Construction of a guiding positional strategy using program packages method for a closed-loop guidance problem by a fixed time

N. V. Strelkovskii, S. M. Orlov
Lomonosov Moscow State University, Russia
International Institute for Applied Systems Analysis, Austria

The International Conference on Mathematical Control Theory and Mechanics
Suzdal, Russia
10 July 2017
Problems with incomplete information - an approach by Yu. S. Osipov, A. V. Kryazhimskiy

«The problem of constructing optimal closed-loop control strategies under uncertainty is one of the key problems of the mathematical control theory. Its solution would give a new impetus to the theory’s development and create the foundation for its new applications.» — Arkady Kryazhimskiy (2013)

Guaranteed positional guidance problem at the (pre-defined) time

\[\dot{x}(t) = A(t)x(t) + B(t)u(t) + c(t), \quad t_0 \leq t \leq \vartheta \]

Open-loop control (program) \(u(\cdot) \) is measurable.

\(u(t) \in P \subset \mathbb{R}^r \), \(P \) is a convex compact set

\(x(t_0) = x_0 \in X_0 \subset \mathbb{R}^n \), \(X_0 \) is a finite set

\(x(\vartheta) \in M \subset \mathbb{R}^n \), \(M \) is a closed and convex set

Observed signal \(y(t) = Q(t)x(t) \), \(Q(\cdot) \in \mathbb{R}^{q \times n} \) is left piecewise continuous

Problem statement

Based on the given arbitrary \(\varepsilon > 0 \) choose a closed-loop control strategy with memory, whatever the system’s initial state \(x_0 \) from the set \(X_0 \), the system’s motion \(x(\cdot) \) corresponding to the chosen closed-loop strategy and starting at the time \(t_0 \) from the state \(x_0 \) reaches the state \(x(\vartheta) \) belonging to the \(\varepsilon \)-neighbourhood of the target set \(M \) at the time \(\vartheta \).
Guaranteed positional guidance problem by the (pre-defined) time

$W \subset (t_0, \vartheta]$ is a given finite set of admissible guidance times (AGT), and for each $t \in W$ a convex closed non-empty target set $M(t) \subset \mathbb{R}^n$ is given.

Problem statement

Based on an arbitrary given $\varepsilon > 0$ it is required to construct such a closed-loop strategy, that for any admissible initial state $x_0 \in X_0$ the motion $x(\cdot)$ of the system (1), starting from this state at the time t_0 and being driven by the constructed strategy, is guided on the ε-neighbourhood of the target set $M(t_{x_0})$ at some time $t_{x_0} \in W$
Homogeneous signals

Homogeneous system, corresponding to (1)

\[\dot{x}(t) = A(t)x(t) \]

For each \(x_0 \in X_0 \) its solution is given by the Cauchy formula:

\[x(t) = F(t, t_0)x_0; \quad F(t, s) \ (t, s \in [t_0, \vartheta]) \] is the fundamental matrix.

Homogeneous signal, corresponding to an admissible initial state \(x_0 \in X_0 \):

\[g_{x_0}(t) = Q(t)F(t, t_0)x_0 \ (t \in [t_0, \vartheta], \ x_0 \in X_0). \]

Let \(G = \{g_{x_0}(\cdot)|x_0 \in X_0\} \) be the set of all homogeneous signals and let \(X_0(\tau|g(\cdot)) \) be the set of all admissible initial states \(x_0 \in X_0 \), corresponding to the homogeneous signal \(g(\cdot) \in G \) till time point \(\tau \in [t_0, \vartheta] \):

\[X_0(\tau|g(\cdot)) = \{x_0 \in X_0 : g(\cdot)|_{[t_0, \tau]} = g_{x_0}(\cdot)|_{[t_0, \tau]}\}. \]
Program package is an open-loop controls family \((u_{x_0}(\cdot))_{x_0 \in X_0}\), satisfying non-anticipatory condition: for any homogeneous signal \(g(\cdot)\), any time \(\tau \in (t_0, \vartheta]\) and any admissible initial states \(x'_0, x''_0 \in X_0(\tau \mid g(\cdot))\) the equality \(u_{x'_0}(t) = u_{x''_0}(t)\) holds for almost all \(t \in [t_0, \tau]\).

