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Abstract

To evaluate uncertainty in the spatial distributmiair emissions over India, we compare satehiel
surface observations with simulations from the UEBvironmental Protection Agency (EPA) Community
Multi-Scale Air Quality (CMAQ) model. Seasonally presentative simulations were completed for
January, April, July, and October 2010 at 36km >m6using anthropogenic emissions from the
Greenhouse Gas-Air Pollution Interaction and SyesrdGAINS) model following version 5a of the
Evaluating the Climate and Air Quality Impacts dio&-Lived Pollutants project (ECLIPSE v5a). We use
both tropospheric columns from the Ozone Monitoringtrument (OMI) and surface observations from
the Central Pollution Control Board (CPCB) to clgsexamine modeled nitrogen dioxide (MMiases in
urban and rural regions across India. Spatial @eeevaluation with satellite retrievals indicatewa bias

in the modeled tropospheric column (-63.3%), whieflects broad low-biases in majority non-urban
regions (-70.1% in rural areas) across the subkoemtto slightly lesser low biases reflected imsearban
areas (-44.7%), with the threshold between senmasuemd rural defined as 400 people pef.Kmcontrast,
modeled surface N{concentrations exhibit a slight high bias of +®25.&%hen compared to surface CPCB
observations predominantly located in urban ar€aswersely, in examining extremely population dense
urban regions with more than 5000 people pef {dense-urban), we find model overestimates in tueh
column (+57.8) and at the surface (+131.2%) conthb&weobservations. Based on these results, we find
that existing emission fields for India may oveiraste urban emissions in densely populated regamiass
underestimate rural emissions. However, if we oelynodel evaluation with predominantly urban swefac
observations from the CPCB, comparisons reflect ehduigh biases, contradictory to the knowledge

gained using satellite observations. Satellites therve as an important emissions and model el@iuat
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metric where surface observations are lacking, saghrural India, and support improved emissions

inventory development.
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1. Introduction

Ambient air pollution results in 3.7 million annu#gaths worldwide—contributing to 6.7% of the wésld
total annual deaths. Of these air-pollution-relateaktalities, 88% occur in developing and low-in@m
countries World Health Organization2014]. Ambient air pollution causes prematuretlieaost often
resulting from respiratory ilinesses, heart diseaaacer, and strokéim et al, 2012]. India suffers from
some of the worst air pollution in the world, owirtg its rapid economic development, increasing

population, growth in energy demand, and limiteepaillution regulation.

Much of the ambient pollution in India is a resofitanthropogenic emissions from biomass burniReddy
and Venkataramgr2002;Sharma et aJ.2015], agricultural waste burninbifi et al.,in review], and fossil
fuel combustion for transportatioApte et al. 2011] and industrial processing and electrictiynbustion
[Reddy and Venkataramar2002; Guttikunda and Jawahar2014]. Industrial sources are also often
coincident with urbanized regions, as evidentdarg et al [2001], and are noticeable “hot spots”
detectable by satelliteRgmachandran et al.2013]. India’s Central Pollution Control Board RCB)
identified 88 such industrial hot spot clusters,iclihare found predominantly near cities and in the
industrial regions of eastern Indi@dntral Pollution Control Board2009]. Contributions to pollution from
vehicles are predominantly urban (on-road), bualrareas can also be affected by off-road sourges f
farming [Guttikunda and Mohar2014]. Primary particulate emissions from resi@dcombustion sectors
are more common in rural and low-income urban megiavhere people rely more on traditional biomass t

meet their cooking and heating needs.

Urbanization, industrialization, and population \gtb are leading causes of India’s growing ambient
pollution problem. Major industrial manufacturingica processing sources in India include smelting,
cement production, sulfuric acid production, andclrkilns, sources which in total are estimated to
contribute 36% of total SOand 19% of total N@emissions in the countrgprg et al, 2001]. Brick kilns
alone have been estimated to contribute more tB&fh Gf ambient Py and up to 60% of the PM in
certain parts of IndiaMuntaseer Billah lIbn Azkar et al2012]. Coal-fired power plants for electricity
generation contribute 50% of total sulfur dioxi®%) and 30% of total nitrogen oxides (NJOoemissions

in India [Garg et al, 2006], such that coal-fired generation contrisl26% of emissions from the power
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sector Lu and Streets2012]. Transportation emissions of N@nd SQ contribute up to one third of P
[Amann et al. 2017], compounding the already severe problenpasticulate pollution in the region.
However, contributions from individual sectors vamegionally, including between major urban areas
[Guttikunda et al.2014]. Better constraining the budget of Némnissions from all sources can address the

significant uncertainties across emission inveegrsectors, and pollutant specigaikawa et a).2017].

