xarray-tutorial-egu2017-answers

November 12, 2017

1 SC57 - Working with big, multi-dimensional geoscientific datasets in Python: a tutorial introduction to xarray

Original notebook by Stephan Hoyer, Rossbypalooza, 2016. Modified by Edward Byers, Matthew Gidden and Fabien Maussion for EGU General Assembly 2017, Vienna, Austria

Thursday, 27th April, 15:30–17:00 / Room -2.91

Convenors * Dr Edward Byers - International Institute for Applied Systems Analysis, Laxenburg, Austria * Dr Matthew Gidden - International Institute for Applied Systems Analysis, Laxenburg, Austria * Dr Fabien Maussion - University of Innsbruck, Innsbruck, Austria

2 With

3 you can reach

4 Structure of this tutorial

1. Introduction to key features of xarray
2. Basic operations in xarray: opening, inspecting, selecting and indexing data
3. Selecting data with named dimensions
4. Operations and computation
5. Groupby and “split-apply-combine”
6. Graphics
7. Out-of-core computation

5 1. Key features of xarray

5.1 What is xarray?

• xarray is an open source project and Python package
• xarray has been designed to perform labelled data analysis on multi-dimensional arrays
• the xarray approach adopts the Common Data Model for self-describing scientific data in widespread use in the Earth sciences
• xarray.Dataset is an in-memory representation of a netCDF file.
• xarray is built on top of the dataprocessing library Pandas (the best way to work with tabular data (e.g., CSV files) in Python)

6 Our data

• numeric
• multi-dimensional
• labelled
• (lots of) metadata
• sometimes (very) large

6.1 What is xarray good for?

• Gridded, multi-dimensional and large datasets, commonly used in earth sciences, but also increasingly finance, engineering (signal/image processing), and biological sciences
• Integration with other data analysis packages such as Pandas
• I/O operations (NetCDF)
• Plotting
• Out of core computation and parallel processing
• Extensions based on xarray
• ...

6.2 Where can I find more info?

6.2.1 For more information about xarray

• Read the online documentation
• Ask questions on StackOverflow
• View the source code and file bug reports on GitHub

6.2.2 For more doing data analysis with Python:

• Thomas Wiecki, A modern guide to getting started with Data Science and Python
• Wes McKinney, Python for Data Analysis (book)

6.2.3 Packages building on xarray for the geophysical sciences

For analyzing GCM output:

• xgcm by Ryan Abernathey
• oogcm by Julien Le Sommer
• MPAS xarray by Phil Wolfram
• marc_analysis by Daniel Rothenberg

Other tools:

• windspharm: wind spherical harmonics by Andrew Dawson
• eofs: empirical orthogonal functions by Andrew Dawson
• infinite-diff by Spencer Hill
• aospy by Spencer Hill and Spencer Clark
• regionmask by Mathias Hauser
• salem by Fabien Maussion

Resources for teaching and learning xarray in geosciences: - Fabien’s teaching repo: courses that combine teaching climatology and xarray

7 2. Basic operations in xarray

In [1]: # standard imports
 import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import xarray as xr
import warnings
%
%matplotlib inline

np.set_printoptions(precision=3, linewidth=80, edgeitems=1) # make numpy less verbose
xr.set_options(display_width=70)
warnings.simplefilter('ignore') # filter some warning messages

7.2 Basic data arrays in numpy

In [2]: import numpy as np
 a = np.array([[1, 3, 9], [2, 8, 4]])
a
Out[2]: array([[1, 3, 9],
 [2, 8, 4]])

In [3]: a[1, 2]
Out[3]: 4

In [4]: a.mean(axis=0)
Out[4]: array([1.5, 5.5, 6.5])

numpy is a powerful but “low-level” array manipulation tool. Axis only have numbers and no names (it is easy to forget which axis is what, a common source of trivial bugs), arrays can’t carry metadata (e.g. units), and the data is unstructured (i.e. the coordinates and/or other related arrays have to be handled separately: another source of bugs).

This is where xarray comes in!

7.3 Properties of xarray.Dataset and xarray.DataArray objects

We’ll start with the “air_temperature” tutorial dataset. This tutorial comes with the xarray package. Other examples here.

