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Abstract

In September 2015, the United Nations General Assembly adopted Agenda 2030, which
comprises a set of 17 Sustainable Development Goals (SDGs) defined by 169 targets. ‘Ensuring
access to affordable, reliable, sustainable and modern energy for all by 2030’ is the seventh goal
(SDG7). While access to energy refers to more than electricity, the latter is the central focus of
this work. According to the World Bank’s 2015 Global Tracking Framework, roughly 15% of the
world’s population (or 1.1 billion people) lack access to electricity, and many more rely on poor
quality electricity services. The majority of those without access (87%) reside in rural areas. This
paper presents results of a geographic information systems approach coupled with open access
data. We present least-cost electrification strategies on a country-by-country basis for Sub-
Saharan Africa. The electrification options include grid extension, mini-grid and stand-alone
systems for rural, peri-urban, and urban contexts across the economy. At low levels of electricity
demand there is a strong penetration of standalone technologies. However, higher electricity
demand levels move the favourable electrification option from stand-alone systems to mini grid

and to grid extensions.

1. Introduction

Access to electricity services is one prerequisite for
sustainable development and a powerful factor in
poverty alleviation. Yet, in 2015 over 1.1 billion people
globally are without electricity access [1]. The majority
of the unserved (nearly 97%) live in Sub-Saharan
Africa and in developing Asia. With an electrification
rate of just 43%, Africa has, by far, the lowest rate
globally, well below the global average of 82%.
Developing Asia (83%), the Middle East (93%) and
Latin America (95%) follow [2]. The lowest electrifi-
cation rates in all regions are in rural areas [3].
Although the importance of energy services for
economic and social development has long been
recognized [4], energy was not one of the Millennium

Development Goals (MDGs). The MDGs have now
been replaced by Agenda 2030 for Sustainable
Development. The Agenda includes a set of 17
sustainable development goals (SDGs) with 169
associated targets for 2030. The Agenda lists sustain-
able energy as a SDG in its own right. SDG7 reads:
‘Ensuring access to affordable, reliable, sustainable and
modern energy for all by 2030 [5].

The objectives of this paper are to: [1] demonstrate
the usefulness of open-source geospatial electrification
to provide insights for electrification planning in 44
Sub-Saharan African countries, and [2] derive a least
cost solution for infrastructure development and
resulting generation mix using local relevant informa-
tion. The analysis introduces the novel, open-source
spatial electrification tool (OnSSET) and considers

© 2017 The Author(s). Published by IOP Publishing Ltd
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varying electricity consumption targets, expressed as
tiers of access as defined by the World Bank [6].

A number of local or national electrification
studies have been undertaken. From early efforts to
electrify cities and farms [7] to recent national efforts
[8, 9], these studies provide local perspectives or
roadmaps that at best indicate the challenges ahead for
the subcontinent but cannot be generalized as blue
prints for sub-continent electrification.

To date, continent wide electrification studies have
been an exception [10]. A general paucity of reliable
energy data, especially in the least developed countries,
is the main reason for the lack of such assessments
[11]. Unlike traditional energy supply studies,
electrification analyses require spatially specific infor-
mation such as renewable energy flows, hydro power
sites, location of transmission lines, sizes, and
locations of settlements and their distances from the
nearest electric grids. Such information is usually
absent in national energy databases. Modern remote
sensing techniques can help fill, or at least narrow, the
information gap [12, 13]. Such techniques that capture
the spatial dimension of energy systems are essential
for the development of spatially inclusive and
comprehensive energy demand and supply analyses.

This paper presents novel extensions to electrifi-
cation planning methodologies, drawing on geospatial
information systems (GIS) tools, i.e. datasets derived
from satellite imagery and from a plethora of existing
maps to fill data gaps [14]. This methodology is a
powerful tool for the design of more effective
electrification strategies in developing countries [15].

This paper is structured as follows: we briefly
describe GIS applications used for energy planning in
the remainder of section 1. Section 2 formulates the
electrification expansion methodology, listing and
analysing the datasets underlying this study. Section 3
presents the results of this work. Section 4 concludes
and suggests areas for further work.

1.1. GIS and energy planning
Energy access and associated infrastructure develop-
ment planning cannot be addressed without regard of
the spatial nature and dynamics of human settlements
and economic production [16, 17]. Data requirements
increase dramatically for spatial energy analyses
compared with traditional energy analyses while data
availability becomes increasingly sparse. GIS tools are
increasingly becoming the methodology of choice,
encouraged with increasing open data availability [17].
Within a context where energy services are
increasingly delivered in a decentralized manner and
through non-state actors, energy planners and
researchers gradually use GIS analysis in order to
define national or sub-national electrification plans
and subsequent strategies and policies. Tiba et al [18]
developed a GIS-based decision support tool for
renewable energy planning in rural areas. The tool
allows planning of a sizeable addition of renewable
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energy technologies and the management of the
already installed systems. Diverse criteria are consid-
ered in order to identify the most favourable location
for installing new energy systems. These criteria
include solar and wind availability, proximity to
transmission network, rural electrification index,
income per capita and others. This study though
considers mainly the implementation of solar and
wind power technologies, overlooking the potential
penetration of other technologies (for instance grid
expansion or mini hydropower) to provide electricity
to unserved areas.

In this direction, Amador et al [19] highlight a major
problem of rural electrification, which is the selection of
the most suitable technology. GIS is used to categorize
zones into areas that are more appropriate for either
conventional or renewable technologies based on
techno- economic criteria. The authors use the levelized
cost of generating electricity, LCOE, as the metric of
choice. In this analysis four parameters are considered
and related to costs: rural population density (inhab-
itants km™?), annual solar irradiation, annual average
wind speed (ms ') and distance of connection to the
MV grid (km). This tool has been applied in the
municipality of Lorca in Murcia, Spain and verified with
coherent results. However, the limited use of GIS data
(including the electrical network map, housing map,
wind and solar resource maps) and the lack of a grid
expansion costing algorithm constitute some key
weaknesses of this effort.

A noteworthy study that investigates energy
solutions in rural Africa is introduced by [20]. A
spatial electricity cost model is designed to indicate
whether diesel generators, photovoltaic systems or grid
extension are the least-cost options in off-grid areas.
This analysis points out where grid extensions
constitute the cost optimal option based on a set of
boundaries that delineate the distance where a
potential extension would be feasible, i.e. 10, 30 and
50 km distance from low (LV), medium (MV) and
high voltage (HV) lines respectively. These boundaries
are however not result of an optimization exercise and
should be further examined.

Another substantial effort is undertaken by [21]
who uses a GIS approach for demand driven rural
electrification planning in Uganda, allocating an
energy benefit point system to priority sectors
(education and health) based on local conditions
and available resources in each area. However, this
study does not suggest an optimal way to provide
electricity to the identified priority areas. [22]
introduce a framework that combines mobile phone
data analysis, socioeconomic and geospatial data and
state-of-the art energy infrastructure engineering
techniques to assess the feasibility of a limited number
of different electrification options (three) for rural
areas, such as extensions of the medium voltage (MV)
grid, diesel engine-based micro grids and stand-alone
solar photovoltaic (PV) systems.
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Similarly, the Network Planner approach [23]
considers demand centres and compares the implica-
tions of either extending the national grid or rolling
out solar PV household systems backed up by diesel
generators for productive uses or opting for low
voltage diesel based mini-grid systems. The model has
been applied to Liberia, Ghana [24] and Nigeria [25].
Nonetheless, this tool accounts for a limited number of
electrification technologies, considers a limited num-
ber of demand nodes and accounts for a static
representation of the bulk electricity generation mix.

In the same way, [26] developed the Reference
Electrification Model (REM), which extracts informa-
tion from several GIS datasets in order to determine
where extending the grid is the most cost-effective
option and where other off grid systems, such as micro
grids or stand-alone solar systems, would be more
economical. However, the technical potential of
renewable energy resources is not scrutinized and
the resolution of the analysis is limited to broad
administrative areas.

Other geospatial applications (not published in the
academicliterature) are available in open web platforms.
The International Finance Corporation has developed
an off-grid market opportunity tool [27]. This tool uses
geospatial information (such as population density,
proximity to transmission and road network and others)
to help private companies, governments, academia and
civil society to develop a high-level view of where
markets for off-grid electrification may exist to better
inform decision-making. Similarly, the Energy Com-
mission of Ghana developed an energy access toolkit for
monitoring and evaluating energy access and renewable
energy resources in the country using geospatial datasets
[28]. However, no electrification analysis is included in
these applications in order to identify the cost optimal
electrification technology.

To summarise, the majority of the previously
developed GIS methods have one or more of the
following limitations: they focus on how rural areas
should be electrified; they do not provide an overall
electrification expansion indication for an entire
country; they deploy a limited number of electrifica-
tion technologies; they use a limited number of GIS
data (some of which proprietary) and with that limit
analysis; they use a limited number of demand nodes;
they lack a grid expansion costing algorithm or they do
not account for a dynamic change of the bulk grid
electricity supply mix.

