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Abstract 

This study identified the potential chemical accident occurrence in Korea by analyzing the 

spatial distribution of chemical factories and accidents. The number of chemical factories and 

accidents in 25-km
2 

grids were used as the attribute value for spatial analysis. First, semi-

variograms were conducted to examine spatial distribution patterns and to identify spatial 

autocorrelation of chemical factories and accidents. Semi-variograms explained that the 

spatial distribution of chemical factories and accidents were spatially autocorrelated. Second, 

the results of the semi-variograms were used in Ordinary Kriging to estimate chemical hazard 

levels. The level values were extracted from the Ordinary Kriging result and their spatial 

similarity was examined by juxtaposing the two values with respect to their location. Six 

peaks were identified in both the factory hazard and accident hazard estimation result, and the 

peaks correlated with major cities in Korea. Third, the estimated two hazard levels were 

classified with geometrical interval and could be classified into four quadrants: Low Factory 
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and Low Accident (LFLA), High Factory and Low Accident (HFLA), Low Factory and High 

Accident(LFHA), and High Factory and High Accident (HFHA). The 4 groups identified 

different chemical safety management issues in Korea; safe LFLA group, many chemical 

reseller factories were found in HFLA group, chemical transportation accidents were in the 

LFHA group, and an abundance of factories and accidents were in the HFHA group. Each 

quadrant represented different safety management obstacles in Korea, and studying spatial 

differences can support the establishment of an efficient risk management plan.  

 

Key words: chemical accident, hazard, spatial analysis, safety management, classification 

 

1. Introduction 

Chemical materials have been used in agricultural, manufacturing, engineering, and other 

various industries, and the demand for chemical use is continually increasing [1]. In 1942, a 

mere 600 000 chemical compounds had been identified. In 1947, this number had increased 

to 4 million, and since then the total number of identified chemical compounds has risen to 

around 11 million [2]. Advancement of the chemical industry required complex systems of 

production, transportation, and storage, so the possibility of a chemical accident occurring 

and the severity of possible accidents increased [3]. As a result, many severe chemical 

accidents in recent history have affected the environment and human population. The Indian 

Bhopal accident in 1984 [4], Italian Seveso accident in 1976 [5], and Fukushima nuclear 

disaster in 2011 [6] had severe consequences for both the environment and human population. 

To combat the growing risks of chemical accidents, the United Sates established the National 

Atmospheric Release Advisory Center (NARAC) [7] and the European Union introduced the 

Registration, Evaluation, and Authorization of Chemicals (REACH) to systematically reduce 

chemical exposure [8]. 

According to the European Environment Agency [9], chemical accident management requires 

further studies in estimating the potential scale of their effects, their unpredictability, and the 

uncertainties of their consequences for Environmental Risk Assessment (ERA). ERA 

appeared to be challenging, due to a lack of related data and the complexity of the 

environment, and traditionally, results from ERA are presented in a non-spatial manner [10]. 

Chemical accidents were statistically analyzed and the most dangerous chemical materials in 
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use were identified by comparing the number of accidents, injuries, and damages [11]. 

General statistical analysis had many limitations in studying chemical accidents properly 

because chemical accidents have spatial distribution [12].  

The development of Geographic Information Systems (GIS) has greatly improved spatial 

representation and spatial analysis of all forms of information and data. Spatial statistical 

analysis can explain the distribution and pattern of spatial data based on the theory that 

“everything is related to everything else, but near things are more related than distant things” 

[13]. Spatial statistical analysis has been applied to various academic fields, including 

ecology [14], epidemiology [15], urban planning [16], and chemical risk management [17]. 

Furthermore, development of GIS technology enhanced regional level of ERA studies for 

example lead risk of soil in Blackwattle Bay region [18] and chemical accident risk 

assessment with exposure model in Nanjing chemical Industry Park [19]. Instead of 

abundance of the study, studies that apply spatial statistical analysis to chemical factories and 

accident locations from a safety management perspective for national scale were difficult to 

find. In forestry, spatial analysis was used to understand the occurrence patterns of forest fires, 

and an efficient accident management plan was suggested [20]. In chemical industry, spatial 

analysis could be very powerful tool for safety management. 