In [5]: ds = xr.tutorial.load_dataset('air_temperature')

In [6]: ds

Out[6]: <xarray.Dataset>
Dimensions: (lat: 25, lon: 53, time: 2920)
Coordinates:
 * lat (lat) float32 75.0 72.5 70.0 67.5 65.0 62.5 60.0 57.5 ...
 * lon (lon) float32 200.0 202.5 205.0 207.5 210.0 212.5 ...
 * time (time) datetime64[ns] 2013-01-01 2013-01-01T06:00:00 ...
Data variables:
 air (time, lat, lon) float64 241.2 242.5 243.5 244.0 ...
Attributes:
Conventions: COARDS

title: 4x daily NMC reanalysis (1948)
description: Data is from NMC initialized reanalysis
(4x/day)...
platform: Model
references: http://www.esrl.noaa.gov/psd/data/gridded/data.nc

In [7]: ds.air

Out[7]: <xarray.DataArray 'air' (time: 2920, lat: 25, lon: 53)>
array([[241.2 , 242.5 , ..., 235.5 , 238.6],
 [243.8 , 244.5 , ..., 235.3 , 239.3],
 ...,
 [295.9 , 296.2 , ..., 295.9 , 295.2],
 [296.29, 296.79, ..., 296.79, 296.6]],
 [[242.1 , 242.7 , ..., 233.6 , 235.8],
 [243.6 , 244.1 , ..., 232.5 , 235.7],
 ...,
 [296.2 , 296.7 , ..., 295.5 , 295.1],
 [296.29, 297.2 , ..., 296.4 , 296.6]],
 ...
 [[245.79, 244.79, ..., 243.99, 244.79],
 [249.89, 249.29, ..., 242.49, 244.29],
 ...,
 [296.29, 297.19, ..., 295.09, 294.39],
 [297.79, 298.39, ..., 295.49, 295.19]],
 [[245.09, 244.29, ..., 241.49, 241.79],
 [249.89, 249.29, ..., 240.29, 241.69],
 ...,
 [296.09, 296.89, ..., 295.69, 295.19],
 [297.69, 298.09, ..., 296.19, 295.69]])

Coordinates:
* lat (lat) float32 75.0 72.5 70.0 67.5 65.0 62.5 60.0 57.5 ...
* lon (lon) float32 200.0 202.5 205.0 207.5 210.0 212.5 ...
* time (time) datetime64[ns] 2013-01-01 2013-01-01T06:00:00 ...

Attributes:
 long_name: 4xDaily Air temperature at sigma level 995
 units: degK
 precision: 2
 GRIB_id: 11
 GRIB_name: TMP
 var_desc: Air temperature
 dataset: NMC Reanalysis
 level_desc: Surface
 statistic: Individual Obs
 parent_stat: Other
 actual_range: [185.16 322.1]
In [8]: ds.dims

Out[8]: Frozen(SortedKeysDict({u'lat': 25, u'lon': 53, u'time': 2920}))

In [9]: ds.attrs

Out[9]: OrderedDict([(u'Conventions', u'COARDS'),
 (u'title', u'4x daily NMC reanalysis (1948)'),
 (u'description',
 u'Data is from NMC initialized reanalysis
 (4x/day). These are the 0.9950 sigma level values.'),
 (u'platform', u'Model'),
 (u'references',
 u'http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html')])

In [10]: ds.air.values

Out[10]: array([[241.2 , ..., 238.6],
 ...,
 [296.29, ..., 296.6]],
 ...
 [[245.09, ..., 241.79],
 ...,
 [297.69, ..., 295.69]])

In [11]: type(ds.air.values)

Out[11]: numpy.ndarray

In [12]: ds.air.dims

Out[12]: (u'time', u'lat', u'lon')

In [13]: ds.air.attrs

Out[13]: OrderedDict([(u'long_name', u'4xDaily Air temperature at sigma level 995'),
 (u'units', u'degK'),
 (u'precision', 2),
 (u'GRIB_id', 11),
 (u'GRIB_name', u'TMP'),
 (u'var_desc', u'Air temperature'),
 (u'dataset', u'NMC Reanalysis'),
 (u'level_desc', u'Surface'),
 (u'statistic', u'Individual Obs'),
 (u'parent_stat', u'Other'),
 (u'actual_range', array([185.16, 322.1], dtype=float32))])