We advance the most recent analysis, combining
and adapting a simplified technology choice and cost
topology [9] and GIS approach used in [8] to employ
open data sets to assess electrification options and
costs to meet different demand levels. To do this, it was
necessary to overcome limitations of the latter. Those
shortcomings included that:

e [t was spatially limited to Nigeria—while Africa’s
most populous nation, it does not provide the
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macro information required to mobilise action
[39] for initiatives such as Sustainable Energy for
All (SE4All) [40] or Power Africa [41].

e [t analysed limited consumption targets and
scenarios—simply assuming urban and rural con-
sumption levels. Electrification cost and technolo-
gy choice change substantially as a function of the
tier of access [9]. A view on cost per tier was
missing.

e It relied on locally derived information (which
may not be available for all countries); while that
might have improved data quality, it does not
allow for rapid global replication. The latter, if
executed in an open modular framework, would
allow both global coverage and an improved
assessment assuming data could simply replace
global data sets.

e As no extensive spatially explicit mini and small
hydropower potential maps were available previ-
ously, its potential was not evaluated. However, its
potential is significant and, indicated in a first of
its kind analysis in this work.

In this paper a spatially explicit continent wide
model (at a 1 by 1 km grid size equal to the highest
resolution dataset of continental population density
and distribution [42]) that establishes the cost,
technology choice (in the form of (a) grid extension,
(b) mini grid, and (c) stand-alone options) to meet
different tiers of electricity consumption by settlement
is used for first time. It relies on available global data
sets and a simplified method for rapid assessment.
However, the methodology is modular permitting data
to be easily replaced or the method improved. Key
parameters include: population density, local grid
connection conditions and proximity, energy resource
endowment and locally differentiated technology
costs, national grid electricity cost obtained from
The Electricity Model Base for Africa [43].

2. Methodology

Due to its spatially explicit information and often
intuitive visualisation potential, GIS modelling holds
great promise for informing policy formulation and
decision making with regards to energy planning [17,
44]. The methodology and the main steps pursued in
this study are summarized in the flow chart below (see
figure 1). It is based on [8] and [9] with specific
additions in bold.

Specific changes include the use of Open Street
Map data to determine transmission and power plant
location information, where local information is not
available. Additional costs are assigned to the
electricity grid expansion process based on the
topology of the studied area. In order to develop
demand scenarios, ‘tiers’ of access are incorporated. As
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Figure 1. Framework of the Open Source Spatial Electrification Toolkit (OnSSET) and principal data sources.

no global mini and small hydro potential dataset
exists, one is developed based on several datasets.
Moreover, night-time light datasets are used in
combination with the population distribution, the
transmission and road network in order to identify the
presently electrified populations [45, 46]. In this
analysis, the costing of each technology considers the
topological characteristics of the subjected area, e.g.
areas on higher elevation would indicate an additional
investment cost due to higher construction and
transportation costs. Likewise, proximity to the road
network, land cover, slope gradient and distance from
substations affect the initial investment cost [47]
(detailed presentation in the appendix). Finally,
coastline information is adopted to calibrate a
heuristic for diesel costing. The modular approach
(indicated in figure 1) allows for data sets to simply be
replaced when more accurate or updated information
is available.

2.1. Electricity demand

Geospatial data entailing the administrative bound-
aries throughout 44 countries in Sub-Saharan Africa
[48], population density [42] which is ‘assigned’ to
point locations of 1 by 1 km, hereinafter called
settlements, existing infrastructure (transmission
lines) [49, 50] and national access to electricity [2]
are processed to derive information about the current
electrification status by country. Thereafter, the
transmission grid is assumed to expand to connect
with planned power plants and mineral mining sites
[49-51]. The population is adjusted to reflect the
population projected for 2030 by [52]. Population

combined with different tiers of electrification leads to
future electricity demand scenarios—a crucial input to
the cost-optimal allocation of electrification options.
Each tier represents different levels of electricity
services provided, starting from basic lighting (lowest
tier) to services that provide comfort, such as air-
conditioning (table 1). Various tiers are assessed for all
given grid points in order to capture different
specificities of electricity demand levels per region.
In this paper results are presented as if each tier was
homogeneously applied over the continent. In reality
though, significant income differences across the
continent would imply different electricity demand
levels and all five tiers are likely to co-exist in a given
country. For a more detailed analysis, interested users
may therefore navigate through the open source code
and the results available on GitHub’ and select
location specific tiers.

2.2. Assigning costs

The electrification options analysed in the study
included three categories: grid connections, mini-grid
systems and stand-alone systems. For every GIS cell,
the levelized cost of generating electricity (LCOE) of
these options are evaluated by a simple cost model
based on Nerini et al 2016 [9]. The resulting LCOE
information is fed into the GIS model to determine the
most economical option for each grid cell given its
geospatial characteristics. In this analysis, two different
international oil prices are considered (current or low
and projected or high) in order to assess how

® https://github.com/KTH-dESA/PyOnSSET.
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Table 1. Mapping of tiers of electricity to indicative services [6].
Level of access Tier 0 Tier 1 Tier 2 Tier 3 Tier 4 Tier 5
Indicative Torch Task General Tier 2 + light Tier 3 + medium or continuous Tier 4 + heavy or
appliances and  lighting +  lighting + air appliances (i.e. general appliances (i.e. water heating, ironing, continuous
powered radio  phone circulation +  food processing and water pumping, rice cooking, appliances (i.e. air
charging or  television washing machine) refrigeration, microwave) conditioning)
radio
Consumption — 8 44 160 423 598
per capita and
year (kWh)
N

0 1,250 2,500
kM

Point potential (in MW)

<1

. 1-5

. 5-10

Total potential (in MW)

<500
500 — 1000

ot 1000 — 1500
[ ‘ 1500 — 2000

- 2000 — 3000

Figure 2. Mini and small hydro power potential in the selected 44 Sub-Saharan countries.

increasing oil prices influence the least cost electrifi-
cation mix. The current oil price is 47 US$/bbl [53],
while the projected one reaches 113 US$/bbl according
to the IEA New Policies Scenario [54]. More
information can be found in the appendix.

2.3. Spatial energy resource availability

As information relating to diesel price heuristics, wind
and solar potential represent only modest additions in
this piece, they are included in the appendix. However,
as no extensive GIS small and mini-hydro power
potential maps exist on the entire subcontinent, we
develop an analysis to generate a map of estimated
potentials, with their location (figure 2).

Small and mini hydro power potentials'’ were
derived by combining and analysing several publicly
available GIS datasets: digital elevation map [55],
global river network [56], Global Streamflow Char-
acteristics Dataset [57, 58], inland water bodies and
restriction zones [59].

Digital elevation maps at 90 m spatial resolution
(0.00083°) were processed to obtain water flow
directions, layers of flow accumulation raster and
estimations of the drainage area per cell. Combined

" IRENA (2012) defines mini hydro power as plants with
generating capacities between 100 to 1000 kW and small hydro
power between 1 and to 10 MW.
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Figure 3. Overall system configuration (left); mini-grid technology choice (middle); stand-alone technology choice (right) for low
and high diesel prices and for five tiers of electricity consumption.
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with the information on annual mean water runoff'’
this results in a high resolution raster showing the
average discharge values (m’s'). The global river
network dataset was used to assign these discharge
values to actual rivers. Each stream was assigned
several attributes required for the estimation of hydro
power potentials (elevation at sample and upstream
point, distance to source, distance to mouth and
several sample points located in a defined distance of 1
km from each other). Finally, the small and mini hydro
power potentials were estimated with the hydropower
equation [60, 61], based on the diversion (run-off-
river) technique using impulsive turbine (e.g. Pelton)
characteristics suitable for applications with high head
and relatively low volume flow:

P, = p*x gk ny* ng * Nep * onim * (Hp.up — Hp)

where:

P,: Potential power output at sample point in W
0: Water density constant (1000 kg m™>)

& Gravitational constant (9.81 m s79)

n.: Turbine efficiency set as 0.88

ng: Generator efficiency set as 0.96

'onim: Discharge flow at sample point in m s~
H,,: Elevation at sample point

H,, up: Elevation at upstream point

neg: Conversion factor accounting for the environ-
mental flow deduction (set as 0.6).

3

3. Results

Least-cost electrification options for 2030 were
calculated and mapped for about 25.8 million
locations in Sub-Saharan Africa and ten alternative
scenarios (low and high diesel prices; five tiers of
electrification). The electrification options—grid
connections, mini grid and stand-alone solutions—
vary from one scenario to another. This is summarised
in figure 3.