Previous studies have used different spatial analysis methods to assess chemical hazard, and 

they were categorized into 4 groups. The first group estimated risk from the measured 

chemical substance level at the sample site and used spatial analysis to estimate the level of 

chemical risk in the area [10,20,21,22,23]. The second group developed indices by 

calculating the index using existing data or geographic properties [23,24]. The third group 

used a model and scenario to predict chemical material dispersion in space [25,26,27]. The 

fourth group used remote sensing techniques and observed damage changes in space and time 

[28,29,30] This study falls into the first and the second groups, because chemical hazard 

levels were estimated by spatial analysis, and the estimated values were systematically 

classified into four classes that indicate areas with potential future accident. This study 

applied spatial statistical analysis on location of chemical factories and accidents to 

understand the spatial distribution patterns of the two variables, estimated two different 

hazard levels, and finally to classify levels into 4 groups to provide useful information for 

management purposes. 
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2.  Methodology 

2.1. Data description 

2.1.1. Definition of Hazard and Occurrence 

Hazard and risk are often confused in their use, and many articles define the meaning of the 

two words to prevent misuse [19,31]. In this article, the definitions of hazard was carefully 

selected from previous studies to avoid the misuse word with risk. From reviewing literature, 

it is appropriate to consider the number of chemical factory and accident in a grid cell as the 

hazard.  

The simple definition of hazard is “a potential damage” [32]. Following the definition of a 

hazard, chemical factories are potential damage source, where accidents can occur. Further 

definition of a hazard includes intensive property [33], which illustrates the influence of the 

chemical material, and chemical toxicity is usually a good example of this. Furthermore, 

definition of hazard includes the possibility of potential accidental pollution. Chemical 

accident records has probability since the accident had occurred. Number of the chemical 

factories and chemical accident in a grid cell also act as an intensive property and source of 

the danger, because area with high number of chemical factories and accident can expect 

higher hazard level. Occurrence means outbreak of phenomenon or incident. In this article, 

occurrence means the potential future accidents that might appear in estimated hazardous area. 

The previously occurred chemical accidents were used as the input data for the estimation. 

 

2.1.2. Study Area: South Korea 

Korea is ranked 6th in the world in chemical industry market shares and accounts for 3.4% 

(138.7 billion USD) of the world's chemical market (4.1 trillion USD), behind China (21.9%, 

903.4 billion USD), the US (17.5%, 720.0 billion USD), Japan (8.2%, 338.2 billion USD), 

Germany (5.5%, 228.8 billion USD), and Brazil (3.6%, 149.6 billion USD) [34]. The number 

of domestic chemical manufacturers registered in Korea in 2002 was 12,205, and increased to 

16,547 in 2010. According to the Hazardous Chemical Material Accident Casebook, the total 

amount of chemical material usage in Korea rose from 21,159 to 32,294 tons (52.6%), and 

the number of chemical accidents rose from 26 to 70 (169.2%) between 2001 and 2006 [35]. 
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The estimated economic loss from chemical industrial accidents is estimated to be up to 15 

trillion KRW (16.9 billion USD), and the number of victims of chemical accidents exceeded 

2,900 in 2012 [36]. 

The United Nations Environment Programme (UNEP) has emphasized the necessity of 

reducing the risk of the chemical industry [37], and the 2012 Gumi hydrogen fluoride leaking 

accident in southeast chemical industry complex in South Korea increased the public 

awareness of chemical accidents’ potential to cause severe harm to people, the environment, 

and the economy.  

The Toxic Chemicals Control Act (TCCA) was enacted in 1992, and the Korea Ministry of 

Environment (MOE) has been responsible for managing toxic chemicals [38]. In 2015, the 

Chemical Material Management Act (CMMA) and Chemical Material Assessment Act 

(CMAA) were enacted after amending the TCCA. Furthermore, the CMAA included new 

clauses, such as environmental impact assessment, immediate reporting duty of accidents, 

business licensing, and the designation of a special management area to improve 

preparedness and responses to chemical accidents [39]. 

 

2.1.3. Materials: Chemical Factory and Chemical Accident Data 

Chemical factory data was provided by the MOE. There are 4,916 factories included in this 

data, and the chemical factory data includes detailed information about factories, like title, 

business registration code, owner, address, phone number, chemical materials, amount of 

them used, and chemical states. 

Chemical accident data was provided by the National Institute of Chemical Safety under 

MOE. The agency established the online Chemical Safety Cleaning House (CSC) System, 

which provides chemical accident records to the public [40]. At the beginning of the research, 

the system provided chemical accident data from 2006 to 2015, and total number of accidents 

was 418. The average annual accident outbreaks from 2003 to 2012 was 13.3 cases, but after 

2012 it increased to 97.7 cases. This phenomenon is considered to be influenced by people’s 

awareness of chemical accidents following the Gumi accident which encourage them to 

report even small accidents [41]. 

Chemical factory and accident data were geocoded based on their address and projected as 

point data on ArcGIS. The spatial distribution of the two data sets are described in Figure 1. 
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The chemical accident data for this study had 126 cases of damages to humans by accidents 

and only 14 cases resulting in economic loss. The numbers of cases were insufficient for 

spatial analysis and, regarding that even one chemical accident can cause severe damage [42], 

this study focused on occurrence of chemical accidents rather than their magnitude. 