Due to limited ground-based measurement sitesdma lwith varying levels of data reliability, pasudies
have often used vertical column densities (VCDe)rnfrsatellites to inform emissions, distributioneda
recent trends of tropospheric N@.u and Streets2012;Ghude et al.2013], SQ [Fioletov et al, 2011],
and PM via the interpretation of aerosol opticaptie(AOD) [Ramachandran2007]. Satellite-based
approaches have informed trends over recent decadégrovided data to supplement and compare with
ground-based instruments. N@nd SQ pollution from power plants have increased by mibian 70%
from 1996 to 2014 and 2005-2012 respectively agmles by temporal trend observations from satsllite
[Lu and Streets2012;Lu et al, 2013]. Trends in tropospheric M@t selected industrial areas have been
found to increase at a rate of 1 to 9% per y&anjachandran et al2013], with a regional average
decadal increase from 2004-2015 on the order of 14i% ul-Haqg et al. 2015]. The largest growth in
VCDs is over areas of high population density ia tiorth, attributable to enhanced electricity piciitun,
industrial activity, transportation, and crop bungni trends not as prominent in southern In@arican et
al., 2015; Zia ul-Haq et al. 2015]. However, recent developments, includinghsl stagnation due to
economic slow-downHilboll et al.,, 2017], indicate the complex nature of pollutioends in the region

which may be unaccounted for in current emissiomsntories for the region.

In this study, we use the U.S. Environmental PtasacAgency’s Community Multi-Scale Air Quality
Model (CMAQ) to simulate recent air quality condits for the Indian subcontinent using anthropogenic
emissions from the Greenhouse Gas-Air Pollutioeradtions and Synergies (GAINS) model following
version 5a of the Evaluating the Climate and Aira@y Impacts of Short-Lived Pollutants project
(ECLIPSE v5a). Previous assessments of the reqwa relied on statistical modeling of pollution dés/

in urban areashaudhuri and Dutta2014; Mishra and Goyal 2015], urban and industrial dispersion
modeling Kumar and Goyal2014;Saini et al, 2014;Aggarwal and Jain2015;Gulia et al, 2015], and
evaluating sector contribution&(ittikunda and Jawahaf012;Gupta and Mohan2013;Chambliss et aJ.
2014; Sharma et a).2016]. Although a few studies have sought to atbeanced chemistry and transport
models to evaluate Indian air qualitgijude et aJ.2013;Guttikunda and Jawaha014], and CMAQ has
previously been used in larger East Asian domdaiisafani et al. 2014;Park, 2015], over Bangladesh
[Muntaseer Billah Ibn Azkar et aR012], and to assess ground-leveli®India [Sharma et a).2016], all
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applications of CMAQ and related models dependhmnaccuracy of the input emissions. Here we use
CMAQ to evaluate the skill of this advanced emissianventory, by comparing calculated ambient
concentrations and VCDs with a suite of observatiom a national scale and four-season basis taifiglen

and assess regional differences in model perforenanc

2. Methods

2.1. Model Description

Model simulations were conducted using CMAQ v54L 86 km x 36 km over the Indian subcontinent and
surrounding countries, including parts of Afghaamst Bangladesh, Bhutan, China, Nepal, and Pakistan
(5°N to 40°N, 60°E to 100°E), for four seasonalBpmesentative months—January, April, July, and
October—representing winter, pre-monsoon, monsaad, post-monsoon fall respectively. The CMAQ
model includes processes related to surface- apdrufevel emissions, photolysis, gaseous andqudaite
chemistry, deposition, and dispersion for 36 vattiayers in the troposphere up to about 150tRa
and Scherge 2006]. Model specifications include the Carbonn8d05 (CB05) chemical mechanism
[Yarwood et al. 2005], the AERO 6 aerosol mechanism, in-linethging NO« production pllen et al,
2012], and the inclusion of windblown dufidng et al, 2015]. Boundary and initial conditions are taken
as the CMAQ default profiles, which assumes locatemd seasonal invariance in vertical chemical

profiles.