! The map was made available at 0.5° spatial resolution by the
European Joint Research Centre, therefore a resampling process was
essential. This process yielded a raster layer showing the mean
annual runoff stream flow (mmyr') on a global scale at a spatial
resolution of 0.00083°.

As household demand for electricity increases, the
relative proportions of grid based and mini-grid
solutions increase. This comes at the expense of stand-
alone options. This is due to scale and operating cost
considerations. At higher consumption levels, the
proportionally higher quantum of fixed cost associated
with the grid infrastructure of centralised (and mini-
grid) power plants is divided by increasing generation
volumes. The effect is to decrease the per unit cost of
these systems. Supplying increasing volumes of
electricity with stand-alone system, requires additional
investments. Their cost per unit of generation would
decrease slower than other systems.

The effect of operating costs vis-a-vis the diesel
price is discussed with a focus on technology options.

The effects of increasing consumption on supply
type split are well illustrated through maps associated
with the low diesel price moving between Tiers 1, 3
and 5, illustrated below in figure 4. For reference, the
existing and planned transmission infrastructure (lines
larger than 69 kV) is also drawn on those maps. Note
that for stand-alone systems the opacity is increased
with increasing population figures. By population, for
all tiers three to five grid-based connections dominate.
This is simply as large areas of the continent are
projected to be sparsely populated, making grid
extension unviable while higher density urban
settlements are already close to existing grids. Moving
between Tiers 1 and 3, increases grid connection in
relatively populous areas around Nigeria, Ethiopia and
Lake Victoria. This becomes accentuated at Tier 5
electrification, with grid coverage over most of
Western Africa.

Figure 4 (bottom right side) illustrates the
interplay between diesel prices and the deployment
of mini-grids, i.e. the share of mini-grid systems
decreases with increasing diesel prices. The underlying
dynamic is discussed next. Again, while mini-grids in
the Tier 5 high-diesel scenario take up large areas,
these are for relatively sparsely populated settlements.

Mini-grid technology deployment changes as a
function of diesel price and electricity demand.
Moving to higher tiers, mini-grid systems move from
predominantly diesel to solar and hydro systems. This
is particularly the case in the higher diesel price
scenario. The relative transitions by tier and diesel
price is given in figure 3 (middle).
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Figure 4. Least cost electrification mix for low diesel cost and Tier 1 (top left), 3 (top right) and 5 (bottom left); and high diesel cost
and Tier 5 (bottom right).

As the diesel price increases, economies of scale
effects decrease rapidly for gen-sets; from 25% market
share (at low diesel price and Tier 5) to 1% (at higher
diesel price and Tier 5). This is because their LCOE is
dominated by fuel costs. As generation increases, so do
fuel bills—while no fuel costs are incurred by solar,
wind and hydro systems. There are however hefty
quanta of infrastructure costs that are disproportion-
ately large at low demand levels. As consumption
increases, the per kWh costs decrease significantly and
the diesel based mini-grids progressively gain market
shares—from 0% (Tier 1) to about 1% (Tier 5).

In the case of stand-alone systems, the move from
diesel to solar PV systems as a function of usage and
diesel price is well illustrated in figure 3 (right hand side).

For reference, the numerical values of all splits are
summarized in the appendix. Not only the access type
but also the specific technologies are available on a
spatial basis. In figure 5, the spatially explicit least-cost
electrification technology is mapped for Tier 5—
higher diesel price.

Population density and distribution play a
significant role in the technology selection. This study
utilizes a population dataset provided in a continuous
raster format at approximately 1x1 km resolution (the
highest publicly available continental resolution). It
has been assumed that the population resides in the
centre of the 1 km? block, as shown in the following
schematic representation (figure 6). An alternative
allocation of the population, say top left corner of the

geographic block, was studied in Tanzania. This
influenced the technology decision in ~0.13% of the
studied locations within the country, implying
minimal impact of the population allocation within
a 1x1 km area.

3.1. Investment needs

The minimum total investment requirements to
provide electricity the estimated 1.1 billion people
in Sub-Saharan countries by 2030 amount to 50 billion
US$ at low diesel prices and the lowest electrification
level, while the maximum investment for universal
access reach 1.3 trillion US$ at high diesel prices and
the highest tier of electrification. Included are the
capital costs for transmission and distribution
infrastructure as well as for all off-grid systems
(stand-alone and mini grid technologies). The
investment costs for the grid generated electricity
are obtained by The Electricity Model Base for Africa
[43] based on the electricity generation mix of each
country. A summary of the investment needs and the
access split is shown in figure 7 and presented in detail
in the appendix. The investment needs in the low
diesel price scenario range from 50 to roughly 855
billion US$, whilst for the high diesel price the
corresponding values stand at 64 billion US$ and 1.3
trillion US$, respectively. This occurs as higher diesel
prices increase the system costs and improve the
competitiveness of the relatively more expensive,
(non-diesel based) grid and mini grid systems.
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Figure 6. Population allocation in the centre and on the top
left corner of a cell.

The significance of each access type in achieving
full access to electricity by 2030 is illustrated by the
cumulative investment curve per access type in figure 8
which considers the highest level of electricity demand
(Tier 5). Access is provided to some 850 million people
via grid expansion at an investment requirement of
900 billion USD; mini grid systems connect and
supply around 180 million people at 260 billion USD.
Stand-alone systems provide access to some 70 million
people on the sub-continent at a cost of about 110
billion USD.

3.2. Implications for market development and
assistance

The analysis and mapping suggest numerous policy
implications. As data is separated by country, national

level investment potentials are obtained. As technolo-
gy categories and type are identified, information
related to developing supply chains and maintenance
might be gleaned. As technology is mapped to areas,
there is the potential to define location specific
concessions and support mechanisms. These might
vary from national support to local and from market
support or focus on engineering or resilience require-
ments where there are climate or other risks.

Taking advantage of this, assistance can be
prioritised. For example, considering aid-related
actions, by developing a simple index that divides
the product of per-capita investment needs with
country risk, divided by key considerations such as
electricity access and use, other modern fuel access and
institutional weakness simple rankings are possible.
Applying a cursory index such as the Market
Assistance Need Index (MANI), we find that Liberia,
Democratic Republic of Congo, Somalia and Burundi
rank highest in assistance need, while South Africa,
Botswana and Namibia are countries that score very
low on this index (for the cursory calculations, see the
appendix).

For illustrative purposes, the LCOE and the MANI
index are mapped and put next to each other in figure
9. On the left hand side, the LCOE (which includes
fuel, investment and operation costs) increase from
green to red. While on the right hand side, green
indicates a low MANI and red higher. An immediate
reflection is that areas with low LCOE and MANI may
be spaces that the market, with limited intervention
might be encouraged. While, on the other hand areas
with high LCOE and MANI may need special
assistance.
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4, Conclusions energy system modelling helps identify the most

effective electrification strategy on a geospatial basis.

Energy systems are inherently linked to geographic OnSSET is a complementary approach to existing
parameters, which are often inadequately considered energy planning models which do not consider
in energy system models. The integration of GIS and ~ geographical characteristics related to energy and
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allows analysts to improve upon the over-simplified
dichotomy between on- and off-grid systems.

This study develops bottom up cost-optimal
spatially explicit estimates of electrification technology
mixes to meet different tiers of continental electricity
access in Sub-Saharan Africa. It can be used to provide
valuable support to policy makers on least-cost
electrification strategies and to bridge science,
technology and policy at different levels. Moreover,
this tool can help planners and analysts identify
investments by country, location and by technology
type and support off grid electrification initiatives
[62].

In low demand settings, decentralized generating
options (solar, wind, hydro and diesel) contribute
considerably to the achievement of universal access. As
electricity demand increases, supply shifts to grid
connections, i.e. centralized generation. As diesel
prices increase there is a shift to greater deployment of
renewable mini-grids, at the expense of diesel based
stand alone and mini-grid systems.

The geospatial open-source electrification analysis
presented in this paper lays the groundwork for
exciting initiatives. In the policymaking arena,
electrification planning is often captured by private
consultants’ analytical infrastructure. The open source
and the modular structure of the presented tool allow
for repeatable science, improvements in data and
method to be incorporated. The tool can thus easily be
transformed in an effective planning device for
universal electrification strategies in countries and
support the irreversible momentum of clean energy
[63]. So much so that this effort forms the basis of
United Nations [64] suite of tools to promote capacity
development for achieving aspects of Sustainable
Development Goal 7 (SDG7), such as access to
affordable supplies of modern sustainable energy for
all African countries. An effort to which contributions
are welcomed.

While the analysis is a first of its kind in terms of
scope, it provides the basis for an array of future
analysis. This includes informing locally specific
electrification support strategies. These might take
cognisance of nationally specific levels of assistance
required, or conceivably logistics planning.