Point data has two major characteristics: the first is the density of the point in each space, and 

the second is spatial dependence or spatial autocorrelation, which is measured from values 

and distance between the points [43,44]. Both density and spatial autocorrelation is important 

in understanding the spatial patterns of chemical accidents and factories. The density of 

points was measured by counting the numbers of factories and accidents in the 25-km
2
 grids, 

and spatial autocorrelation was measured by a semi-variogram.  

 

<Figure 1> 

 

 

2.2. Research Method 

2.2.1. Spatial Autocorrelation of Chemical Factories and Accidents 

The chemical factories and accident numbers in the 25-km
2
 grids have replaced the attribute 

value for the spatial analysis. Hazard assessment of chemical factories and accidents can be 

assessed with statistical analysis but it has many limitations [45]. For instance, prospecting 

required geostatistical analysis because statistical analysis can only estimate amount of 

mineral but where they are buried. Spatial analysis of Chemical factory and accident can 

quantify the hazard level in unknown area. 

Understanding spatial distribution pattern of chemical factories and accident is prerequisite 

before the hazard assessment. Spatial autocorrelation describes the similarity of spatial 

entities increases with close spatial location [46] and it can be quantified by Semi-variogram, 

Correlogram, Covariacne, and Madogram [45]. In this study Semi-variogram was chosen to 

determine spatial dependence of chemical factories and accident through 

geostatistics[47,48,49] before the estimation of the hazard level. The experimental Semi-

variogram was estimated by equation 1:  
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   represents spatial location of the chemical factories and accidents were translated to 

longitude and latitude.  (  ) is the attribute value of data located at   , and in this study the 

attribute values were the number of chemical factories and accidents in a grid.  (    ) is 

attribute value of data that was located away from    , with h as distance and n as the 

number of the pairs of points in lag size [41]. Semi-variogram gives the square of the 

difference between the attribute values of the two grids. When the two grids have similar 

number of chemical factory in short lag distance, the variance will be low and it estimates a 

high spatial autocorrelation of the chemical factory, and same for the chemical accidents. 

Additionally, lag size means maximum allowed distance to observe comparative point and 

lag distance refers actual distance difference of point to points within the lag size. 

After investigating spatial dependency with the experimental semi-variogram, a theoretical 

semi-variogram model should be used to describe the spatial autocorrelation as a graph [51]. 

In this study, an exponential model was selected because both chemical factories and 

chemical accident numbers in grids showed exponential growth, and Root Mean Square Error 

(RMSE) was the lowest with this model. Exponential (Equation 2) models were fitted to the 

scaled experimental semi-variograms, 

 

0h)],
a

3h
exp([1CCγ(h) 10                                             (2) 

 

Where    is the nugget effect;       is sill;   is the distance between experimental 

observations; and    is spatial dependence range [52]. Nugget effect occurs when two points 

have difference with zero separation distance and sill means variance value when model 

attains the range. The semi-variogram model levels out at a certain distance, and the distance 

at which the model first flattens out is the range. Distances further than the range are not 

spatially autocorrelated, whereas distances before the range are spatially autocorrelated [53]. 

Where the semi-variogram model attains range, the y-axis value is called the sill and it shows 

the variance of the data [54]. The partial sill is the sill subtracted from the nugget, and a high 
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partial sill means high changes in spatial distribution [54,55]. 

After, the experimental and theoretical Semi-variogram, the spatial dependency of the 

chemical factories and accident in 25-km
2
 grid is quantified to show the distribution patterns 

of the two variables, and the result of Semi-variogram allowed the study to proceed hazard 

level estimation. 

 

2.2.2. Hazard Estimation from Chemical Factories and Accidents 

Hazards from chemical factories and chemical accidents were estimated using the analysis 

result of the semi-variogram and Kriging interpolation method. Kriging is a geostatistical 

interpolation method which estimates an unknown value in an unknown location [56,57]. In 

this study, the Ordinary Kriging method was selected to prevent estimation bias and minimize 

error variance [51]. 

At the unknown location  , Ordinary Kriging estimates    
 ( ) by linear summation of a 

nearby observed value z(  ) as in equation (3) [58]: 
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In equation (3), weight 
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αλ  must be decided while minimizing estimation distribution 

   {   
 ( )   ( )} and satisfying a non-biased condition  {   

 ( )   ( )}   . To 

satisfy the condition, Ordinary Kriging uses equation (4) [58,59].  
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In equation (4),    ( )  and  (     )  represent the Lagrangian parameter and 

variogram value with distance between two points. The Kriging estimation value    
 ( ) 

and estimation variance in equation (5) are calculated from Ordinary Kriging.  
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Hazard values from chemical factories and accidents occurrence were estimated from 

Ordinary Kriging and all values were used to gain identification numbers respective to their 

spatial location in Korea. Estimated hazard values were arranged by identification number to 

visualize hazards change by location. Firstly, the two hazard estimation results values were 

visualized on a scatter plot and the distribution of values was observed, and secondly, 

Pearson Product Moment Correlations were conducted to measure the statistical relationships 

between hazard estimated value of chemical factories and chemical accidents. 