Anthropogenic emissions from the Greenhouse GasPAllution Interactions and Synergies (GAINS)
integrated assessment mod&irfann et al.2011], developed and operated at the Interndtiosttute for
Applied Systems Analysis (IIASA), are for year 20Buib-national total emissions for 10 species ewhitt
from anthropogenic sectors were calculated usirigildd activity factors and combustion informatias
described for PMs in Klimont et al.,[2016]. The GAINS inventory includes energy combustdomestic
combustion, transportation, agriculture, area sesjrthe extraction and removal of energy sourced, a
other anthropogenic combustion sectors. Griddirigrstional emissions to 0.5 degree x 0.5 degreeaglo
fields was conducted according to the ECLIPSE (&athg the Climate and Air Quality Impacts of Short
Lived Pollutants) project which uses sector-specifpatial surrogates according to EDGAR (Emissions
Database for Global Atmospheric Research) as destinLamarque et al[2010]. Annual total emissions
were allocated temporally and vertically as follo@ay and night emissions ratios (each 12 hourg)ltor
each anthropogenic emission sector followed globadlel parameterizations describedSimpson et al.
[2012]. Domestic combustion, industrial manufactgri solvent emissions, and mobile sources were
assumed to occur primarily in daytime. Verticaltdimitions are based on power plant stack heigith s

that power generation and industrial processingraadufacturing were distributed in the first eigiddel
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layers and dispersed through nearby layers up @06rh. Surface emissions sources were assignee to th
lowest model layer. Values for these distributioaa be found in Supplemental Tables 1 and 2. Eamissi
from GAINS were chemically speciated for inclusisnCMAQ from 10 to 32 species, with speciation
factors adapted from the Sparse Matrix Operatom&eEmissions (SMOKE) model, where average
speciation factors were applied across all antlgep@ sectors in the same way for all combustion
sources. Speciation information for VOC compourgladapted from speciation developed by Drs. Qiang
Zhang and David G. Streets for the INTEX-B projeeer Asia Li et al, 2014], and particulate speciation
is adapted fronChowdhury et al[Chowdhury et a).2007]. Detailed speciation factors can be foumnd i
Supplemental Table 3.

Global biogenic emissions are from the Model of &iuns and Gases from Nature (MEGAN) on a
monthly average basis from the MEGAN websitalculated from the Community Land Model, which
includes emissions for 25 gaseous species at §.0°15. These emissions were allocated to the 3®&¥m
36 km Lambert-conformal grid, with all emissiongoring in the lowest model layer, and during dangi

hours (6 am to 6 pm local time) for simulationgath season.

Biomass burning emissions were taken from the Gl6ba Emissions Database version 4.1 with small
fires (GFED v4.1s) Randerson et 3gl.2012]. Emissions were allocated from 0.5° by d&ftudinal-
longitudinal grid to 36 km by 36 km. Biomass bugnMOC speciation was performed followidgagi et
al.,[2011]. Biomass burning emissions from GFED wergriiuted temporally according to the GFED
v4.1s dataset and vertically using burned areaemmdsions buoyancy flux as determined by the fze s
per grid cell as described Fu et al. [2012] andPouliot et al., [2005].

Annual total anthropogenic emissions of NOx,,S&hd PM s(not including windblown dust) are shown in
Figure 1. Emissions of N(1a) are greatest in highly populated mega céies nearby such as Delhi and
Kolkata, and Mumbai. NQemissions “hotspots” occur scattered across limdigative of urban pollution
from transportation and other combustion but f@ thost part highest emissions remain coincidertt wit
the largest Indian cities. Emissions of ,S€xhibit a similar pattern to that of N@missions. Comparing
with population densities in Figure 1d, highest €1ans are coincident with highly populated citesl
near combustion sources, namely industry in eastefia (1b). In contrast, primary P emissions are
significantly lower across India, with regions atgtest PMs emissions restricted to Delhi, Kolkata, and

Mumbai (1c). Primary particulates are often in ttven of organic and elemental carbon from combustio

1 http://lar.wsu.edu/megan/docs/05degree MEGAN/
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sources, which according to the gridded ECLIPSHEosalcspatial surrogates concentrates the emissmons

urban regions.