In [14]: ds.air.attrs['tutorial-date'] = 27042017

In [15]: ds.air.attrs
Out[15]: OrderedDict([(u'long_name', u'4xDaily Air temperature at sigma level 995'),
(u'units', u'degK'),
(u'precision', 2),
(u'GRIB_id', 11),
(u'GRIB_name', u'TMP'),
(u'var_desc', u'Air temperature'),
(u'dataset', u'NMC Reanalysis'),
(u'level_desc', u'Surface'),
(u'statistic', u'Individual Obs'),
(u'parent_stat', u'Other'),
(u'actual_range', array([185.16, 322.1], dtype=float32)),
('tutorial-date', 27042017)])

7.4 Let's Do Some Math

In [16]: kelvin = ds.air.mean(dim='time')
kelvin.plot();

In [17]: centigrade = kelvin - 273.16
centigrade.plot();
Notice xarray has changed the colormap according to the dataset (borrowing logic from Seaborn). * With degrees C, the data passes through 0, so a diverging colormap is used * With Kelvin, the default colormap is used.

```
In [18]: # ufuncs work too
np.sin(centigrade).plot();
```
7.5 Adding Data to DataSets

In [19]: ds

Out[19]: <xarray.Dataset>
Dimensions: (lat: 25, lon: 53, time: 2920)
Coordinates:
* lat (lat) float32 75.0 72.5 70.0 67.5 65.0 62.5 60.0 57.5 ...
* lon (lon) float32 200.0 202.5 205.0 207.5 210.0 212.5 ...
* time (time) datetime64[ns] 2013-01-01 ...
Data variables:
 air (time, lat, lon) float64 241.2 242.5 243.5 244.0 ...
Attributes:
 Conventions: COARDS
 title: 4x daily NMC reanalysis (1948)
 description: Data is from NMC initialized reanalysis
 platform: Model
 references: http://www.esrl.noaa.gov/psd/data/gridded/data.nc...

Let's add those kelvin and centigrade dataArrays to the dataset.

In [20]: ds['centigrade'] = centigrade
ds['kelvin'] = kelvin
ds

Out[20]: <xarray.Dataset>
Dimensions: (lat: 25, lon: 53, time: 2920)
Coordinates:
* lat (lat) float32 75.0 72.5 70.0 67.5 65.0 62.5 60.0 ...
* lon (lon) float32 200.0 202.5 205.0 207.5 210.0 212.5 ...
* time (time) datetime64[ns] 2013-01-01 ...
Data variables:
 air (time, lat, lon) float64 241.2 242.5 243.5 244.0 ...
 centigrade (lat, lon) float64 -12.78 -12.98 -13.27 -13.68 ...
 kelvin (lat, lon) float64 260.4 260.2 259.9 259.5 259.0 ...
Attributes:
 Conventions: COARDS
 title: 4x daily NMC reanalysis (1948)
 description: Data is from NMC initialized reanalysis
 platform: Model
 references: http://www.esrl.noaa.gov/psd/data/gridded/data.nc...

In [21]: ds.kelvin.attrs
 # attrs are empty! Let's add some

Out[21]: OrderedDict()

In [22]: ds.kelvin.attrs['Description'] = 'Mean air temperature (through time) in
In [23]: ds.kelvin

Out[23]: <xarray.DataArray 'kelvin' (lat: 25, lon: 53)>
 array([[260.376442, 260.183051, 259.886627, ..., 250.815901,
 251.938116, 253.438048],
 [262.734394, 262.793976, 262.749339, ..., 249.755904,
 251.585757, 254.35926],
 [264.768764, 264.327308, 264.061695, ..., 250.60789 ,
 253.58351 , 257.715599],
 ...
 [297.649863, 296.953332, 296.629315, ..., 296.810925,
 296.287962, 296.16455],
 [298.129202, 297.937007, 297.470394, ..., 296.859548,
 297.441936],
 [298.366151, 298.38574 , 298.114144, ..., 297.338205,
 297.281445, 297.305103])

Coordinates:
* lat (lat) float32 75.0 72.5 70.0 67.5 65.0 62.5 60.0 57.5 ...
* lon (lon) float32 200.0 202.5 205.0 207.5 210.0 212.5 ...

Attributes:
 Description: Mean air temperatre (through time) in kelvin.

In [24]: ds.to_netcdf('new file.nc')

8 3. Selecting data with named dimensions

In xarray there are many different ways for selecting and indexing data.