 

   

  





2222 y)(y][nx)(x[n

y)x)((xy)n(
r                                      (6) 

 

Where x and y is the estimated hazard of factories and accidents values from Ordinary 

Kriging and n is number of values. The correlation coefficient (r) can vary from -1 to 1. An r 

= 0 means that there is no connection between the two measures at all, and an r = 1 means 

that the two measures are positively correlated, with both moving in the same direction. An r 

= -1 also means that the two measures are negatively correlated, with both are moving in 

opposite directions. Values from -0.5 to -1 or from .5 to 1 are considered high [60]. 

 

2.2.3. Hazards Classification by Geometrical Interval 

 The objective of classification is to group data in such a manner so that the observations 

within a class similar, but also the classes themselves are dissimilar. Geometric interval is a 

mathematically defined interval system, producing class boundaries and intervening distances 

that change systematically, and this method creates class breaks based on class intervals that 

have a geometrical series [61].  
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L-n32 ararara ,......,,                                                      (7) 

 

Equation 7 shows how geometric interval produces class boundaries, where   is the first 

term,   is the common ratio,   is the number of terms and   is the last term,       [61]. 

As the equation is formulated, geometric interval is only a useful method when the data has 

geometrical series, an exponential function. The number of chemical factories and accidents 

in grids, and estimated hazard values of chemical factories and accidents from Ordinary 

Kriging, had geometrical series.  

In this study, estimated hazards were classified through two processes. First, the result of 

estimated hazards were classified with geometrical intervals into three groups (low, medium, 

and high). Due to a large number of zero values, the first result of geometrical interval had 

four groups (very low, low, medium, and high) but the very low and low levels were 

aggregated under low level. 

Second, hazard levels were classified together. The hazard values were arranged by their 

identification number, and computed in a graph with hazard of factories as the dependent 

variable and hazard of accidents as the independent variable. For the next step, hazard of 

chemical factories and accidents were classified into high hazard and low hazard. Each axis 

was divided into two groups, with their break values assigned from the geometrical interval, 

thereby creating a quadrant. Quadrant I is HFHA: High Factory and High Accident, quadrant 

II is LFHA: Low Factory and High Accident, quadrant III is LFLA: Low Factory and Low 

Accident, and quadrant IV is HFLA: High Factory and Low Accident. 

For the overview of the hazard assessment, firstly the spatial distribution of chemical 

factories and accident occurrence were examined by Semi-variogram, secondly the result of 

Semi-variogram and Ordinary Kriging estimated the hazard level for factories and accidents 

of South Korea, thirdly the estimation values were classified by geometrical interval. Finally, 

the results were produced as chemical factory hazard map, chemical accident hazard map, 

and together, potential chemical hazard occurrence map. 

 

2.2.4. Verification of Estimated Hazard and Risk 

The Ordinary Kriging of chemical factories and accident records estimated hazard and risk 

values in Korea. These estimated values were classified by geometrical intervals and divided 



11 

 

into three groups: low, medium, and high. The results of the Ordinary Kriging and 

geometrical interval classification were verified by overlaying the actual accident records 

over the classification results.  

Verification of estimated risk used less verification data than hazard, because accident data 

from 2003 to 2015 were used to estimate risk. Estimated hazard was verified using data from 

2003 to 2015, 2016 to 2017 and 2003 to 2017 accident records. For verification, actual 

accidents were plotted on the map and allocated into three levels of hazard and risk (high, 

medium, low), dependent on their location. After this, the number of accidents in each level 

were divided by the level’s area to calculate accident density, because high hazard/risk area is 

much smaller than low hazard/risk area (equation 8). Where D(L) is the density of the level 

area, L(n) is the number of accidents in the level area, and L(a) is the area of the level. 

Verification was conducted on entirety of Korea, and different cities of Korea, where hazard 

and risk values are significantly higher. 

 

L(a)

L(n)
D(L)                                                              (8) 

 

The same method was used to verify the classification of integrated hazard and risk results. 

The numbers of chemical accidents in 4 groups (LFLA, HFLA, LFHA, and HFHA) were 

counted and chemical accident density was calculated for comparing groups. Additionally, 

the number of factories in the 4 groups was used to verify both of hazard and risk together. 