The analysis can be improved in several ways.
Available data might be improved with access to more
up-to-date information, higher quality global data
sets. Some of these might not be made available in the
short term. However, therein lies interesting poten-
tial. For example, patterns associated with satellite
night-light data might indicate more accurately the
configuration of current HV, MV and LV power lines
(revealed by ‘continuous lines’ of lights—likely
interconnected to the same supply). The analysis
itself might be more deeply nuanced. This might
include heuristics to determine an electrification
‘timeline’ or prioritization, rather than a simple
‘snapshot’ of an ultimate access targets in 2030.

W Letters

Table Al. Technologies compared for energy access

Category Supply technology

Grid connection (Grid)
Mini grid systems (MG)

National grid
Solar PV

Wind turbines
Diesel generators
Hydropower
Solar PV

Diesel generators

Stand-alone systems (SA)

Further, only a limited number of scenarios are
presented. These might be far from robust. Changes
in population movement, technology change, trans-
mission expansion plans, national and regional
power pool development (as recently indicated
[43]) may deeply affect costs and the ‘optimal’
technology choice. However, given the open nature of
the experiment, answering these—and other—short-
comings might be a step closer than before.

Appendix: Methods

Cost calculations
Four parameters determine the LCOE per location
assuming full electrification by 2030:

a. Target level and quality of energy access, i.e. the
amount of electricity that already electrified and
yet to be electrified households will be provided
with, measured in kWh/household/year.

b. Population density, measured in households
km 2.

c. Local grid connection characteristics including
the distance from the nearest grid (km) and the
average national cost of grid supplied electricity
$kWh.

d. Local renewable energy resource availability and
diesel costs

The LCOE of a specific technology option
represents the final cost of electricity required for
the overall system to breakeven over the project
lifetime. It is obtained with the following equation

n I;+0&M+F;
t=1 (1+4r)"
—— (1)

LCOE = -
2 (13)’

where I, is the investment expenditure for a specific
technology option in year t, O&M, are the operation
and maintenance costs and F, the fuel expenditures, E,
is the generated electricity, r the discount rate and n
the lifetime of the option.

Note that the LCOE calculations for the mini grid
and stand-alone electrification options reflect the total
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Table A2. Electricity generation technology parameters used in the model. Sources: [65-68].

Plant type Investment cost ($kW™")  O&M costs (% of investment cost/year)  Efficiency  Life (years)
Diesel Genset—Mini Grid 721 10% 33% 15

Mini and Small Hydro—Mini Grid 5000 2% - 30

Solar PV—Mini Grid 4300 2% - 20

Wind Turbines—Mini Grid 2500 2% - 20

Diesel Genset—Stand Alone 938 10% 28% 10

Solar PV—Stand Alone 5500 2% - 15

Table A3. Transmission and distribution costs in the model. Sources: [9], [43], [65], [69].

Parameter Value Unit

Life 30 Years

HYV line cost (108 kV) 53000 USDkm ™'

HV line cost (69 kV) 28000 USDkm™

MV line cost (33 kV) 9000 USDkm™

LV line cost (0.2 kV) 5000 USDkm™!
Tranformers 5000 USD/50 kVA
Additional connection cost per household connected to grid 125 USD/HH
Additional connection cost per household connected to mini grid 100 USD/HH

T&D losses 7%-29% of capital cost/year
O&M costs of distribution 2% of capital cost/year

Table A4. Other model parameters and assumptions. Sources:
[43, 70].

Parameter Value Unit

0.02-0.16 USD kWh™'
Discount rate 8% -

National grid electricity cost (fuel cost)

system costs while the LCOE for the grid option is the
sum of the average COE of the national grid plus the
marginal LCOE of transmitting and distributing
electricity from the national grid to the demand
location. A detailed description of the model costs can
be found in Nerini et al [9] and selected data is
updated in tables A2—A4 above.

The cost analysis is carried out for the five different
tiers of energy access outlined in the Global Tracking
Framework Report [6].

Penalty cost assignment to electricity grid expansion
processes

The expansion of the transmission network to areas
lacking access is a capital intensive process. The
investment costs are influenced by several factors such
as the capacity, the type and the length of the lines as
well as by the topology of the subjected area. In this
analysis, a number of geospatial factors that affect the
investment costs of the transmission network are
identified and considered in order to assign an
incremental capital cost in locations that indicate
specific topological features. More particularly, invest-
ment cost is influenced by elevation, the road network,
land cover type, slope gradient and distance from
substations.

These datasets are classified to five categories and
assigned a value between 1 and 5, 1 indicating the least
and 5 the most suitable areas for grid expansion. The
Analytic Hierarchy Process is used in order to quantify
the importance (weight) of each geospatial factor in
the additional investment cost associated with grid
extension processes. The next step involves the
combination of the re-classified layers along with
their corresponding weight as to get a final combined
layer applying a weighted overlay function in GIS
environment. The classification and the weights of
each geospatial dataset are stated in the table A5. The
penalty cost can reach up to 30% of the initial
investment cost.

Household size

The household size is an important parameter in the
electrification planning analysis as it affects the
connection costs per household. These are calculated
based on (a) the projected mean national household
size values [71] (b) the existing and projected national,
urban and rural populations [72] (c) the urban to rural
household size ratio given in demographics and health
country surveys (see table A6). For the countries where
urban and rural household sizes are given, we calculate
the weighted mean household size knowing the
corresponding populations. The known urban and
rural household sizes are used to estimate the urban to
rural household size ratio per power pool. For the
countries where only the mean national household
size is known, we use the above mentioned ratio and
the urban/rural populations to estimate the urban/
rural household size.
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Table A5. Classification and weights of each geospatial dataset.
Geospatial factor Weight Class A Class B Class C Class D Class E
Digital elevation (m) 15% 0-500 501-1000 1001-2000 2001-3000 >3000
Distance to roads (km) 5% 0-5 5.1-10 10.1-25 25.1-50 >50
Slope (degrees) 32% 0-10 10.1-20 20.1-30 30.1-40 >40
Distance to sub-stations (km) 9% 0-0.5 0.6-1 1.1-5 5.1-10 >10
Land cover” 39% 7,9,10,14,16 2,4 1,3,5,12,13,15 6,8 0,11
Suitability index 100% 5 4 3 2 1

* Further clarification can be found at http://glcf.umd.edu/data/lc/.

Wind energy potentials

GIS data of global mean annual wind speeds at 50 m
height and 5 km spatial resolution were obtained by
the Global Wind Atlas [73] based on ten years of
hourly data and validated against ground measure-
ments. These data are used to calculate the capacity
factor [74]. The latter is defined as the ratio of the
yearly expected wind energy production to the
energy production if the wind turbine were to
operate at its rated power throughout the year. The
capacity factor reflects the potential wind power at a
given site and it can be used for comparing different
sites before the installation of wind power plants. The
spatial distribution of wind power capacity factors for
areas where it is technically feasible to install wind
farms is presented in figure Al. This is translated to a
cost and used as an input to the model for the mini-
grid options based on the parametric analysis shown
in [9].

Solar energy potentials

The global solar data set was obtained from the Global
Solar Atlas [75]. This provides average annual global
horizontal irradiation (GHI) (kWh m day_z) at 3 km
resolution. The data is based on over ten years of
hourly data derived from satellite imagery and
validated against ground measurements. Applying
standard geospatial analysis, the irradiance data were
further processed to yield to the annual irradiance for
each grid cell (kWh m yr ).

The LCOE of stand-alone solar PVs is calculated
based on the radiation and the system costs as
presented in [8]. An illustration of the global
horizontal irradiance map is illustrated in figure A2.
The LCOE of mini-grid solar PVs is calculated based
on the above parameters and the population density of
settlements.

Spatial LCOE generated by diesel

To calculate the LCOE of diesel generators, the
international diesel price (current and projected), the
travel distance from major cities to each grid point,
global coastlines and the characterization of a country
as landlocked or coastal are considered. The current oil
price is 47 US$/bbl [53], while the projected one
reaches 113 US$/bbl according to the IEA New Policies
Scenario [54]. There are no subsidies or taxes taken
into account in this analysis.

Table A6. Household size in Sub-Saharan African countries in

2030.