8.0.1 Positional indexing (old way)

This is the “old way”, i.e. like numpy:

In [25]: ds.air[:, 1, 2] # note that the attributes, coordinates are preserved

Out[25]: <xarray.DataArray 'air' (time: 2920)>
 array([244.7 , 244.2 , 244. , ..., 248.59, 248.49, 248.39])

Coordinates:
 lat float32 72.5
 lon float32 205.0
* time (time) datetime64[ns] 2013-01-01 2013-01-01T06:00:00 ...

Attributes:
 long_name: 4xDaily Air temperature at sigma level 995
 units: degK
 precision: 2
 GRIB_id: 11
 GRIB_name: TMP
 var_desc: Air temperature
 dataset: NMC Reanalysis
8.0.2 Selection by index

Selection based on the index of a coordinate:

In [27]: ds.air.isel(time=0).plot(); # like above, but with a dimension name this
8.0.3 Selection by value

Selection based on the value of a coordinate:

\texttt{In [28]: ds.air.sel(lat=72.5, lon=205).plot();}
8.0.4 Selection by value works well for time, too

In [29]: ds.air.sel(time='2013-01-02').plot(); # Note that we will extract 4 time steps

![Histogram of air](image)
8.0.5 Selecting a range of values

The syntax is similar, but you’ll need to use a slice:

In [31]: ds.air.sel(lat=slice(60, 50), lon=slice(200, 270), time='2013-01-02T06:00:00').plot();
8.0.6 Nearest neighbor lookup

In [32]: ds.air.sel(lat=41.8781, lon=360-87.6298, method='nearest', tolerance=5).plot();

lat = 42.5, lon = 272.5
9 4. Operations and computation

- We can do arithmetic directly on `Dataset` and `DataArray` objects.
- Labels are preserved and dataArray dimensions automatically aligned.

9.0.7 Broadcasting

```python
In [33]: a = xr.DataArray(np.arange(3), dims='time',
                     coords={'time':np.arange(3)})
b = xr.DataArray(np.arange(4), dims='space',
                 coords={'space':np.arange(4)})
a + b
```

```
Out[33]: <xarray.DataArray (time: 3, space: 4)>
          array([[0, 1, 2, 3],
                  [1, 2, 3, 4],
                  [2, 3, 4, 5]])
Coordinates:
* time (time) int64 0 1 2
* space (space) int64 0 1 2 3
```

9.0.8 Alignment

```python
In [34]: atime = np.arange(3)
btime = np.arange(5) + 1
atime, btime
```

```
Out[34]: (array([0, 1, 2]), array([1, 2, 3, 4, 5]))
```

```python
In [35]: a = xr.DataArray(np.arange(3), dims='time',
                     coords={'time':atime})
b = xr.DataArray(np.arange(5), dims='time',
                 coords={'time':btime})
a + b
```

```
Out[35]: <xarray.DataArray (time: 2)>
          array([1, 3])
Coordinates:
* time (time) int64 1 2
```

9.0.9 Aggregation

```python
In [36]: ds.max()
```
Out[36]: <xarray.Dataset>
Dimensions: ()
Data variables:
 air float64 317.4
 centigrade float64 28.49
 kelvin float64 301.6

In [37]: ds.air.median(dim=['lat', 'lon']).plot();

9.0.10 Masking with .where()

In [38]: means = ds.air.mean(dim=['time'])
 means.where(means > 273.15).plot();
10 5. Groupby and “split-apply-combine”

Xarray implements the “split-apply-combine” paradigm with `groupby`. This works really well for calculating climatologies:

In [39]: ds.air.groupby('time.season').mean()

Out[39]: <xarray.DataArray 'air' (season: 4)>
array([273.649681, 289.204887, 278.991373, 283.028147])
Coordinates:
* season (season) object 'DJF' 'JJA' 'MAM' 'SON'

In [40]: ds.air.groupby('time.month').mean('time')

Out[40]: <xarray.DataArray 'air' (month: 12, lat: 25, lon: 53)>
array([[[246.349758, 246.385927, ..., 244.087742, 245.646532],
 [248.8575 , 248.907298, ..., 243.508468, 246.754516],
 ..., 246.677098, 246.405625, ..., 243.001875, 244.443661],
 [296.544677, 296.47 , ..., 295.081411, 294.530161],
 [297.154476, 297.238427, ..., 295.775806, 295.636774]],
 [246.677098, 246.405625, ..., 243.001875, 244.443661],
 [247.799955, 247.759866, ..., 242.266116, 245.066429],
 ...])
In [41]: clim = ds.air.groupby('time.month').mean('time')