A program package \((u_{x_0}(\cdot))_{x_0 \in X_0}\) is guiding by the time, if for any \(x_0 \in X_0\) there is \(t_{x_0} \in W\) such, that \(x(t_{x_0} \mid x_0, u_{x_0}(\cdot)) \in M(t_{x_0})\). Package guidance problem by the time is solvable, if there exists guiding by the time program package.
Admissible guidance times (AGT) family is an arbitrary family $\omega = (t_{x_0})_{x_0 \in X_0}$ of the elements of the set W.

Program package $(u_{x_0} (\cdot))_{x_0 \in X_0}$ is guiding with the AGT family $\omega = (t_{x_0})_{x_0 \in X_0}$, if for any $x_0 \in X_0$ holds $x(t_{x_0} | x_0, u_{x_0} (\cdot)) \in M(t_{x_0})$.

Package guidance problem with the AGT family ω is solvable, is there exists a program package, guiding with the AGT family ω.

Lemma 1

1) Program package is guiding by the time if and only if it is guiding with some AGT family.
2) Package guidance problem by the time is solvable if and only if a package guidance problem is solvable with some AGT family.
Lemma 2

Let the package guidance problem by the time be not solvable. Then the guaranteed positional guidance problem by the time is also not solvable.

Theorem 1

The guaranteed positional guidance problem by the time is solvable if and only if the package guidance problem by the time is solvable.
Homogeneous signals splitting

For an arbitrary homogeneous signal $g(\cdot)$ let

$$G_0(g(\cdot)) = \left\{ \tilde{g}(\cdot) \in G : \lim_{\zeta \to +0} (\tilde{g}(t_0 + \zeta) - g(t_0 + \zeta)) = 0 \right\}$$

be the set of initially compatible homogeneous signals and let

$$\tau_1(g(\cdot)) = \max \left\{ \tau \in [t_0, \vartheta] : \max_{\tilde{g}(\cdot) \in G_0(g(\cdot))} \max_{t \in [t_0, \tau]} |\tilde{g}(t) - g(t)| = 0 \right\}$$

be its first splitting moment.

For each $i = 1, 2, \ldots$ let

$$G_i(g(\cdot)) = \left\{ \tilde{g}(\cdot) \in G_{i-1}(g(\cdot)) : \lim_{\zeta \to +0} (\tilde{g}(\tau_i(g(\cdot)) + \zeta) - g(\tau_i(g(\cdot)) + \zeta)) = 0 \right\}$$

be the set of all homogeneous signals from $G_{i-1}(g(\cdot))$ equal to $g(\cdot)$ in the right-sided neighbourhood of the time-point $\tau_i(g(\cdot))$ and let

$$\tau_{i+1}(g(\cdot)) = \max \left\{ \tau \in (\tau_i(g(\cdot)), \vartheta] : \max_{\tilde{g}(\cdot) \in G_i(g(\cdot))} \max_{t \in [\tau_i(g(\cdot)), \tau]} |\tilde{g}(t) - g(t)| = 0 \right\}$$

be the $(i + 1)$-th splitting moment of the homogeneous signal $g(\cdot)$.
Initial states set clustering

Let

\[T(g(\cdot)) = \{ \tau_j(g(\cdot)) : j = 1, \ldots, k_g(\cdot) \} \]

be the set of all splitting moments of the homogeneous signal \(g(\cdot) \) and let

\[T = \bigcup_{g(\cdot) \in G} T(g(\cdot)) \]

be the set of all splitting moments of all homogeneous signals. \(T \) is finite and \(|T| \leq |X_0| \). Let us represent this set as \(T = \{ \tau_1, \ldots, \tau_K \} \), \(t_0 < \tau_1 < \ldots < \tau_K = \vartheta \).