Country Mean Mean urban Mean rural
national household household
household size size
size

Angola 6.1 5.6 6.7

Botswana 1.9 1.7 2.1

Benin 33 3.1 3.6

Burkina Faso 4.8 44 5.1

Burundi 4.0 3.5 4.1

Cameroon 3.1 3.0 33

Central African 5.3 5.0 5.6

Republic

Chad 5.5 5.1 5.6

Congo 3.6 3.5 3.9

Congo, DR 4.7 4.4 49

Cote d’Ivoire 5.0 4.7 5.5

Djibouti 6.8 6.5 7.7

Equatorial 5.5 5.2 5.7

Guinea

Eritrea 5.1 45 5.4

Ethiopia 5.0 4.4 5.2

The Gambia 6.9 6.6 7.6

Gabon 4.0 4.0 44

Ghana 3.5 3.3 3.8

Guinea 6.1 5.6 6.5

Guinea-Bissau 5.3 5.0 5.8

Kenya 3.3 3.0 3.5

Liberia 5.0 4.6 5.4

Lesotho 2.9 2.6 3.1

Madagascar 4.1 3.7 4.4

Malawi 4.0 3.5 4.1

Mali 5.9 5.4 6.3

Mauritania 6.4 6.1 7.0

Mozambique 4.1 3.7 4.4

Namibia 3.1 2.9 3.4

Niger 6.4 5.7 6.6

Nigeria 4.3 4.0 4.6

Rwanda 5.2 4.7 5.6

South Africa 2.4 2.3 2.7

Senegal 7.8 7.2 8.4

Sierra Leone 4.8 44 52

Somalia 6.1 5.6 6.6

South Sudan 6.5 5.7 6.8

Sudan 6.2 5.5 6.5

Swaziland 2.5 2.2 2.6

Togo 3.6 3.3 3.8

Tanzania 4.3 39 4.6

Uganda 3.9 3.4 4.0

Zambia 4.9 45 5.3

Zimbabwe 4.1 3.7 4.3
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Table A7. Summary of the technology split for the African continent (percentages of new connections).

Technology split

Stand alone Mini Grid

Scenario/Electrification option ~ Grid ~ Mini Grid ~ Stand Alone  Diesel ~ Solar PV Diesel ~ Solar PV~ Wind  Hydro
Low 1 20% 0% 80% 95% 5% 0% 0% 0% 0%
Low 2 22% 0% 78% 95% 5% 83% 0% 1% 17%
Low 3 44% 7% 49% 96% 4% 98% 0% 0% 2%
Low 4 64%  21% 15% 96% 4% 99% 0% 0% 1%
Low 5 68%  25% 7% 96% 4% 99% 0% 0% 1%
High 1 20% 0% 80% 6% 94% 0% 0% 0% 0%
High 2 28% 0% 71% 4% 96% 1% 25% 27% 47%
High 3 61% 5% 35% 2% 98% 5% 83% 6% 7%
High 4 75% 13% 12% 1% 99% 6% 88% 3% 3%
High 5 78% 16% 6% 1% 99% 7% 88% 3% 2%

The calculation of the diesel costs varies from
coastal to landlocked countries as described below.

For coastal countries

The price in the major cities of countries with coastal
access is equal to international price on the coast with
one uniform price on all coastlines. In remote areas the
transport cost is enumerated taking into account the
diesel price on the coast, the diesel consumption of a
truck, the volume of the truck and the transportation
time.

Then, the electricity generation cost is calculated
considering the conversion efficiency of a diesel
generator. Finally, the LCOE is calculated by adding
labour, maintenance and amortization costs.

For landlocked countries

The diesel price in major cities of landlocked countries
is determined by adding transportation costs from the
coast to the international price of the closest coastline.
For remote areas diesel costs are calculated similarly to
the remote areas in coastal countries.

Transport cost P, ($ kWhy, ")

Pyxcxt 1

P =2x *———
\%4 LHV4

where Py is the international market price of diesel
($17"), ¢ the diesel consumption (Ih™'), ¢ is the
transport time (h), V the volume of diesel transported
(1) and LHVy is the lower heating value of diesel
(kWh1™).

Electricity production cost P, ($ kWha™)

P, = (%C{/d + Pt> /N + Pogm (2)
where 71 is the electrical efficiency of the diesel
generator (kWhy/kWhy,) and Pogy the labour,
maintenance and amortization costs

Taking into account the above, the total cost of
electricity produced by diesel generators is given by the
following formula:

Pd*c*t) 1
*
\4 nx LHVy

P, = (Pg+2% + Pogm (3)

Figure A3 shows the spatial variance of the electricity
costs per kWh delivered by a diesel generator for both
the current and the projected oil price for stand-alone
systems. For mini grid systems, the electrification
model calculates the LCOE considering additionally
the population density of settlements.
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Table A8. Investment needs for universal access by 2030, in billion USD.
Country Lowl Low2 Low3 Low4 Low5 Highl High2 High3 High4 HighS5
1. Angola 1.55 2.58 6.87 17.11 22.65 1.86 4.33 11.98 26.02 33.90
2. Benin 0.57 0.91 2.45 6.60 9.22 0.70 1.74 4.67 10.00 12.97
3. Botswana 0.32 0.40 0.65 1.34 1.77 0.33 0.50 1.01 2.05 2.69
4. Burkina Faso 0.32 1.02 3.21 11.45 16.53 0.72 2.94 9.54 22.52 29.30
5. Burundi 0.15 0.47 4.41 10.78 14.34 0.42 2.05 6.08 12.08 15.80
6. Cameroon 1.96 2.99 6.49 16.95 23.93 2.16 4.19 10.88 24.18 32.23
7. Central African Republic 0.07 0.23 0.76 1.92 2.69 0.16 0.73 2.50 6.24 8.69
8. Chad 0.18 0.69 2.62 6.89 9.59 0.51 2.50 8.52 21.04 29.06
9. Democratic Republic of the Congo  1.63 5.03 19.24 5327 7415 3.14 13.74 45.98 110.00  148.47
10. Djibouti 0.03 0.05 0.12 0.30 0.43 0.04 0.09 0.25 0.58 0.78
11. Equatorial Guinea 0.16 0.21 0.37 0.73 0.98 0.17 0.25 0.51 1.01 1.51
12. Eritrea 0.28 0.52 1.26 3.09 453 0.34 0.86 2.55 6.23 8.25
13. Ethiopia 3.70 8.32 30.56 72.58 95.22 4.81 14.45 44.29 88.59 114.53
14. Gabon 0.42 0.55 0.92 1.75 2.30 0.43 0.58 1.05 2.09 2.78
15. Gambia 0.05 0.11 0.38 0.95 1.27 0.08 0.28 0.84 1.75 2.31
16. Ghana 2.21 3.09 6.82 15.59 21.09 2.39 4.15 9.31 18.45 23.92
17. Guinea 0.32 0.69 2.30 6.86 9.61 0.54 1.84 5.52 11.42 14.72
18. Guinea-Bissau 0.16 0.22 0.43 0.95 1.27 0.18 0.31 0.73 1.60 2.05
19. Ivory Coast 1.64 2.32 4.58 12.75 17.61 1.83 3.36 8.90 17.99 22.71
20. Kenya 1.71 3.44 15.48 44.69 60.97 2.44 7.60 24.64 52.61 69.93
21. Lesotho 0.11 0.19 0.47 1.32 1.81 0.13 0.32 0.94 2.10 2.66
22. Liberia 0.06 0.21 0.71 2.21 3.08 0.13 0.63 2.09 4.58 5.83
23. Madagascar 0.52 1.18 4.15 12.71 17.94 0.98 3.81 12.57 27.38 35.65
24. Malawi 0.29 0.75 5.03 11.98 15.28 0.69 3.03 8.89 16.44 20.88
25. Mali 0.52 1.03 3.15 9.33 13.29 0.84 2.85 8.88 20.01 26.33
26. Mauritania 0.10 0.26 0.77 2.13 2.93 0.17 0.63 2.11 5.27 7.19
27. Mozambique 0.77 1.68 5.33 18.29 26.20 1.28 4.60 15.00 34.63 45.04
28. Namibia 0.22 0.32 0.69 1.50 1.95 0.24 0.41 0.95 2.01 2.59
29. Niger 0.38 1.24 4.55 13.77 19.23 0.87 3.77 12.21 28.26 37.24
30. Nigeria 11.71 16.98  38.10 93.57 127.35 13.27 25.97 61.65 120.06  153.05
31. Republic of Congo 0.24 0.52 1.78 4.49 6.47 0.27 0.87 2.54 6.33 8.64
32. Rwanda 0.28 0.58 1.83 3.65 4.70 0.49 1.79 4.01 7.69 10.05
33. Senegal 0.85 1.39 3.24 9.07 12.44 1.00 2.26 6.21 12.90 16.67
34. Sierra Leone 0.09 0.24 0.95 291 4.24 0.18 0.85 2.79 6.14 7.78
35. Somalia 0.32 0.77 2.20 4.86 6.52 0.48 1.61 4.61 10.63 14.41
36. South Africa 10.73 12.59 18.28 31.77 40.88 10.86 13.32 2091 37.96 48.69
37. South Sudan 0.14 0.58 2.12 5.51 7.46 0.40 2.06 7.21 17.80 23.46
38. Sudan 1.26 2.66 8.19 20.03 27.97 1.84 5.80 17.18 40.36 55.10
39. Swaziland 0.15 0.18 0.28 0.77 1.10 0.16 0.26 0.60 1.18 1.43
40. Tanzania 1.22 2.90 11.72 35.82 49.75 2.24 8.87 28.17 61.34 80.51
41. Togo 0.30 0.53 1.44 3.89 5.57 0.40 1.11 3.23 6.90 8.86
42. Uganda 1.21 2.39 13.41 31.92 41.75 2.01 7.03 19.47 36.80 46.98
43. Zambia 0.46 1.23 3.71 9.43 12.85 0.73 2.58 7.94 18.87 25.56
44. Zimbabwe 0.98 1.40 2.78 9.21 13.66 1.19 2.61 7.36 16.62 21.28
TOTAL 50.32 85.64 24478 626.68 854.55 64.09 163.50  457.26  978.67  1282.48
Technology market share by category and type a 1-10 non-dimensional scale where 1 represents the

worst performance and 10 the optimal:
A simple market assistance index

MANTI is defined as shown in the following formula
whereas the indicators are normalized and adjusted to