 

 

 

3.  Results  

3.1. Spatial Autocorrelation of Chemical Factories and Accidents 

The semi-variogram of the number of chemical factories and accidents in girds is shown 

Figure 2. Spatial autocorrelation was examined in both the chemical factories and accidents 

semi-variogram results (Figure 2). The autocorrelation result was interpreted with 4 

components: range, sill, partial sill, and nugget. The chemical factory range was 12.1 km, and 
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the chemical accident range was 7.53 km therefore chemical factory had autocorrelation in 

larger area. The semi-variogram had the same values for partial sill and sill due to the no 

nugget effect which illustrate no significant error in data. The chemical factory’s partial sill 

was 57.3 and chemical accident partial sill was 0.286 which can illustrate high variance of 

chemical accident with distance. The existence of spatial autocorrelation means that the 

chemical factories and accidents are not randomly distributed in space, but have a kind of 

clustering tendency. 

 

<Figure 2> 

 

3.2. Hazard Estimation from Chemical Factories and Accidents 

Distribution of the Ordinary Kriging result were examined to validate geometrical interval as 

the proper classification method and estimated hazard values for chemical factories and 

accidents had exponential increments which makes geometrical interval a proper 

classification method (Figure 3). 

Figure 4 depicts two hazard maps from the chemical factories (a) and chemical accidents (b) 

by Ordinary Kriging. Factory hazard and accident hazard values were extracted as point data 

and arranged by their identification number. The results showed 6 peaks in both maps (Figure 

5). The peaks were matched with the administrative districts of Korea, and the cities with 

high peaks were the capital region, Daejeon city, Daegu city, Ulsan city, Busan city, and 

Yeosu city. 

The hazard value sets, arranged by identification number, were juxtaposed on the graph for 

comparison and the peaks in two different graphs were very similar. The highest hazard level 

from both factories and accidents were identified in the capital region, and Ulsan, Busan, and 

Yeosu cities. 

Additionally, Pearson correlation was used to examine similarity between two hazard 

variables. The resulting R value was 0.706, with a P value of less than 0.01. 

 

<Figure 3> 

<Figure 4> 

<Figure 5> 
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3.3. Hazard and Risk Classification by Geometrical Interval 

The result of applying the geometrical interval created break values for factory and accident 

hazard, which classified the data into four quadrants, and the break value was 0.058, 0.41 for 

the x, y-coordinate. The points located on the right side of the break values were considered 

as high hazard, and the points located above the break values were considered as high risk. 

The four classified quadrants had distinctive characteristics in their range and data amount. 

Each quadrants’ area and number of points were noted to understand differences in 

distribution patterns of the classification results. For area, quadrant I(HFHA) composed 97.2% 

of the total area in the graph and quadrants IV(HFLA), II(LFHA), and III(LFLA) composed 

2.64%, 0.17%, and 0.0046% of the area. In contrast to the result of area, quadrant III(LFLA) 

had the most points in the smallest area, containing 61.6% of the total number of points, 

while only 6.52% of total points were found in quadrant I(HFHA). Additionally, 31.5% of 

points were in quadrant IV(HFLA) and only 0.40% of points were in quadrant II(LFHA). 

According to this observation, quadrants I(HFHA) and II(LFHA) had low point data density 

while quadrants III(LFLA) and IV(HFLA) had high point data density (Figure 6).  

The four quadrants reflect different regions of factory and accident hazard level in Korea. 

Quadrant I was where both factory and accident were high(HFHA), reflecting chemical 

accidents that occurred in factories; quadrant II was where only accident was high(LFHA), 

reflecting chemical accidents during transportation; quadrant III was where both factory and 

accident were low(LFLA), reflecting no chemical factories and accidents; quadrant IV was 

where only factory was high(HFLA) reflecting factories with no accidents, but that could be 

considered as potential chemical accident location.  

The results of classification were applied on the map by matching the point identification 

number to the pixel identification number. The map created from the classification not only 

visualized the hazard and risk level differences in space, but also provided information on 

where future chemical accidents were more likely to occur, therefore, the map designates the 

potential chemical hazard occurrence in future (Figure 7). A large area of HFHA was 

observed in big cities, and the capital region had the largest area. Significantly large HFHA 

areas were identified in major cities such as Busan, Daegu, Daejeon, Ulsan, Yeosu cities. 

LFHA areas were distributed evenly throughout Korea because this class represents accidents 
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during transportation. LFLA areas were mostly found in the northeast and southwest areas of 

Korea, due to the small numbers of factories, but unlike the northeast, a cluster of HFHA was 

found in the southwest. HFLA areas were mostly found near the HFHA areas, since the 

location of chemical factories is restricted by the government (Figure 7). 

 

<Figure 6> 

<Figure 7> 

 

3.4. Verification 

The prediction accuracy of the chemical factory hazard map was verified by overlaying the 

actual chemical accident records from 2003 to 2015, 2016 to 2017 and 2003 to 2017(Table 1). 