Meteorology for 2010 is simulated using the WeatResearch and Forecasting (WRF) model v3.2 and
Preprocessing System (WPS) and ERA-Interim reaisafysm the European Center for Medium-Range
Weather Forecasting (ECMWHDD¢e et al. 2011]. Reanalysis weather data is globally griddeabout an

80 km resolution over 60 vertical layers and alddan 6-hour increments. WRF is used to interpoat
hour data to hourly data. Data from WRF is simuatising Grell cumulus parameterizatidgaréll and
Devenyj 2002] with 36 vertical sigma layers from the sed to approximately 150hPa. Meteorological
data was finally preprocessed for use in CMAQ wilte Meteorology-Chemistry Interface Processor
(MCIP). Figure 2 describes the seasonal variatromonthly average planetary boundary layer height,
temperature, and total rainfall from MCIP and coregarainfall from TRMM. Figure 2 shows monthly
average planetary boundary layer (PBL) heightspledir temperatures (orange), and total rainfaléég

for January (top) and July (bottom). Generallystheeasons differ with lower (higher) PBL heightsler
(warmer) temperatures, and less (more) rainfal0amuary as opposed to July. There are noticeable
variations across the sub-continent: PBL heightsaatheir lowest along the Himalayan mountain esing
January (2a), a region that also exhibits extreengperature shifts during the year from coldestaimuary
(2b) to warmest in July (2f). Finally, precipitaties limited in January but can exceed 100 cen@nsegper
month in certain regions, particularly along thenidlayas and the Western Ghats mountain rangesigduri
July (Figures 2c and 2g). Monthly precipitationalet were validated against measurements from the
Tropical Rainfall Measuring Missions (TRMM) microw&imager instrument shown in Figures 2d and 2h.
MCIP reproduces January rainfall conditions fainyell however July precipitation totals are
underestimated in central India. A similar image fgpril and October meteorology is presented in

Supplemental Figure 1.

2.2. Satellite and Ground-Based Measurements

We compared CMAQ output with observational datarfreatellite and ground-based instruments. The
OMI instrument aboard the Aura satellitédtional Aeronautics and Space Administratiaf12] supports
the calculation of tropospheric N@nd formaldehyde (HCHO) VCDs. Observations fromIQislve been
previously used in regional model evaluation oegiions of the U.SJanty et al. 2015;Kemball-Cook et
al., 2015]. Daily total column values for N@nd HCHO were downloaded from the TEMIS databasa

Level 2 data format, and gridded to the 36 km xKsé model grid with the Wisconsin Horizontal

2 http://www.temis.nl/airpollution/no2col/no2regioomi_v2.php
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Interpolation Program for Satellites (WHIP&)drkey et al. 2015]. An averaging kernel was applied to
model simulations at the Aura overpass time of al2BWM to calculate equivalent VCDs for comparison
with the satellite-derived values. Annual averagal@ation with OMI NQ VCDs is presented in Section
3.1; seasonal OMI N©OVCD and HCHO evaluation is included in the Suppetal Information.