For every \(k = 1, \ldots, K \) let the set

\[\mathcal{X}_0(\tau_k) = \{ X_{0j}(\tau_k|g(\cdot)) : g(\cdot) \in G \} \]

be the cluster position at the time-point \(\tau_k \), and let each its element \(X_{0j}(\tau_k) \), \(j = 1, \ldots, J(\tau_k) \) be a cluster of initial states at this time-point; \(J(\tau_k) \) is the number of clusters in the cluster position \(\mathcal{X}_0(\tau_k) \), \(k = 1, \ldots, K \).

Lemma 1

Open-loop control family \((u_{x_0}(\cdot))_{x_0 \in \mathcal{X}_0} \) is a program package if and only if for any \(k = 1, \ldots, K \), any \(X_{0j}(\tau_k) \in \mathcal{X}_0(\tau_k) \), \(j = 1, \ldots, J(\tau_k) \) and arbitrary initial states \(x'_0, x''_0 \in X_{0j}(\tau_k) \) the equality \(u_{x'_0}(t) = u_{x''_0}(t) \) holds for almost all \(t \in (\tau_{k-1}, \tau_k] \) in case \(k > 1 \) and for almost all \(t \in [t_0, \tau_1] \) in case \(k = 1 \).
Let $\mathcal{R}^h (h = 1, 2, \ldots)$ be a finite-dimensional Euclidean space of all families $(r_{x_0})_{x_0 \in X}$ from \mathbb{R}^h with a scalar product $\langle \cdot, \cdot \rangle_{\mathcal{R}^h}$ defined as

$$\langle r', r'' \rangle_{\mathcal{R}^h} = \langle (r'_{x_0})_{x_0 \in X}, (r''_{x_0})_{x_0 \in X} \rangle_{\mathcal{R}^h} = \sum_{x_0 \in X} \langle r'_{x_0}, r''_{x_0} \rangle_{\mathcal{R}^h} ((r'_{x_0})_{x_0 \in X}, (r''_{x_0})_{x_0 \in X} \in \mathcal{R}^h).$$

For each non-empty set $\mathcal{E} \subset \mathcal{R}^h (h = 1, 2, \ldots)$ let us define its lower support function $\rho^- (\cdot | \mathcal{E}) : \mathcal{R}^h \mapsto \mathbb{R}$ and upper support functions $\rho^+ (\cdot | \mathcal{E}) : \mathcal{R}^h \mapsto \mathbb{R}$:

$$\rho^- ((l_{x_0})_{x_0 \in X} | \mathcal{E}) = \inf_{(e_{x_0})_{x_0 \in X} \in \mathcal{E}} \langle (l_{x_0})_{x_0 \in X}, (e_{x_0})_{x_0 \in X} \rangle_{\mathcal{R}^h} ((l_{x_0})_{x_0 \in X} \in \mathcal{R}^h),$$

$$\rho^+ ((l_{x_0})_{x_0 \in X} | \mathcal{E}) = \sup_{(e_{x_0})_{x_0 \in X} \in \mathcal{E}} \langle (l_{x_0})_{x_0 \in X}, (e_{x_0})_{x_0 \in X} \rangle_{\mathcal{R}^h} ((l_{x_0})_{x_0 \in X} \in \mathcal{R}^h).$$
Extended open-loop control control

Let \(\mathcal{P} \subset \mathcal{R}^m \) be the set of all families \((u_{x_0})_{x_0 \in \mathcal{X}_0}\) of vectors from \(\mathcal{P} \).

Extended open-loop control control is a measurable function \(t \mapsto (u_{x_0}(t))_{x_0 \in \mathcal{X}_0} : [t_0, \vartheta] \mapsto \mathcal{P} \).

Let us identify arbitrary programs family \((u_{x_0}(\cdot))_{x_0 \in \mathcal{X}_0}\) and an extended open-loop control \(t \mapsto (u_{x_0}(t))_{x_0 \in \mathcal{X}_0} \).

For each \(k = 1, \ldots, K \) let \(\mathcal{P}_k \) be an extended admissible control set on \((\tau_{k-1}, \tau_k)\) in case \(k > 1 \) and on \([t_0, \tau_1]\) in case \(k = 1 \) as a set of all vector families \((u_{x_0})_{x_0 \in \mathcal{X}_0} \in \mathcal{P} \) such that, for each cluster \(\mathcal{X}_0j(\tau_k) \in \mathcal{X}_0(\tau_k) \), \(j = 1, \ldots, J(\tau_k) \) and any \(x'_0, x''_0 \in \mathcal{X}_0j(\tau_k) \) holds \(u_{x'_0} = u_{x''_0} \).

