(/_Yn) P 2 °n

Thus we obtain the following cost function
n2
* T T E — 2

Q"(B™,ng) = -2enP, (B") ¥ R, + Jo <(y; - f; -ng) >,

with a = zn/yn.

Changing the notation a little, the cost function can be written

in the following way:

M an
s = Z %n Ph T 7§
u=1
T, %2 < E
Q(B7) = ng" = [an (y; - ;) n]
M
T 2
Q (B = u£1pn[<xylj-fi-ng) + Gn]
G, = <(y..-3.)%>
n Yij Yy n

Q4 and Q2 are the measures of asymmetry and breadth respectively,

of the error model in the polyoptimization concept.

*gT = S |_. 2 T -
Q (B rnE) = n [ S Q:anr(B ) + UQz + (1 U)Q-]
SK 2
+ (nE - ___ji_ n;) }
1 +SKE
with 1 + SK
o= — B
2 + SK
E
The minimum with respect to n. gives the estimation
np, = nE(B ) = —=— n_(B") .
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In comparison with the polyoptimization method, the Bayesian
approach gives us by variation of the a priori parameters that

part of the efficient set defined by u E[%y1].

However, the simplification applied holds only in the case
where
= 2

= n for all n = 1121000rM
Yn

<| "
S s N

is sufficiently small. This is the case only when the fluctua-
tions of all yij around the trend are small. For the given
values of BT, n_, and Xi, the cost function accepts its minimum

E
by variation of the coefficients ap in the point

-2
~ in S +Jx_ X;2 Ton
a = 1 -
" Ln S + ZX;2 n
For
-2
X, Len

<<
S + }X“4 !n 1
n

which is very often the case,

a_ = 4n
n
This means that the complete Bayesian objective contains a ten-
dency to a uniform weighting which in the polyoptimization
approach can only be realized by introducing an additional ob-

jective.

5.2.3 The Case of Partial Linear Trends -- Superposition of

Driving Forces

Supposing
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Having already estimated én(bT,nE) from the partial interval

an(b ’nE) - Kn (Ln - nE¢n)
with
K = < ¢.6° >n
n iTi
= < 7
Ly = v;¥; > 0
¢n=<¢i>n
we can write
2 — 2 _ =  _ AT _ 2
X = <(y; - £; -nE) >n = <(yij I nE) >n
o) T
+ (a -an) Kn(a —én)

For the complete Bayesian objective we now get

2
n
T .T _ T “E
Q(a’,b ,nE) = 22n Ppr(B ) + KE
M (a-a_)"K_(a-a_) M .
+ ] 2 0|1 4 * + 1 L 4ny
n=1 Y n=1
n
with
T = < _ AT, T T, _ 2
y. (b Jng) = \(yij a, (b ,nE)¢i(b ) ng)” > n

We must determine the minimum of the cost function Q after bT
with an appropriate seeking procedure leading to an estimate B.
The other parameters can be determined analytically from
s = [ Tx oDt m]| ™ 7ot k. oha 6, nt (b7
a = n£1Kn( )P, (b) Lp,(P)K (bT)a (b",ng(b")

*
S (B)Kgy (B) *

o 2
l
s}
o
vr—l

* A~ ~
T+ 5 (b)y(b)Kg
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It should be mentioned that this result was obtained after

the following simplification. We substituted in the cost func-

tion n(1 +x2) by x2 and obtained the expression

Q""" ny) = -2e0p__(a",b")
2
+[S* SI’:IE + pr:(a-é)TKn(a-é):I - bzdznznp;
E n=1 =1
* a; * Moy * x T 2
N s Sy
n '"E
Assuming equally distributed a’ a priori and optimizing after
aT and np we get
* T S* * T * 7 ¥ T T
Q (b)) = T [uQ, (b)) + (1 =u)Q(b7)] + Q3(b ) - 22anr(b )

with the following objectives:

* T
* * * Ip S K, Y
;" = nf®hH  aloh ~hnnn
E E z STK S
pn nnn
* T _ * _ * T *
Q™) = Jp (Y -ngS )" K (Y -ngS )
* T _ _ *
Qy(b7) = -jan #np
(1+yS'K_)
Y Y
w(b Ky = £
1T + y(1+v¥S K_)
E
= T - *.T
Yy = y(b7) = anSnKnSn
T * -1 * — -1 _ —
Y, = [fp K1 Jp, <¥;6;>n - K <y, 6,>n
T, _ * .- o * -1 .
S,(b") = [anKn] an < ¢i> n - K <é; > n
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The weighting coefficients will be determined at the point

n, = ng
* T
b™)
* Ln * a ( * *
an(bT) = % T . P = T oF— S = Zan
Y, (b7 /Kp) S

5.3 Checking the Two Approaches
5.3.1 Checking the Fitting Procedure (Fuzzy)

We generated "measurements" for an ideal system

dx _ _ k I 4
It - K(x -x,) (xu x)
with the ideal parameter values
K =1 x = 20 2 =1 x, = 1 k =1

and determined a set of efficient solutions by vector optimization.