You can also do arithmetic with groupby objects, which repeats the arithmetic over each group:

In [42]: anomalies = ds.air.groupby('time.month') - clim

In [43]: anomalies

Out[43]: <xarray.DataArray 'air' (time: 2920, lat: 25, lon: 53)>
array([[[-5.149758, -3.885927, ..., -8.587742, -7.046532],
 [-5.0575 , -4.407298, ..., -8.208468, -7.454516],
 ..., [-0.644677, -0.27 , ..., 0.818589, 0.669839],
 [-0.864476, -0.448427, ..., 1.014194, 0.963226]],
 [[-4.249758, -3.685927, ..., -10.487742, -9.846532],
 [-5.2575 , -4.807298, ..., -11.008468, -11.054516],
 ..., [-0.344677, 0.23 , ..., 0.418589, 0.569839],
 [-0.864476, -0.038427, ..., 0.624194, 0.963226]],
 ..., [[-2.180887, -3.230968, ..., 2.966411, 2.161935],
 [0.156613, -0.870282, ..., 1.525484, 0.173992],
 ..., [-1.178185, -0.190363, ..., -1.756694, -2.131411],
 [-0.090927, 0.403226, ..., -2.075403, -2.347702]],
 [[-2.880887, -3.730968, ..., 0.466411, -0.838065],
 [-0.074852, 0.780363, ..., -2.248411, -2.373226],
 ..., [-1.218185, -0.420363, ..., -2.556694, -2.731411],
 [-0.130927, 0.703226, ..., -2.475403, -2.547702]],
 [[-1.880887, -2.730968, ..., 0.166411, -0.138065],
 [0.874852, 0.780363, ..., 0.448411, 0.713226],
 ..., [-1.318185, -0.420363, ..., 0.356694, 0.631411],
 [-0.030927, 0.203226, ..., 0.575403, 0.307702]],
 [[-2.580887, -3.430968, ..., 0.366411, -0.038065],
 [-0.694852, 0.380363, ..., 0.448411, 0.713226],
 ..., [-1.018185, -0.420363, ..., 0.156694, 0.431411],
 [-0.330927, 0.203226, ..., 0.665403, 0.157702]],
 [[-2.280887, -3.130968, ..., 0.666411, -0.738065],
 [1.074852, 0.780363, ..., 0.948411, 0.213226],
 ..., [-0.518185, -0.420363, ..., 0.256694, 0.531411],
 [-0.730927, 0.403226, ..., 0.775403, 0.007702]],
 [[-1.980887, -2.630968, ..., 0.966411, -1.038065],
 [1.374852, 0.780363, ..., 0.248411, 0.513226],
 ..., [-0.218185, -0.420363, ..., 0.356694, 0.631411],
 [-0.530927, 0.203226, ..., 0.665403, 0.157702]],
 [[-1.680887, -2.130968, ..., 1.266411, -1.338065],
 [1.674852, 0.780363, ..., 0.548411, 0.713226],
 ..., [-0.118185, -0.420363, ..., 0.456694, 0.831411],
 [-0.630927, 0.403226, ..., 0.875403, 0.197702]],
 [[-1.380887, -1.630968, ..., 1.566411, -1.638065],
 [1.974852, 0.780363, ..., 0.848411, 0.913226],
 ..., [-0.118185, -0.420363, ..., 0.456694, 0.831411],
 [-0.630927, 0.403226, ..., 0.875403, 0.197702]],
 [[-1.080887, -1.130968, ..., 1.866411, -1.938065],
 [1.274852, 0.780363, ..., 1.148411, 0.213226],
 ..., [-0.118185, -0.420363, ..., 0.456694, 0.831411],
 [-0.630927, 0.403226, ..., 0.875403, 0.197702]],
 [[-0.780887, -0.630968, ..., 2.166411, -2.238065],
 [0.574852, 0.780363, ..., 1.448411, 0.513226],
 ..., [-0.118185, -0.420363, ..., 0.456694, 0.831411],
 [-0.630927, 0.403226, ..., 0.875403, 0.197702]],
 [[-0.480887, -0.130968, ..., 2.466411, -2.538065],
 [0.874852, 0.780363, ..., 1.748411, 0.813226],
 ..., [-0.118185, -0.420363, ..., 0.456694, 0.831411],
 [-0.630927, 0.403226, ..., 0.875403, 0.197702]],
 [[-0.180887, 0.469032, ..., 2.766411, -2.838065],
 [1.174852, 0.780363, ..., 2.048411, 1.113226],
 ..., [-0.118185, -0.420363, ..., 0.456694, 0.831411],
 [-0.630927, 0.403226, ..., 0.875403, 0.197702]]])