Extended open-loop control control \((u_{x_0}(\cdot))_{x_0 \in \mathcal{X}_0}\) is admissible, if for each \(k = 1, \ldots, K \) holds \((u_{x_0}(t))_{x_0 \in \mathcal{X}_0} \in \mathcal{P}_k \) for almost all \(t \in (\tau_{k-1}, \tau_k) \) in case \(k > 1 \) and for almost all \(t \in [t_0, \tau_1] \) in case \(k = 1 \);

Lemma 2

Extended open-loop control control \((u_{x_0}(\cdot))_{x_0 \in \mathcal{X}_0}\) is a control package if and only if it is admissible.
Homogeneous signals, cluster positions and extended open-loop control controls

Homogeneous signals splitting

Initial states set clustering

Extended open-loop control control
Extended program guidance problem with AGT family

Extended system (in the space \mathcal{R}^n):

\[
\begin{aligned}
\dot{x}_{x_0}(t) &= A(t)x_{x_0}(t) + B(t)u_{x_0}(t) + c(t) \\
x_{x_0}(t_0) &= x_0
\end{aligned}
\]

($x_0 \in X_0$)

Extended target set for the AGT family $\omega = (t_{x_0})_{x_0 \in X_0}$ is a set $\mathcal{M}(\omega)$ of all families $(x_{x_0})_{x_0 \in X_0} \in \mathcal{R}^n$ such that $x_{x_0} \in \mathcal{M}(t_{x_0})$ for all $x_0 \in X_0$.

Extended admissible control $(u_{x_0}(\cdot))_{x_0 \in X_0}$ is guiding the extended system with the AGT family $\omega = (t_{x_0})_{x_0 \in X_0}$, if $(x(t_{x_0} | x_0, u_{x_0}(\cdot)))_{x_0 \in X_0} \in \mathcal{M}(\omega)$.

Extended program guidance problem with the AGT family ω is solvable, if there exists an extended program guidance problem with the family ω.

Theorem 2

1) An admissible extended open-loop control is a guiding program package with the AGT family ω if and only if it is guiding the extended system with this family.

2) Package guidance problem with the AGT family ω is solvable if and only if the extended program guidance problem is solvable with this family.
Let Ω be the set of all AGT families $(t_{x_0})_{x_0 \in X_0}$. For each $\omega = (t_{x_0})_{x_0 \in X_0} \in \Omega$ let us introduce the corresponding **attainability set**

$\mathcal{A}(\omega) = \{ (x(t_{x_0} | x_0, u_{x_0}(\cdot)))_{x_0 \in X_0} : (u_{x_0}(\cdot))_{x_0 \in X_0} \in \mathcal{U}_{\text{ext}} \}$ of the extended system.

For an arbitrary $x_0 \in X_0$ and an arbitrary $l \in \mathbb{R}^n$ let us introduce the function $p(\cdot, \cdot)$:

$$
p(l, x_0, t_{x_0}) = \langle l, F(t_{x_0}, t_0)x_0 \rangle + \left\langle l, \int_{t_0}^{t_{x_0}} F(t_{x_0}, t)c(t)dt \right\rangle \quad (l \in \mathbb{R}^n, x_0 \in X_0).
$$

Let us denote

$$
D(t_{x_0}, t) = B^T(t)F^T(t_{x_0}, t) \quad (x_0 \in X_0, \ t \in [t_0, \vartheta]).
$$