MANI=
Investment needs per capita index x Country risk

Access to electricity = El. consumption per capita index x Access to modern fuels index * Institutional Weakness index
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o Investments needs per capita index refers to the
total investment requirements per capita for
universal access.

o Institutional weakness index of state weakness in
the developing world ranks the countries accord-
ing to their relative performance in four spheres:
economic, political, security, and social welfare. A
weak state is defined as a country that lacks access
to the essential capacity and/or will to fulfil four
sets of government responsibilities: establishing
and maintaining legitimate, transparent, and ac-
countable political institutions (good governance);
fostering an environment conducive to sustainable
and equitable economic growth; securing their
populations from violent conflict and controlling
their territory; and meeting the basic human
needs of their population, where (a lower index
indicates ‘weaker’ countries) [76].

e Country risk refers to the risk of non-payment by
companies in a given country. This indicator
informs potential investors in making informed
decisions about the potential risks of their
business activity in a country [77].

e Access to electricity [2], electricity consumption
per capita [78] and access to modern fuels are
defining factors of energy poverty. Access to
modern fuels is calculated using the percentage of
the population that relies on solid fuels as the
primary source of domestic energy for cooking
and heating [79].

Acknowledgments

We acknowledge funding from the Swedish Science
Council, Vetenskapsradet, Sweco-] Gust Richert
foundation, ABB, World Bank and UNDESA.

References

[1] UNDESA Energy: Sustainable Development Knowledge
Platform 2015 (http://sustainabledevelopment.un.org/topics/
energy) (Accessed: 7 October 2015)

[2] The World Bank 2015 Access to electricity (% of
population) (http://data.worldbank.org/indicator/EG.ELC.
ACCS.ZS)

[3] IEA World Energy Outlook 2014 (www.oecd-ilibrary.org/;

jsessionid=1roynpvjw0s0y.x-oecd-live-02content/book/weo-

2014-en) (Accessed: 7 October 2015)

Modi V, McDade S, Lallement D and Saghir ] 2005 Energy

services for the Millennium Development Goals

UNDESA Global Sustainable Development Report 2015

(http://sustainabledevelopment.un.org/content/documents/

1758 GSDR%202015%20Advance%20Unedited%20Version.

pdf) (Accessed: 13 October 2015)

SE4ALL 2015 Progress toward sustainable energy GLobal

Tracking Framework Report (www.se4all.org/wp-content/

uploads/2013/09/GTF-2105-Full-Report.pdf)

Morton D L Jr 2002 Reviewing the history of electric power

and electrification Endeavour 26 60-3

[4

[5

[6

[7

W Letters

[8] Mentis D et al 2015 A GIS-based approach for
electrification planning—a case study on Nigeria Energy
Sustain. Dev. 29 142-50
Nerini F F, Broad O, Mentis D, Welsch M, Bazilian M and
Howells M 2016 A cost comparison of technology
approaches for improving access to electricity services
Energy 15 255-65
[10] Szabé S, Bédis K, Huld T and Moner-Girona M 2013
Sustainable energy planning: leapfrogging the energy
poverty gap in Africa Renew. Sustain. Energy Rev. 28
500-9
Belward A et al 2011 Renewable Energies in Africa (Italy:
European Commission Joint Research Centre) (http://ec.
europa.eu/jrc/sites/default/files/reqno_jrc67752_final%
2520report%2520.pdf) (Accessed: 28 April 2015)
Bhattacharyya S C 2013 Rural Electrification through
Decentralised Off-grid Systems in Developing Countries
(Berlin: Springer)
[13] Iddrisu I and Bhattacharyya S C 2015 Sustainable energy
development index: a multi-dimensional indicator for

(9

(11

(12

measuring sustainable energy development Renew. Sustain.
Energy Rev. 50 513-30

[14] Mentis D, Hermann S, Howells M, Welsch M and Siyal S H
2015 Assessing the technical wind energy potential in Africa
a GIS-based approach Renew. Energy 83 110-25

[15] Bazilian M et al 2012 Improving access to modern energy
services: insights from case studies Electr. J. 25 93—114

[16] Campagna M ed 2005 GIS for Sustainable Development
(Boca Raton, FL: CRC Press) (www.crcnetbase.com/doi/
book/10.1201/9781420037845)

[17] Resch B et al 2014 GIS-Based planning and modeling for
renewable energy: challenges and future research avenues
ISPRS Int. ]. Geo-Inf. 3 662-92

[18] Tiba C, Candeias A L B, Fraidenraich N, Barbosa E M de
S, de Carvalho Neto P B and de Melo Filho J B 2010 A
GIS-based decision support tool for renewable energy
management and planning in semi-arid rural environments
of northeast of Brazil Renew. Energy 35 2921-32

[19] Amador J and Dominguez ] 2005 Application of
geographical information systems to rural electrification
with renewable energy sources Renew. Energy 30
1897-912

[20] Szabo S, Bédis K, Huld T and Moner-Girona M 2011
Energy solutions in rural Africa: mapping electrification
costs of distributed solar and diesel generation versus grid
extension Environ. Res. Lett. 6 034002

[21] Kaijuka E 2007 GIS and rural electricity planning in
Uganda J. Cleaner Prod. 15 20317

[22] Martinez-Cesena E A, Mancarella P, Ndiaye M and
Schldpfer M 2015 Using mobile phone data for electricity
infrastructure planning (arXiv:1504.03899)

[23] Modi V, Adkins E, Carbajal J and Sherpa S 2013 Liberia

power sector capacity building and energy master planning

National Electrification Master Plan Final Report, Phase 4

(http://qsel.columbia.edu/assets/uploads/blog/2013/09/

LiberiaEnergySectorReform_Phase4Report-Final_2013-08.

pdf)

Kemausuor F, Adkins E, Adu-Poku I, Brew-Hammond A

and Modi V 2014 Electrification planning using network

planner tool: the case of Ghana Energy Sustain. Dev. 19

92-101

[25] Ohiare S 2015 Expanding electricity access to all in Nigeria:
a spatial planning and cost analysis Energy Sustain. Soc. 5 8

[26] Ellman D 2015 The Reference Electrification Model: a
computer model for planning rural electricity (http://
dspace.mit.edu/bitstream/handle/1721.1/98551/920674644 M
[T.pdf?sequence=1) (Accessed: 13 May 2016)

[27] International Finance Corporation 2016 Off-Grid Market
Opportunities (http://offgrid.energydata.info/#/?_k=oesc7u)
(Accessed: 28 February 2017)

[28] Energy Commission Ghana Tools | GhEAT 2016 (http://
151.80.133.24:90/gheatweb/Home/Project) (Accessed: 21
April 2017)