Two of these are represented on Figure 15

)
-—
L]
N
N
el

[

|lul > min (vias) K = 2,36 x_ = 21.0 & = 1.07 x,

il
o
0
foe
o

I

§ » min (variance) K 1.09 X 19.9 2 . ) 1.03 X =

Figure 16 analyzes the error between the measurements and the
adapted trend curve. It shows that we can not be sure to get a
uniformly distributed error signal for all efficient solutions.
We see that the case y » min is especially bad in comparison to
o - min. This effect is clearly shown in Figure 17, y - min and

Figure 18 ¢ -+ min, where we have drawn the accumulated mean error

n.
IS T
Q,. = — X.) -Y. -A-
11 n; 3=1 J J
and the mean quadratic error
n.
! T LE(x,) —y.12 o
Q = — X.) -y -
2i nl 1 i=1 J J
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FIGURE 15: THE CORRECT CURVE TOGETHER WITH TWO APPROXIMATELY EFFICIENT
SOLUTIONS
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€= f(xi,pl - Y'é *

FIGURE 16: . THE ERROR DISTRIBUTION ALONG TIME-AXIS FOR TWO EFFICIENT SOLUTIONS
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FIGURE 17: ACCUMULATED ERROR SIGNALS FOR THE SOLUTION U -+ min

FIGURE 18: ACCUMULATED ERROR SIGNALS FOR THE SOLUTION ¢ - min
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FIGURE 19: THE RELATIONSHIP BETWEEN THE TWO ACCUMULATED ERRORS FOR U *+min

Q,
0.15-

0.104

0.05 4

FIGURE 20: THE RELATIONSHIP BETWEEN THE TWO ACCUMULATED ERRORS FOR O +min
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FIGURE 21: FITTING BY BAYESTAN APPROACH
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FIGURE 22:

THE PARAMETER SENSITIVITY AS FUNCTION OF THE LOWER THRESHOLD
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The case ¢ -~ min is very smooth compared with u -+ min. Figure 19,
Yy -~ min, and Figure 20, o + min, prove the same effect by exposing

the relationships

We can draw the conclusion that in the polyoptimization approach
it is necessary to introduce an additional objective which
measures the uniformity of the model error distribution.

5.3.2 Checking the Fitting Procedure (Bayesian)

We generated "measurements" for an ideal system

Ln it - in K + kin(x -xl) + lln(xu -X)

The "linear" coefficients &nkK,k,% were determined by linear re-
gression on the basis of assumed values Xp X, for the "nonlinear"
coefficients. Xg X, were iteratively determined using a one-
dimensional extremum seeking procedure for each. Thus in this

case we were only concerned with a two-dimensional seeking problem.

We generated "measurements" for a system with the parameter

set
K =1 x. = 20 L =1 x, = 1 k =1
and obtained the following result:

K =1 X, = 20.01 2 = 1.0015 X, = 1.0 k = 1.0001.
So by eye the identified reference curve cannot be distinguished
from the assumed correct curve. (Figure 21). Figure 22 shows how
the Bayesian optimum parameter values vary for every assumed
value of X,. One critical point of this identification problem
follows from it: the parameters K and % are relatively sensitive,
but the parameters k and x; can be considered to be robust. This

is reasonable because a variation of x, can be compensated by a

)
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corresponding change . of K in a wide range, and & takes informa-

tion only from measurements at the end of the motion.

6. SOME CONCLUDING REMARKS

The nonlinear model

3t = K(x -xl)k(xu-x)z

with a single growth push can be reliably identified not only by
a fuzzy approach and vector optimization, but also by the Bayesian
approach. The following problem arises: if we already have
measurements at the points where the reference driving force is
still zero, we have to set the reference to zero. 1In such a case
the step of taking the logarithm of the driving force is forbidden
and we have to pass to a higher dimensional search; this is also

true in the Bayesian approach.

In our example we had a two-dimensional seeking space in the
Bayesian approach, but a five-dimensional seeking space in the

fuzzy approach.

The parameter identification process is a socalled inverse
problem. We had already observed irregularities in the fuzzy
case in the identification of K, X, and 2. In the future we must
introduce additional regularization measures; in the Bayesian
case this was not so, since the'linear regression for K, k, £

already has a regularization impact.

Depending on the agreed set of objectives in the polyoptimi-
zation approach we can meet valleys for some of the criteria, for
example, for 02 = g in the (u,0) - approach and we have to apply

ravine steps.
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