For each family $\omega = (t_{x_0})_{x_0 \in X_0}$ let us introduce the set

$$
\bar{X}_k(\omega) = \{ x_0 \in X_0 : t_{x_0} \in (\tau_{k-1}, \tau_k) \} \quad (k = 1, \ldots, K)
$$

and for any family of vectors $l = (l_{x_0})_{x_0 \in X_0} \in \mathcal{L}(\omega)$ let it be

$$
l_{x_0, \omega}(t) = \begin{cases}
 l_{x_0}, & t \leq t_{x_0} \\
 0, & t > t_{x_0}
\end{cases} \quad (t \in [t_0, \vartheta], \ x_0 \in X_0).
$$
For an arbitrary family \((l_{x_0})_{x_0 \in X_0}\) of elements of some linear space and an arbitrary function \(f(\cdot)\), defined on this space let us use the following short notations:

\[
\Sigma^1 f(\Sigma^{1,k} l_{x_0}) = \sum_{X_0j(\tau_1) \in X(\tau_1)} f \left(\sum_{x_0 \in X_0j(\tau_1) \cap \bar{X}_k(\omega)} l_{x_0} \right) \\
(k = 1, \ldots, K, j = 1, \ldots, J(\tau_1)),
\]

\[
\Sigma^r f(\Sigma^{r,k} l_{x_0}) = \sum_{X_0j(\tau_r) \in X(\tau_r)} f \left(\sum_{x_0 \in X_0j(\tau_r) \cap \bar{X}_k(\omega)} l_{x_0} \right) \\
(r, k = 1, \ldots, K, k \geq r, j = 1, \ldots, J(\tau_r)),
\]

\[
\Sigma^1 f \left(\sum_{k=1}^i \Sigma^{1,k} l_{x_0} \right) = \sum_{X_0j(\tau_1) \in X(\tau_1)} f \left(\sum_{k=1}^i \sum_{x_0 \in X_0j(\tau_1) \cap \bar{X}_k(\omega)} l_{x_0} \right) \\
(i = 1, \ldots, K, j = 1, \ldots, J(\tau_1)),
\]

\[
\Sigma^r f \left(\sum_{k=r}^i \Sigma^{r,k} l_{x_0} \right) = \sum_{X_0j(\tau_r) \in X(\tau_r)} f \left(\sum_{k=r}^i \sum_{x_0 \in X_0j(\tau_r) \cap \bar{X}_k(\omega)} l_{x_0} \right) \\
(r, i = 1, \ldots, K, i \geq r).
\]
For each pair of families \((l_{x_0})_{x_0 \in X_0} \in \mathcal{R}^n\) and \(\omega \in \Omega\) let it be

\[
\gamma(\{(l_{x_0})_{x_0 \in X_0}, \omega\}) = \sum_{x_0 \in X_0} p(l_{x_0}, x_0) +
\sum_{k=1}^{K-1} \int_{\tau_{k-1}}^{\tau_k} \sum_k \rho^-(\left(\sum_{x_0}^{k} D(t_{x_0}, t)l_{x_0}, \omega(t) + \sum_{r=k+1}^{K} \sum_{x_0}^{k} D(t_{x_0}, t)l_{x_0} \right) P) \, dt
\]

\[
+ \int_{\tau_{K-1}}^{\tau_K} \sum_k \rho^-(\left(\sum_{x_0}^{K} D(t_{x_0}, t)l_{x_0}, \omega(t) \right) P) \, dt
\]

\[
- \sum_{x_0 \in X_0} \rho^+(l_{x_0} | M(t_{x_0})).
\]

Theorem 3 (Extended problem of program guidance solvability criterion [1])

The extended program guidance problem with the AGT family \(\omega = (t_{x_0})_{x_0 \in X_0}\) is solvable if and only if

\[
\max_{(l_{x_0})_{x_0 \in X_0} \in \mathcal{L}(\omega)} \gamma(\{(l_{x_0})_{x_0 \in X_0}, \omega\}) \leq 0.
\]
Construction of the guiding program package with an AGT family