Coordinates:
* lat (lat) float32 75.0 72.5 70.0 67.5 65.0 62.5 60.0 57.5 ...
* lon (lon) float32 200.0 202.5 205.0 207.5 210.0 212.5 ...
* month (month) int64 1 2 3 4 5 6 7 8 9 10 11 12
In [44]: anomalies.plot();

In [45]: anomalies.sel(time= '2013-02').plot(); # Find all the anomalous values for February
Resample adjusts a time series to a new resolution:

In [46]: tmin = ds.air.resample('1D', dim='time', how='min') # Resample to one day
 tmax = ds.air.resample('1D', dim='time', how='max')

In [47]: (tmin.sel(time='2013-02-15') - 273.15).plot();
In [48]: ds_extremes = xr.Dataset({'tmin': tmin, 'tmax': tmax})

In [49]: ds_extremes

Out[49]: <xarray.Dataset>

Dimensions: (lat: 25, lon: 53, time: 730)

Coordinates:
 * lat (lat) float32 75.0 72.5 70.0 67.5 65.0 62.5 60.0 57.5 ...
 * lon (lon) float32 200.0 202.5 205.0 207.5 210.0 212.5 ...
 * time (time) datetime64[ns] 2013-01-01 2013-01-02 ...

Data variables:
 tmax (time, lat, lon) float64 242.3 242.7 243.5 244.0 ...
 tmin (time, lat, lon) float64 241.2 241.8 241.8 242.1 ...

11 6. Graphics

xarray plotting functions rely on matplotlib internally, but they make use of all available metadata to make the plotting operations more intuitive and interpretable.

11.0.11 1D plots

In [50]: zonal_t_average = ds.air.mean(dim=['lon', 'time']) - 273.15

zonal_t_average.plot(); # 1D arrays are plotted as line plots
11.0.12 2D plots

```python
In [51]: t_average = ds.air.mean(dim='time') - 273.15
t_average.plot();  # 2D arrays are plotted with pcolormesh
```

![Image of 2D plot](image)

```python
In [51]: t_average = ds.air.mean(dim='time') - 273.15
t_average.plot();  # 2D arrays are plotted with pcolormesh
```

![Image of 2D plot](image)
11.0.13 Customizing 2d plots

In [53]: t_average.plot.contourf(cmap='BrBG_r', vmin=-15, vmax=15);
In [54]: t_average.plot.contourf(cmap='BrBG_r', levels=22, center=False);
11.0.14 Dealing with Outliers

In [55]: air_outliers = ds.air.isel(time=0).copy()
 air_outliers[0, 0] = 100
 air_outliers[-1, -1] = 400
 air_outliers.plot(); # outliers mess with the datarange and colorscale!

In [56]: # Using `robust=True` uses the 2nd and 98th percentiles of the data to compute the color limits.
 air_outliers.plot(robust=True);
11.0.15 Facet plots

In [57]: t_season = ds.air.groupby('time.season').mean(dim='time') - 273.15

In [58]: # facet plot allows to do multiplot with the same color mappings
t_season.plot.contourf(x='lon', y='lat', col='season', col_wrap=2, levels=22)
11.0.16 Plotting on maps

For plotting on maps, we rely on the excellent cartopy library.

In [59]: `import cartopy.crs as ccrs`

In [60]: `f = plt.figure(figsize=(8, 4))`
 # Define the map projection on which you want to plot
 `ax = plt.axes(projection=ccrs.Orthographic(-80, 35))`
 # ax is an empty plot. We now plot the variable t_average onto ax
 # the keyword "transform" tells the function in which projection the air temp data is stored
 `t_average.plot(ax=ax, transform=ccrs.PlateCarree())`
 # Add gridlines and coastlines to the plot
 `ax.coastlines(); ax.gridlines();`
Facet plots on maps

In [61]: # this time we need to retrieve the plots to do things with the axes later
 : p = t_season.plot(x='lon', y='lat', col='season', transform=ccrs.PlateCarree(),
 : subplot_kws={'projection': ccrs.Orthographic(-80, 35))

 : for ax in p.axes.flat:
 : ax.coastlines()

11.0.17 Seaborn is Cool

Statistical visualization with Seaborn:

In [62]: import seaborn as sns

 : data = (ds_extremes
12 7. Out-of-core computation

Here’s a quick demo of how xarray can leverage dask to work with data that doesn’t fit in memory. This lets xarray substitute for tools like cdo and nco.