Two sets of ground-based surface observations ampoyed: one, from the peer-reviewed literature fo
NO, [Carmichael et a].2009;Guttikunda et al.2013;Chaudhuri and Dutta2014;Mallik and Lal 2014;
Mallik et al, 2014], SQ [Carmichael et al.2009;Guttikunda and Calori2013;Guttikunda et aJ.2013;
Chaudhuri and Dutta2014; Mallik and Lal 2014; Mallik et al, 2014; Surendran et al.2015], Q
[Guttikunda et al.2013;Mallik et al., 2014;Surendran et aJ.2015], and PMs [Carmichael et al.2009;
Guttikunda and Calori2013;Guttikunda et al.2013;Chaudhuri and Dutta2014;Mallik and Lal 2014;
Mallik et al, 2014; Surendran et al. 2015]; the other accessed via the CPCB onlin@ qbairtal.
Comparisons for N@are presented here; detailed comparisons forttier pollutants are included in the
Supplemental Information. Measurements reportedthi literature are most often annual average
concentrations, collected between 2005-2010. CP@Bsorements use traditional monitoring techniques
[Central Pollution Control Board2003], and when available, can be retrieved falividual monitor
locations at hourly intervals at the download porta
(http://www.cpcb.gov.in/fCAAQM/mapPage/frmindiamagpa). Downloaded data from the CPCB is
available from a maximum of 26 sites per JanuaprilAJuly and October 2010. The values presermed f
comparison in this work are for all data availalonitor locations from the literature (trianglesihd
CPCB (circles) sites are shown in Figure 1d. CPGBrly monitoring data is geographically limited,tivi
most monitors located in Delhi and immediate sumthags, hence why we also include observations from

the literature for enhanced spatial comparison.

3. Results

3.1. Tropospheric VCD Evaluation with OMI RO

Tropospheric N@ columns averaged over January, April, July, antdoleEr shown in Figure 3 for the
model (3a) and from OMI (3b). Comparisons betweend@ed NQ tropospheric columns and those from
OMI both reflect high average NO/CDs across the Himalayan-bordering northern Indsmawell as in
cities such as Delhi, Mumbai, Kolkata, and PungyFe 3a). Other areas of high N&lumn VCDs exist
throughout the domain including the cities of DhaBangladesh, and Lahore and Karachi in Pakistan.
Monthly variations indicate the lowest NQ@'CDs in July associated with monsoon season, agioebt
VCDs in January corresponding with longer N@etimes, lower rainfall, shallow boundary-layleeight,

and reduced wind speeds (see Supplemental Figura@gased wintertime accumulation of local and
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regional air pollution occur along the Himalayazdese of shallow boundary layer heights and reduced
mixing. Because of heavy monsoon rains in July, R&llalgorithms that filter and remove pixels with
cloud cover greater than 30% are more prevalemt ithany other month, reflecting a limitation ining
satellite observations during the monsoon seasappssed to winter (Figure 4). High-density NACDs

in eastern India are co-located with emissions fidimdalco’s aluminum manufacturing plants, and the
largest plants are located in Renukoot in the sasgtern parts of Uttar Pradesh. Tropospheric column
densities over Renukoot, with its population of @h850,000 people, are about as large as the oEnsit
found over Delhi, a megacity with a population siging 16 million people. Similar hot spots arebles

in the annual average N@olumn VCDs in the nearby states of Chhattisgawth @disha. These isolated
regions of enhanced electricity generation andstrihl processing are also observed in satellisdyses

by Duncan et al.[Duncan et al. 2015],Lu and Street$Lu and Streets2012],Lu et al,[2013], and most
recentlyHilboll et al., [Hilboll et al., 2017] which note this region as an area of langeeases in N@and

SO, VCDs between the early 2000s and early- to mid320due to electricity generation and industrial
processing. Industries in India are subject to éewssions regulations, hence high N®@lumn densities in

this region are unsurprising.

We first define semi-urban and rural grid cellsngsa threshold following the Indian census defomitof
urban population density of approximately 400 pequr knfi (among other classifications;€nsus-India
2012], to classify as urban (above 400 peopleual (below 400 people). Because of this classifon,
there are 5871 grid cells in India that fall in tfRural” category representing a population of 3bilion,

as opposed to 707 that fall within the “Semi-Urbaategory representing a population of 858 millidhe
proportion of rural-designated population is apmreately 69% according to the 2011 CensGgrjsus-
India, 2012], however our under-representation of thalpopulation at 29.3% occurs because of the size
of each grid cell, which is too coarse to accoontsub-grid cell population differences. By ouridiifon,

a grid cell is semi-urban if the population dengitythat grid cell is quite small, for instanceradtion of

the population of New Delhi’s National Capital Regi29 million individuals, meaning this distributio

likely over-accounts for the sprawl of major urlzamters.