Let the solvability criterion (2) hold. Let us introduce the function \(\hat{\gamma}(\cdot, \cdot, \cdot) : \mathbb{R}^n \times \Omega \times [0, 1] \to \mathbb{R} \):

\[
\hat{\gamma}((l_{x_0})_{x_0 \in X_0}, \omega, a) = \sum_{x_0 \in X_0} p(l_{x_0}, x_0) +
\]

\[
+ a \sum_{k=1}^{K-1} \int_{\tau_{k-1}}^{\tau_k} \Sigma^k \rho^-(\Sigma_{x_0}^{k,k} D(t_{x_0}, t)l_{x_0}, \omega(t) + \sum_{r=k+1}^{K} \Sigma_{x_0}^{K,r} D(t_{x_0}, t)l_{x_0} \bigg| P) dt +
\]

\[
+ a \int_{\tau_{K-1}}^{\tau_K} \Sigma^K \rho^-(\Sigma_{x_0}^{K,K} D(t_{x_0}, t)l_{x_0}, \omega(t) \bigg| P) dt - \sum_{x_0 \in X_0} \rho^+(l_{x_0} | M(t_{x_0})) .
\]

The program package \((u^0_{x_0}(\cdot))_{x_0 \in X_0}\) is zero-valued with family \(\omega = (t_{x_0})_{x_0 \in X_0}\), if \(u^0_{x_0}(t) \equiv 0 (t \in [t_0, t_{x_0}], x_0 \in X_0)\).

Lemma 3

Let the solvability criterion (2) for some family of admissible guidance times \(\omega = (t_{x_0})_{x_0 \in X_0}\), and zero-valued program package \((u^0_{x_0}(\cdot))_{x_0 \in X_0}\) with the family \(\omega\) is not guiding the extended system. Then exists \(a_* \in (0, 1]\) such that

\[
\max_{(l_{x_0})_{x_0 \in X_0} \in \mathcal{L}(\omega)} \gamma((l_{x_0})_{x_0 \in X_0}, \omega, a_*) = 0.
\]
Construction of the guiding program package with an AGT family

Theorem 4 (Minimum condition for the extended problem with an AGT family [1])

Let P be the strictly convex compact set, containing the zero vector inside; the condition (3) holds, and the program package $(u^*_{x_0}(\cdot))_{x_0 \in X_0}$ satisfies the conditions $u^*_{x_0}(t) \in a^*_* P$, $x_0 \in X_0$, $t \in [t_0, \vartheta]$, Let the clusters $X_{0j}(\tau_k) \subset X_0(\tau_k)$, $k = 1, \ldots, K$, $j = 1, \ldots, J(\tau_k)$ be regular, and for each of them holds

- **on the segments** $[\tau_{k-1}, \tau_k]$, $k = 1, \ldots, K - 1$:

\[
\left\langle \sum_{x_0 \in X_{0j}(\tau_k) \cap \bar{X}_k(s)} D(t_{x_0}, t) l^*_{x_0, \omega}(t) + \sum_{r = k+1}^{K} \sum_{x_0 \in X_{0j}(\tau_k) \cap \bar{X}_r(\omega)} D(t_{x_0}, t) l^*_{x_0, u^*_{X_0j}(\tau_k)}(t) \right\rangle =
\]

\[
\rho^- \left(\sum_{x_0 \in X_{0j}(\tau_k) \cap \bar{X}_k(s)} D(t_{x_0}, t) l^*_{x_0, \omega}(t) \sum_{r = k+1}^{K} \sum_{x_0 \in X_{0j}(\tau_k) \cap \bar{X}_r(\omega)} D(t_{x_0}, t) l^*_{x_0, a^*_* P} \right)
\]

- **on the segment** $[\tau_{K-1}, \tau_K]$:

\[
\left\langle \sum_{x_0 \in X_{0j}(\tau_k) \cap \bar{X}_K(\omega)} D(t_{x_0}, t) l^*_{x_0, \omega}(t), u^*_{X_0j}(\tau_k)(t) \right\rangle = \rho^- \left(\sum_{x_0 \in X_{0j}(\tau_k) \cap \bar{X}_K(\omega)} D(t_{x_0}, t) l^*_{x_0, \omega}(t) \right)
\]

The program package $(u^*_{x_0}(\cdot))_{x_0 \in X_0}$ is guiding with the AGT family ω.
Construction of the \(\varepsilon \)-guiding positional strategy

Let us constructively define the \(\varepsilon \)-guiding positional strategy. Let us set the correction times

\[
\sigma_k = \begin{cases}
 t_0 + \delta, & k = 0, \\
 \tau_k + \delta, & k = 1, \ldots, K - 1.
\end{cases}
\]

Construction of the positional guidance problem takes place during the actual control process of the system, starting from the concrete, but yet unknown point \(\hat{x}_0 \).