National wide, the results of hazard map verification showed that 83.7% of accident density 

percentage in an estimated high hazard area, 15.4% in a medium hazard area, and just 0.9% 

in a low hazard area in Korea from 2003 to 2015. The 2016 to 2017 chemical accident data 

was acquired after the study had proceeded, and this data was used to verify the accuracy of 

the estimated hazard map. The accident density percentages were 87.8%, 11.0% and 1.1%, 

from high to low hazard areas from 2016 to 2017. Overall, 84.4%, 14.6%, and 0.9% of 

density percentages were observed from 2013 to 2017. Hazard verification was not only 

conducted on a national scale, but also 6 chemical industrialized cities (the capital region, 

Busan city, Daegu city, Ulsan city, Yeosu city) were selected for regional scale verification, 

and the results were similar to the national scale. Chemical accident hazard map was verified 

by the same method, but only 2016 to 2017 accident data was used because the chemical 

accident data from 2003 to 2015 was the input data for hazard estimation. The result of 

hazard map from chemical accident verification was similar to the result of hazard map 

verification of factories, and higher prediction accuracy was observed in the high hazard 

areas (Table 1). 

 

<Table 1>  

 

Also, the potential chemical hazard occurrence map was verified by applying the same 

verification method but this verification had four classes rather than three (low, medium, and 
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high), and chemical factories locations were additionally overlaid as another data set for 

verification, since the potential chemical hazard occurrence map included both chemical 

hazards from factories and accidents (Table 2). 

Firstly, the results of verification with the chemical accident record showed a similar result to 

the previous verification of hazard and risk maps. Most chemical accidents appeared in areas 

where both factory hazard and accident hazard were high. For instance, 379 chemical 

accidents out of 418 were observed in HFHA areas between 2013 to 2015. Considering area 

size differences among the four classes, the calculated density percentage of HFHA meant it 

was still the highest density percentage class (77.5%). Busan, Daegu, Daejeon, Ulsan cities’ 

chemical accidents only appeared in HFHA areas, and the Capital region had 157 out of 160 

accidents with a density percentage of 86.3%. The verification results from 2016 to 2017 and 

2013 to 2017 also showed similar results to the previous verification results, and most 

chemical accidents were found in HFHA areas. Secondly, the number of chemical factories in 

each class was examined, and the majority of chemical factories are located in HFHA regions, 

but a high number of chemical factories were found in HFLA areas, reflecting the chemical 

factories without any chemical accidents (Table 2). 

 

<Table 2> 

 

4.  Discussion 

4.1. Spatial Analysis and Chemical Hazard Assessment 

Many chemical factories use more than one chemical material under various concentrations, 

and even synthesize chemicals during the process. The possibility of a chemical accident 

outbreak in a factory can be deduced from the total failure rate of factories’ facilities and 

human factors, but it requires a precise survey on entire work-place [62]. For these reasons, 

applying previous hazard estimation methodology was very resource and time intensive when 

applying national scale investment. Currently the Korean government obtains information of 

each factories’ chemical materials and their facilities under CMMA. The publication of the 

data from CMMA may provide enough information to calculate the hazard level and accident 

probability for each factory, which can increase the accuracy of spatial analyses of hazard 
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estimation. 

This study can be improved by adding temporal factors into the spatial analysis and 

examining the changes of chemical hazard with time. For spatial temporal analysis, a 

complement of chemical accident data is necessary because one chemical accident in a year is 

not enough to proceed with spatial analysis. The integration of chemical accident data from 

reliable sources can improve the study and potentially allow researchers to conduct spatial-

temporal analysis of chemical hazards and potential accident location. Furthermore on data, 

magnitude of the factories and accidents are dubious. For instance, chemical amount, death, 

and financial loss were mostly zero for all the records which was an obstacle for 

environmental risk assessment. Another limitation is that the study did not consider the 

factors or geographical condition of the area. Only the number of chemical factories and 

accidents were used as hazard indicators because information was limited. In future studies, 

other factors, such as obsolete equipment, chemical materials, elevation, and slope of the area, 

could be introduced for improvement of models. 

Though there are many limitations of the study, it has a distinctive feature; the number of 

chemical factories and chemical accidents in the 25-km
2
 grid were used as attribute values for 

spatial analysis to estimate hazard and risk. This methodology can be applied on a national 

scale risk assessment, which is usually challenging with other methods. The result of the 

spatial analysis described the spatial distribution of hazard and risk levels, which could be 

used for the safety management system. 

 

4.2. Classification of Chemical Hazard  

The geometrical interval classified integrated factory hazard and accident hazard into four 

groups (LFLA, LFHA, HFLA, and HFHA) and identified the spatial location and area of 

each group. The four groups represent different hazard levels in areas and illustrates the 

potential chemical hazard occurrence in future, therefore the safety management plan should 

be tailored dependent on their group.  