[24

16


http://sustainabledevelopment.un.org/topics/energy
http://sustainabledevelopment.un.org/topics/energy
http://data.worldbank.org/indicator/EG.ELC.ACCS.ZS
http://data.worldbank.org/indicator/EG.ELC.ACCS.ZS
http://www.oecd-ilibrary.org/;jsessionid=1roynpvjw0s0y.x-oecd-live-02content/book/weo-2014-en
http://www.oecd-ilibrary.org/;jsessionid=1roynpvjw0s0y.x-oecd-live-02content/book/weo-2014-en
http://www.oecd-ilibrary.org/;jsessionid=1roynpvjw0s0y.x-oecd-live-02content/book/weo-2014-en
http://sustainabledevelopment.un.org/content/documents/1758GSDR%202015%20Advance%20Unedited%20Version.pdf
http://sustainabledevelopment.un.org/content/documents/1758GSDR%202015%20Advance%20Unedited%20Version.pdf
http://sustainabledevelopment.un.org/content/documents/1758GSDR%202015%20Advance%20Unedited%20Version.pdf
http://www.se4all.org/wp-content/uploads/2013/09/GTF-2105-Full-Report.pdf
http://www.se4all.org/wp-content/uploads/2013/09/GTF-2105-Full-Report.pdf
https://doi.org/10.1016/s0160-9327(02)01422-9
https://doi.org/10.1016/j.esd.2015.09.007
https://doi.org/10.1016/j.rser.2013.08.044
https://doi.org/10.1016/j.rser.2013.08.044
http://ec.europa.eu/jrc/sites/default/files/reqno_jrc67752_final%2520report%2520.pdf
http://ec.europa.eu/jrc/sites/default/files/reqno_jrc67752_final%2520report%2520.pdf
http://ec.europa.eu/jrc/sites/default/files/reqno_jrc67752_final%2520report%2520.pdf
https://doi.org/10.1016/j.rser.2015.05.032
https://doi.org/10.1016/j.renene.2015.03.072
https://doi.org/10.1016/j.tej.2012.01.007
http://www.crcnetbase.com/doi/book/10.1201/9781420037845
http://www.crcnetbase.com/doi/book/10.1201/9781420037845
https://doi.org/10.3390/ijgi3020662
https://doi.org/10.1016/j.renene.2010.05.009
https://doi.org/10.1016/j.renene.2004.12.007
https://doi.org/10.1016/j.renene.2004.12.007
https://doi.org/10.1088/1748-9326/6/3/034002
https://doi.org/10.1016/j.jclepro.2005.11.057
http://arxiv.org/abs/1504.03899
http://qsel.columbia.edu/assets/uploads/blog/2013/09/LiberiaEnergySectorReform_Phase4Report-Final_2013-08.pdf
http://qsel.columbia.edu/assets/uploads/blog/2013/09/LiberiaEnergySectorReform_Phase4Report-Final_2013-08.pdf
http://qsel.columbia.edu/assets/uploads/blog/2013/09/LiberiaEnergySectorReform_Phase4Report-Final_2013-08.pdf
https://doi.org/10.1016/j.esd.2013.12.009
https://doi.org/10.1016/j.esd.2013.12.009
https://doi.org/10.1186/s13705-015-0037-9
http://dspace.mit.edu/bitstream/handle/1721.1/98551/920674644 M IT.pdf?sequence=1
http://dspace.mit.edu/bitstream/handle/1721.1/98551/920674644 M IT.pdf?sequence=1
http://dspace.mit.edu/bitstream/handle/1721.1/98551/920674644 M IT.pdf?sequence=1
http://offgrid.energydata.info/#/?_k=oesc7u
http://151.80.133.24:90/gheatweb/Home/Project
http://151.80.133.24:90/gheatweb/Home/Project

I0P Publishing

Environ. Res. Lett. 12 (2017) 085003

[29] Aydin N'Y, Kentel E and Sebnem Duzgun E 2013 GIS-
based site selection methodology for hybrid renewable
energy systems: a case study from western Turkey Energy
Convers. Manage. 70 90—-106

[30] Connolly D, Leahy S and MacLaughlin M 2009
Development of a computer program to locate potential
sites for pumped hydroelectric energy storage Energy 35
375-81

[31] Gimeno-Gutiérrez M and Lacal-Arantegui R 2015
Assessment of the European potential for pumped
hydropower energy storage based on two existing reservoirs
Renew. Energy 75 856-68

[32] Janke J R 2010 Multicriteria GIS modeling of wind and
solar farms in Colorado Renew. Energy 35 2228-34

[33] Kaundinya D P et al 2013 A GIS (geographical information
system)-based spatial data mining approach for optimal
location and capacity planning of distributed biomass
power generation facilities: a case study of Tumkur district
India Energy 52 77-88

[34] Latinopoulos D and Kechagia K 2015 A GIS-based multi-
criteria evaluation for wind farm site selection. a regional
scale application in Greece Renew. Energy 78 550—-60

[35] Ramachandra T V and Shruthi B V 2007 Spatial mapping
of renewable energy potential Renew. Sustain. Energy Rev.
11 1460-80

[36] Siyal S H, Mentis D, Mortberg U, Samo S R and Howells
M 2015 A preliminary assessment of wind generated
hydrogen production potential to reduce the gasoline fuel
used in road transport sector of Sweden Int. J. Hydrogen
Energy 40 650111

[37] Siyal S H, Mortberg U, Mentis D, Welsch M, Babelon I and
Howells M 2015 Wind energy assessment considering
geographic and environmental restrictions in Sweden: a
GIS-based approach Energy 83 447-61

[38] Zambelli P et al 2012 A GIS decision support system for
regional forest management to assess biomass availability
for renewable energy production Environ. Model. Softw. 38
203-13

[39] Bazilian M D 2015 (March/April) (www.foreignaffairs.com/
articles/africa/2015-02-16/power-poor) (Accessed: 3 May
2015)

[40] SE4All Sustainable Energy For All 2016 (www.se4all.org/)

[41] USAID Power Africa 2016 (www.usaid.gov/powerafrica)

[42] Worldpop 2015 (www.worldpop.org.uk)

[43] Taliotis C et al 2016 An indicative analysis of investment
opportunities in the African electricity supply sector—using
TEMBA (the electricity model base for Africa) Energy
Sustain. Dev. 31 50-66

[44] Huang Z, Yu H, Peng Z and Zhao M 2015 Methods and
tools for community energy planning: a review Renew
Sustain. Energy Rev. 42 133548

[45] Amaral S, Monteiro A M V, Camara G and Quintanilha J A
2006 DMSP/OLS night-time light imagery for urban
population estimates in the Brazilian Amazon Int. . Remote
Sens. 27 855-70

[46] Min B, Gaba K M, Sarr O F and Agalassou A 2013
Detection of rural electrification in Africa using DMSP-OLS
night lights imagery Int. J. Remote Sens. 34 811841

[47] Belmans R and Ergun H 2015 Grid planning for the future
grid: optimizing topology and technology considering
spatial and temporal effects Thesis KU Leuven (http://lirias.
kuleuven.be/handle/123456789/472917)

[48] GADM Global Administrative Boundaries 2015 (www.
gadm.org)

[49] AfDB African Development Bank 2011 (www.
infrastructureafrica.org/tools/maps)

[50] OpenStreetMap 2015 (www.openstreetmap.org/)

[51] USGS United States Geological Survey 2015 (http://mrdata.
usgs.gov/mineral-resources/minfac.html)

[52] UNDESA United Nations Department of Economic and
Social Affairs, Population Division 2015 (http://esa.un.org/
unpd/wpp/)

W Letters

[53] Bloomberg Energy & Oil Prices: Natural Gas, Gasoline and
Crude Oil 2015 (www.bloomberg.com/energy) (Accessed: 7
October 2015)

[54] IEA World Energy Outlook 2015 (www.oecd-ilibrary.org/
content/book/weo-2015-en) (Accessed: 2 March 2016)

[55] CGIAR-CSI 2008 CGIAR SRTM 90 m Digital Elevation
Database v4.1 CGIAR-CSI 2008 (www.cgiar-csi.org/data/
srtm-90m-digital-elevation-database-v4-1) (Accessed: 14
December 2015)

[56] HydroSHEDS Global River Network 2013 (http://
hydrosheds.cr.usgs.gov/dataavail.php)

[57] Beck H E, de Roo A and van Dijk A 1] M 2015 Global
maps of streamflow characteristics based on observations
from several thousand catchments J. Hydrometeorol. 16
1478-501

[58] JRC European Commission Joint Research Centre 2015
Global Streamflow Characteristics Dataset (http://water.jrc.
ec.europa.eu/GSCD/)

[59] Feng M, Sexton J O, Channan S and Townshend J R

2015 A global, high-resolution (30 m) inland water body

datasetfor 2000: first results of a topographic—spectral

classification algorithm Int. J. Digit. Earth. 7 1-21

Brandimarte Cuya D G, Brandimarte L, Popescu I

Popescu I, Alterach J and Peviani M 2013 A GIS-based

assessment of maximum potential hydropower production

in La Plata basin under global changes Renew. Energy 50

103-14

Rojanamon P, Chaisomphob T and Bureekul T 2009

Application of geographical information system to site

selection of small run-of-river hydropower project by

considering engineering/economic/environmental criteria

and social impact Renew. Sustain. Energy Rev. 13

233648

Off Grid Electric 2016 (http://unfccc.int/secretariat/

momentum_for_change/items/9930.php) (Accessed: 19

December 2016)

Obama B 2017 The irreversible momentum of clean energy

Science 355 126-9

[64] UNDESA Tools for Sustainable Development 2016 (http://
unite.un.org/analytics/desa/modellingtools)

[65] The World Bank Energy Sector Management Assistance
Program 2016 (http://esmap.org/dlmv698—3545)

[66] IRENA 2012 Renewable energy technologies: cost analysis
series, Wind Power (www.irena.org/DocumentDownloads/
Publications/RE_Technologies_Cost_Analysis-
WIND_POWER.pdf) (Accessed: 15 June 2015)