On each segment \([\tau_k, \sigma_k], k = 0, \ldots, K - 1 \) the following procedure is applied:

1. An arbitrary test control is applied
2. The signal \(y(t) \) (non-homogeneous!) is observed
3. With the Cauchy formula the homogeneous signal is derived
4. The cluster containing \(\hat{x}_0 \) is identified from the homogeneous signal
5. The control (element of the program package) corresponding to the cluster containing \(\hat{x}_0 \) is applied
Lemma 3

Let the package guidance problem with the AGT family \(\omega = (t_{x_0})_{x_0 \in X_0} \) be solvable for the system (1). Then such natural \(\bar{K} \leq K \) exists, that \(\max_{t_{x_0} \in \omega} t_{x_0} \leq \tau_{\bar{K}} \), where \(K \) is the number all the splitting moments \(\tau_k, k = 1, \ldots, K \) of all the homogeneous signals corresponding to admissible initial states \(x_0 \in X_0 \).

From this lemma and results obtained in [1] the following theorem follows.

Theorem 4

Let the package guidance problem with the AGT family \(\omega = (t_{x_0})_{x_0 \in X_0} \) be solvable for system (1), and let the condition \(\bar{K} \delta C \leq \varepsilon \), where \(C \) is some positive constant, hold for rather small positive \(\delta > 0 \). Then the closed-loop strategy \(S^* = (\sigma_k, U_k)_{k=0}^{\bar{K}+1} \) corresponding to the guiding program package with the family \(\omega \) is \(\varepsilon \)-guiding.
Let us consider a dynamical controlled system on the segment $[0, 2]$:

\[
\begin{aligned}
\dot{x}_1 &= x_2, \quad x_1(0) = x_{01} \\
\dot{x}_2 &= u, \quad x_2(0) = x_{02}.
\end{aligned}
\]

\[
X_0 = \left\{ \left(\begin{array}{c} -2 \\ 0 \end{array} \right), \left(\begin{array}{c} 3/2 \\ -1/2 \end{array} \right) \right\}; \quad M = \left\{ \left(\begin{array}{c} x_1(t) \\ x_2(t) \end{array} \right) \in \mathbb{R}^2 : |x_1| \leq 1, x_2 \in \mathbb{R} \right\}
\]

\[
u(t) \in P = \{ u : |u| \leq 1 \}, \quad t \in [0, 2]; \quad Q(t) = \left\{ \begin{array}{ll}
(0, 0), & t \in [0, 1] \\
(1, 0), & t \in (1, 2].
\end{array} \right.
\]

\[
W = \left\{ \frac{3}{2}, \frac{5}{2} \right\} \Rightarrow \begin{array}{l}
\omega_1 = \left\{ \frac{3}{2}, \frac{3}{2} \right\}, \quad \gamma^0(\omega_1) > 0; \\
\omega_2 = \left\{ \frac{3}{2}, \frac{5}{2} \right\}, \quad \gamma^0(\omega_2) < 0; \\
\omega_3 = \left\{ \frac{5}{2}, \frac{3}{2} \right\}, \quad \gamma^0(\omega_3) < 0; \\
\omega_4 = \left\{ \frac{5}{2}, \frac{5}{2} \right\}, \quad \gamma^0(\omega_4) < 0.
\end{array}
\]
Guiding program package \((u^*_{x_0}(\cdot))_{x_0 \in X_0} \) with the AGT family \(\omega_2 \).

System motion corresponding to the Guiding program package \((u^*_{x_0}(\cdot))_{x_0 \in X_0} \) with the AGT family \(\omega_2 \).

Guiding positional strategy controls; \(\delta = 0.1, \varepsilon = 0.27 \).
Further steps

- From the finite X_0 to infinite set – approximation theorem has been proved by P. G. Surkov [3].
- From finite W to the continuous problem convergence – to be done
- Minimal time problem
- Numerical algorithms
Further steps
References

Thanks for your attention!