The absence of chemical factories and accidents suggests that LFLA is the safest group, 

where a site management plan seems unnecessary. LFHA group also had no chemical 

factories, but the risk level was high in the area because of a chemical accident during 

transportation. The accident during transportation was ranked as the third chemical accident 
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cause [35], and it is difficult to predict where chemical accidents are going to occur because 

they are mobile, unlike chemical factories. Singapore, Canada, the United States, European 

Union, and England have established a chemical transportation accident management system 

[63,64]. In Korea, the Ministry of Land, Infrastructure, and Transportation had embarked on a 

project on tracking chemical material transportation vehicles in 2015, but only reached the 

testing level [65]. Installation of safety equipment near roads in the LFHA area is a possible 

solution for managing transportation accidents until a proper management system is 

introduced.  

The verification result showed that 84% of new chemical accidents between 2016 and 2017 

occurred in the high risk area, where previous accidents have taken place. This skewed 

accident occurrence with evenly distributed chemical factories in HFLA and HFHA, and was 

irrational so the input data was rescanned and it was identified that the chemical factories in 

HFLA areas are involved with selling and transporting chemical substances, whereas 

factories in HFHA areas are involved with synthesizing chemicals and manufacturing 

chemical goods. Furthermore, HFHA and HFLA areas were clustered on the map because the 

Korean government restricts land use, especially under the Harmful Chemical Substance 

Management Act, under which the construction of chemical factories is strictly restricted by 

their type of business [66]. 

The four groups were ranked by their danger level from a safety management perspective, 

and HFHA was ranked as the most dangerous group due to frequent accident outbreaks 

requiring much management effort, and LFLA was ranked as the safest group because of the 

absence of both chemical factories and accidents. HFLA was considered a safer group 

compared to LFHA because though HFLA areas contain factories where potential accidents 

might occur in the future, the accidents in HFLA areas can be managed under the current 

system. Alternatively, chemical accidents in LFHA areas are hard to predict, yet there is no 

proper management system. 

Limitations of hazard classification remained as high prediction uncertainties of LFHA group, 

accident from transportation; and simplified the hazard groups by four while BASF risk 

Matrix identifies 20 groups [67]. These limitations can be overcome with data 

supplementation, and the study is still meaningful because previous methods, such as the 

BASF risk Matrix, were intended to assess risks in a specific factory, whereas this study 
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assessed hazard levels on a national scale. 

 

5.  Conclusion 

In this study, chemical hazard in Korea was estimated by spatial analysis of number of 

chemical factories and accidents. The values were extracted from the spatial analysis result 

and their spatial similarity was examined by juxtaposing the two values with respect to their 

location. 

The 4 groups were identified and they represent different chemical safety management issues 

in Korea; a safe LFLA group, many chemical reseller factories were found in HFLA group, 

chemical transportation accidents were in the LFHA group, and an abundance of factories 

and accidents were in the HFHA group. Spatial temporal analysis could have been conducted 

to present hazard and risk changes respective to time, which can identify vulnerable seasons 

or periods of chemical accidents. There is not yet enough data for spatial temporal analysis. A 

limitation of classification was the over simplification of hazard and risk classifications, but a 

national scale safety assessment is still a meaningful result.  

Distinctive features of this study include a methodology that estimates chemical hazards 

through spatial analysis of chemical factories and accident densities, and classified areas with 

different chemical hazard occurrence in future. Founding of this study can be applied to 

safety management by suggesting different management plans for each group and increase 

the efficiency in chemical safety management systems. In future studies, geographic factors 

can be applied to increase the accuracy of the result, and the application of new factors could 

identify the risk from chemical transportation accidents, which the current classification 

method could not estimate. 
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Figure 1. Spatial distribution of chemical factories and accidents in South Korea 

(a. Chemical factory, b. Chemical accident, c. both) 

  

(a) (b) (c) 
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Figure 2. Result of Spatial autocorrelation 

(a) Chemical factory 

(b) Chemical accident 
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Figure 3. Geometrical series variables  

(a) Number of factories in a grid (b) Number of accidents in a grid 
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Figure 4. Hazard map from (a) chemical factories and (b) chemical accidents  

(a) (b) 
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Figure 5. Spatial similarity of estimated hazard of chemical accidents and factories  
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Figure 6. Geometric interval applied on estimated hazard of factories and accidents 
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Figure 7. Chemical Accident Hazard Assessment Map 
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Table 1. Verification of hazard estimation 

Type Year 
Hazard 

Level 

Capital 

region 

Busan 

city 

Daegu 

city 

Daejeon 

city 

Ulsan 

city 

Yeosu 

city 

South 

Korea 

Number of 

accidents in 

estimated 

hazard map 

from 

chemical 

factories 

2013 

~2015 

High 
84 

(86.0%) 

14 

(94.1%) 

5 

(76.0%) 

11 

(85.1%) 

26 

(97.7%) 

15 

(90%) 