[67] IRENA 2012 Renewable energy technologies: cost analysis
series, Hydropower (www.irena.org/documentdownloads/

(60

[61

[62

(63

publications/re_technologies_cost_analysis-hydropower.
pdf)

[68] IRENA 2012 Renewable energy technologies: cost analysis

series, Solar Photovoltaics (www.irena.org/Document

Downloads/Publications/RE_Technologies_Cost_Analysis-

SOLAR_PV.pdf)

The World Bank Indicators | Data 2016 (http://data.

worldbank.org/indicator) (Accessed: 3 October

2016)

[70] NEA, IEA, OECD Projected Costs of Generating Electricity
2015 (www.oecd-ilibrary.org/content/book/cost_electricity-
2015-en) (Accessed: 29 February 2016)

[71] UN Habitat Planning and Design for Sustainable Urban

Mobility 2012 (http://unhabitat.org/wp-content/uploads/

2013/06/GRHS.2013.111.pdf) (Accessed: 2 November

2016)

World Urbanization Prospects—Population Division—

United Nations 2016 (http://esa.un.org/unpd/wup/CD-

ROM/) (Accessed: 2 November 2016)

IRENA Global Atlas for Renewable Energy 2016 (http://

irena.masdar.ac.ae/) (Accessed: 7 September 2016)

Siyal S H, Mentis D, Korkovelos A and Howells M

Preliminary assessment of global wind energy potential

using GIS Working Paper

[69

[72

(73

(74

17


https://doi.org/10.1016/j.enconman.2013.02.004
https://doi.org/10.1016/j.energy.2009.10.004
https://doi.org/10.1016/j.energy.2009.10.004
https://doi.org/10.1016/j.renene.2014.10.068
https://doi.org/10.1016/j.renene.2010.03.014
https://doi.org/10.1016/j.renene.2015.01.041
https://doi.org/10.1016/j.rser.2005.12.002
https://doi.org/10.1016/j.ijhydene.2015.03.108
https://doi.org/10.1016/j.energy.2015.02.044
https://doi.org/10.1016/j.envsoft.2012.05.016
https://doi.org/10.1016/j.envsoft.2012.05.016
http://www.foreignaffairs.com/articles/africa/2015-02-16/power-poor
http://www.foreignaffairs.com/articles/africa/2015-02-16/power-poor
http://www.se4all.org/
http://www.usaid.gov/powerafrica
http://www.worldpop.org.uk
https://doi.org/10.1016/j.rser.2014.11.042
https://doi.org/10.1080/01431161.2013.833358
http://lirias.kuleuven.be/handle/123456789/472917
http://lirias.kuleuven.be/handle/123456789/472917
http://www.gadm.org
http://www.gadm.org
http://www.infrastructureafrica.org/tools/maps
http://www.infrastructureafrica.org/tools/maps
http://www.openstreetmap.org/
http://mrdata.usgs.gov/mineral-resources/minfac.html
http://mrdata.usgs.gov/mineral-resources/minfac.html
http://esa.un.org/unpd/wpp/
http://esa.un.org/unpd/wpp/
http://www.bloomberg.com/energy
http://www.oecd-ilibrary.org/content/book/weo-2015-en
http://www.oecd-ilibrary.org/content/book/weo-2015-en
http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1
http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1
http://hydrosheds.cr.usgs.gov/dataavail.php
http://hydrosheds.cr.usgs.gov/dataavail.php
https://doi.org/10.1175/jhm-d-14-0155.1
https://doi.org/10.1175/jhm-d-14-0155.1
http://water.jrc.ec.europa.eu/GSCD/
http://water.jrc.ec.europa.eu/GSCD/
https://doi.org/10.1016/j.renene.2012.06.019
https://doi.org/10.1016/j.renene.2012.06.019
http://unfccc.int/secretariat/momentum_for_change/items/9930.php
http://unfccc.int/secretariat/momentum_for_change/items/9930.php
http://unite.un.org/analytics/desa/modellingtools
http://unite.un.org/analytics/desa/modellingtools
http://esmap.org/dlmv698&x2013;3545
http://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-WIND_POWER.pdf
http://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-WIND_POWER.pdf
http://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-WIND_POWER.pdf
http://www.irena.org/documentdownloads/publications/re_technologies_cost_analysis-hydropower.pdf
http://www.irena.org/documentdownloads/publications/re_technologies_cost_analysis-hydropower.pdf
http://www.irena.org/documentdownloads/publications/re_technologies_cost_analysis-hydropower.pdf
http://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-SOLAR_PV.pdf
http://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-SOLAR_PV.pdf
http://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-SOLAR_PV.pdf
http://data.worldbank.org/indicator
http://data.worldbank.org/indicator
http://www.oecd-ilibrary.org/content/book/cost_electricity-2015-en
http://www.oecd-ilibrary.org/content/book/cost_electricity-2015-en
http://unhabitat.org/wp-content/uploads/2013/06/GRHS.2013.111.pdf
http://unhabitat.org/wp-content/uploads/2013/06/GRHS.2013.111.pdf
http://esa.un.org/unpd/wup/CD-ROM/
http://esa.un.org/unpd/wup/CD-ROM/
http://irena.masdar.ac.ae/
http://irena.masdar.ac.ae/

I0P Publishing

Environ. Res. Lett. 12 (2017) 085003

[75] IRENA Global Atlas for Renewable Energy 2016 (http://

irena.masdar.ac.ae/?map=543&utm_medium=

email&utm_source=July2016Update&utm_campaign=

privatedata) (Accessed: 7 September 2016)

[76] Rice S and Stewart P 2008 Index of State Weakness in the
Developing World (Washington, DC: Brookings) (www.
brookings.edu//media/Research/Files/Reports/2008/2/weak-

states-index/02_weak_states_index.PDF)

W Letters

[77] Euler Hermes 2015 Country risks (www.eulerhermes.com/
economic-research/country-risks/Pages/country-reports-risk-
map.aspx)

[78] US Energy Information Administration 2015 (www.eia.gov/
cfapps/ipdbproject/IEDIndex3.cfm?tid=2&pid=2&aid=2)
(Accessed: 1 November 2016)

[79] UN STATS Millenium Development Goals 2012 (http://mdgs.
un.org/unsd/mdg/Metadata.aspx?Indicatorld=0&Seriesld=712)

18


http://irena.masdar.ac.ae/?map=543&x0026;utm_medium=email&x0026;utm_source=July2016Update&x0026;utm_campaign=privatedata
http://irena.masdar.ac.ae/?map=543&x0026;utm_medium=email&x0026;utm_source=July2016Update&x0026;utm_campaign=privatedata
http://irena.masdar.ac.ae/?map=543&x0026;utm_medium=email&x0026;utm_source=July2016Update&x0026;utm_campaign=privatedata
http://irena.masdar.ac.ae/?map=543&x0026;utm_medium=email&x0026;utm_source=July2016Update&x0026;utm_campaign=privatedata
http://www.brookings.edu/&x007E;/media/Research/Files/Reports/2008/2/weak-states-index/02_weak_states_index.PDF
http://www.brookings.edu/&x007E;/media/Research/Files/Reports/2008/2/weak-states-index/02_weak_states_index.PDF
http://www.brookings.edu/&x007E;/media/Research/Files/Reports/2008/2/weak-states-index/02_weak_states_index.PDF
http://www.eulerhermes.com/economic-research/country-risks/Pages/country-reports-risk-map.aspx
http://www.eulerhermes.com/economic-research/country-risks/Pages/country-reports-risk-map.aspx
http://www.eulerhermes.com/economic-research/country-risks/Pages/country-reports-risk-map.aspx
http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=2&x0026;pid=2&x0026;aid=2
http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=2&x0026;pid=2&x0026;aid=2
http://mdgs.un.org/unsd/mdg/Metadata.aspx?IndicatorId=0&x0026;SeriesId=712
http://mdgs.un.org/unsd/mdg/Metadata.aspx?IndicatorId=0&x0026;SeriesId=712

	Lighting the World: the first application of an open source, spatial electrification tool (OnSSET) on Sub-Saharan Africa
	1. Introduction
	1.1. GIS and energy planning

	2. Methodology
	2.1. Electricity demand
	2.2. Assigning costs
	2.3. Spatial energy resource availability

	3. Results
	3.1. Investment needs
	3.2. Implications for market development and assistance

	4. Conclusions
	Appendix: Methods
	Cost calculations
	Penalty cost assignment to electricity grid expansion processes
	Household size
	Wind energy potentials
	Solar energy potentials
	Spatial LCOE generated by diesel
	For coastal countries
	For landlocked countries
	Transport cost Pt (&dollar; kWhth-1)
	Electricity production cost Pp (&dollar;&thinsp;kWhel-1)

	Technology market share by category and type
	A simple market assistance index

	Acknowledgements
	References