12.0.18 Let’s open 10 years of runoff data

xarray can open multiple files at once using string pattern matching.
In this case we open all the files that match our filestr, i.e. all the files for the 2080s. Each of these files (compressed) is approximately 80 MB.

In [63]: from glob import glob
 files = glob('data/*dis*.nc')
 runoff = xr.open_mfdataset(files)

In [64]: runoff
Out[64]: <xarray.Dataset>
Dimensions: (lat: 360, lon: 720, time: 3653)
Coordinates:
 * lon (lon) float32 -179.75 -179.25 -178.75 -178.25 -177.75 ...
 * lat (lat) float32 89.75 89.25 88.75 88.25 87.75 87.25 ...
 * time (time) datetime64[ns] 2081-01-01 2081-01-02 ...
Data variables:
 dis (time, lat, lon) float64 nan nan nan nan nan nan nan ...
Attributes:
 CDI: Climate Data Interface version 1.5.4 (http://code...
 Conventions: CF-1.4
 history: Sun Aug 26 16:33:59 2012: cdo -s setname,dis /scr...
 institution: University of Utrecht, Dept. of Physical Geograph...
 title: PCRGLOBWB output for ISI-MIP
 comment1: pr_v3 tas_v2
 comment3: Input data from HadGEM2-ES, rcp = rcp8p5 ,scen = ...
 comment2: Model output from PCR-GLOBWB, version 2.0
 contact: 'd.wisser@uu.nl'
 CDO: Climate Data Operators version 1.5.4 (http://code...

xarray even puts them in the right order for you.

In [65]: runoff.time

Out[65]: <xarray.DataArray 'time' (time: 3653)>
array(['2081-01-01T00:00:00.000000000',
 '2081-01-02T00:00:00.000000000',
 '2081-01-03T00:00:00.000000000',
 ...,
 '2088-12-29T00:00:00.000000000',
 '2088-12-30T00:00:00.000000000',
 '2088-12-31T00:00:00.000000000'], dtype='datetime64[ns]')
Coordinates:
 * time (time) datetime64[ns] 2081-01-01 2081-01-02 ...
Attributes:
 standard_name: time

How big is all this data uncompressed? Will it fit into memory?

In [66]: runoff.nbytes / 1e9 # Convert to gigabytes

Out[66]: 7.574894344

12.1 Working with Big Data

- This data is too big for our memory.
- That means we need to process it in chunks.
- We can do this chunking in xarray very easily.
xarray computes data ‘lazily’. That means that data is only loaded into memory when it is actually required. This also allows us to inspect datasets without loading all the data into memory.

To do this **xarray** integrates with **dask** to support streaming computation on datasets that don’t fit into memory.

```python
In [67]: runoff = runoff.chunk({'lat': 60})
In [68]: runoff.chunks
Out[68]: Frozen(SortedKeysDict({u'lat': (60, 60, 60, 60, 60, 60), u'lon': (720,), u'time': (365, 366, 365, 365, 365, 365, 365, 366, 366}))
In [69]: %time ro_seasonal = runoff.groupby('time.season').mean('time')
CPU times: user 57.6 ms, sys: 4.84 ms, total: 62.4 ms
Wall time: 62.4 ms

In [70]: import dask
   from multiprocessing.pool import ThreadPool
   dask.set_options(pool=ThreadPool(1))
Out[70]: <dask.context.set_options at 0x7fc7d8279ad0>
In [71]: %time ro_seasonal = runoff.groupby('time.season').mean('time')
CPU times: user 38.5 s, sys: 8.47 s, total: 47 s
Wall time: 47.9 s

In [71]: %time result = ro_seasonal.compute()
CPU times: user 70.4 ms, sys: 3.55 ms, total: 74 ms
Wall time: 71 ms

In [74]: %time result = ro_seasonal.compute()
13 xarray can do more!

- concatenation
- open network located files with openDAP
- import and export Pandas DataFrames
- .nc dump to
- groupby_bins
- resampling and reduction

For more details, read this blog post: http://continuum.io/blog/xray-dask