164 

(83.7%) 

Medium 
63 

(13.8%) 

6 

(5.9%) 

5 

(24.0%) 

1 

(14.9%) 

5 

(2.2%) 

2 

(4.1%) 

183 

(15.4%) 

Low 
10 

(0.2%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

1 

(0.1%) 

3 

(5.9%) 

73 

(0.9%) 

2016 

~2017 

High 
13 

(89.5%) 

4 

(96.5%) 

2 

(76.5%) 

4 

(100%) 

5 

(100%) 

3 

(74.7%) 

34 

(87.8%) 

Medium 
7 

(10.3%) 

1 

(3.5%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

3 

(25.3%) 

26 

(11.0%) 

Low 
2 

(0.3%) 

0 

(0%) 

1 

(23.5%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

18 

(1.1%) 

2003 

~2017 

High 
97 

(86.5%) 

18 

(94.6%) 

7 

(76.1%) 

15 

(91.1%) 

31 

(98.1%) 

18 

(87.0%) 

198 

(84.4%) 

Medium 
70 

(13.3%) 

7 

(5.4%) 

5 

(17.2%) 

1 

(8.9%) 

5 

(1.9%) 

5 

(1.9%) 

209 

(14.6%) 

Low 
12 

(0.2%) 

0 

(0%) 

1 

(6.7%) 

0 

(0%) 

1 

(0.1%) 

3 

(0.1%) 

91 

(0.9%) 

Number of 

accidents in 

estimated 

hazard map 

from 

chemical 

accidents 

2016 

~2017 

High 
13 

(89.5%) 

3 

(89.0%) 

2 

(76.5%) 

3 

(96.0%) 

5 

(100%) 

3 

(89.8%) 

28 

(84.5%) 

Medium 
7 

(10.3%) 

1 

(4.4%) 

0 

(0%) 

1 

(4.0%) 

0 

(0%) 

1 

(10.2%) 

28 

(13.9%) 

Low 
2 

(0.3%) 

1 

(6.6%) 

1 

(23.5%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

22 

(1.6%) 
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Table 2. Verification of the four-classification result by HFHA (High Factory and High Accident), LFHA (Low 

Factory and High Accident), HFLA (High Factory and Low Accident), LFLA (Low Factory and Low Accident). 

Number of accidents in four classes 

2013 

~2015 

 

Capital 

region 

Busan 

city 

Daegu 

city 

Daejeon 

city 

Ulsan 

city 

Yeosu 

city 

South 

Korea 

HF, HA 
157 

(86.3%) 

18 

(100%) 

10 

(100%) 

12 

(100%) 

31 

(100%) 

19 

(66.0%) 

379 

(77.5%) 

LF, HA 
3 

(13.7%) 

0 

(0%) 

0 

(%) 

0 

(0%) 

0 

(0%) 

2 

(34.0%) 

39 

(22.5%) 

HF, LA 
0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

LF, LA 
0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

2016 

~2017 

HF, HA 
19 

(63.3%) 

4 

(74.5%) 

2 

(45.1%) 

4 

(100%) 

5 

(100%) 

4 

(100%) 

58 

(75.9%) 

LF, HA 
1 

(27.8%) 

1 

(25.5%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

2 

(7.3%) 

HF, LA 
1 

(5.7%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

9 

(14.5%) 

LF, LA 
1 

(3.3%) 

0 

(0%) 

1 

(54.9%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

9 

(2.3%) 

2013 

~2017 

HF, HA 
176 

(83.0%) 

22 

(94.1%) 

12 

(83.2%) 

16 

(100%) 

36 

(100%) 

23 

(70.2%) 

437 

(77.3%) 

LF, HA 
4 

(15.7%) 

1 

(5.9%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

2 

(29.8%) 

41 

(20.5%) 

HF, LA 
1 

(0.8%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

9 

(2.0%) 

LF, LA 
1 

(0.5%) 

0 

(0%) 

1 

(16.8%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

9 

(0.3%) 
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Number of factories in four classes 

2016 

~2017 

 
Capital 

region 

Busan 

city 

Daegu 

city 

Daejeon 

city 

Ulsan 

city 

Yeosu 

city 

South 

Korea 

HF, HA 
2589 

(83.1%) 

381 

(79.8%) 

349 

(90.8%) 

87 

(83.3%) 

333 

(83.9%) 

106 

(81.9%) 

4916 

(82.2%) 

LF, HA 
2 

(0.5%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

1 

(3.8%) 

6 

(0.3%) 

HF, LA 
299 

(16.4%) 

60 

(20.2%) 

11 

(9.2%) 

4 

(16.7%) 

16 

(16.1%) 

2 

(14.3%) 

856 

(17.6%) 

LF, LA 
2 

(0.1%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

23 

(0.1%) 

 

 

 