Strong gradients of NOVCD are visible between highly populated or indiasized areas, as compared to
the rural background, in line with the rather locakure of NQ pollution. However, compared to OMI
NO,, CMAQ consistently underestimates column densitidsoth semi-urban and rural regions according
to our population density distribution. The rurgdis quite large at -70.1% while the semi-urb&s lis
somewhat lower at -44.7%; overall, the model bmasopospheric N@columns is -63.3%. Stronger rural

biases likely incorporate underestimates in indaisareas to the east (Figure 3b), which maintain |
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population densities and abundant electricity gaivey and industrial capacity, but significant
underestimates in the modeled concentrations. Mddehderestimates of N@opospheric columns are
evident across central and southern India as wadrgvpopulation density is relatively lower. Thgagal
and statistical comparison suggests inconsisterniciéise emissions inventories, including eastertian
electricity-generating and industrial regions, blgo perhaps across semi-urban areas as well ydartyc
with respect to the emissions column distributibespite these differences, monthly and spatiabtans

in CMAQ'’s NO; tropospheric column density mimic what is obserlagdOMI (Supplemental Figure 2).
Seasonally, CMAQ exhibits large overestimates of,N®©lumn VCDs in Nepal (for January, July,
October) and Bhutan (especially in simulationsJanuary and October). Such overestimation is likieky

to difficulties in CMAQ accurately modeling the Hatayan topography. Highest VCDs occur in January
and coincide with both a shallow boundary layer dod rainfall—characteristics of wintertime
meteorology—and generally reach a minimum in Julg ¢tb the highest levels of mixing and the great
rainfalls of the monsoon season.

Statistical metrics including correlation, normalizmean bias, and normalized mean error followidgrE
et al., [2006] were calculated for average N@Ds for CMAQ and from OMI. The correlations betme
annual average OMI and CMAQ tropospheric Nlumns are positive, with an average spafiad 63
(Table 1). The strongest correlations are in AEfit0.68), after the dry, polluted winter, and weakast
July (”=0.39), coincident with the wet monsoon season lihdts OMI retrieval availability and a low
precipitation bias in MCIP, resulting in greater deted pollution compared to OMI observations. The
annual average normalized mean bias is large agdtine (NMBoy=-63.3%), with a large low bias in
July (-71.1%) and the smallest low bias in pollutihuary (-46.9%), suggesting CMAQ is better at
estimating higher NOQVCDs as opposed to lower values. The annual agenagmalized mean error is
large at 68.9%.

3.2. NQ Evaluation with Ground-Based Monitors

Four-month averaged modeled concentrations of Bi@ overlaid with observations from the literature
(hollow triangles) and from the CPCB (hollow cirgjeare presented in Figure 3c. Following Sectidnl3.
statistical metrics were calculated between daiugrage NQ from the model and from the CPCB.
Comparisons between modeled surface concentragiothiSCPCB observations for §dD;, and PM s are

included in the Supplemental Information.

Modeled concentrations of NQare greatest along the Himalayas in northern |ndieetching from

Pakistan through India and into Bangladesh (3dlpviang relatively greater N@VCDs in Figures 3a and
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b. Generally, modeled concentrations follow thoEpapulation density which is greatest in the natid

in urban centers outside of the Indo-Gangetic Rlsé® Figure 1d). Easily identifiable urban areathis
region include Karachi in Pakistan; Mumbai, Surabtmedabad, and Kolkata in India; and Dhaka in
Bangladesh. The domain 4-month average modeledentmation of NQ is 2.0 ppb, with an average
maximum of 41.4 ppb in Delhi. Outside of mega sitecross the central and southern sub-continent,
modeled surface concentrations exhibit significaidlver NG, values, on the order of four times lower
than in urban areas. Concentrations of,NMOMm CMAQ are overlaid with observations from {titerature
(triangles) and from the CPCB (circles). Most olkagon locations from the CPCB (circles) are found
or downwind of Delhi (13 out of 26 monitors for Z)1 Modeled concentrations are high coincident with
observations from the literature (triangles) aldhg coast in Kolkata and inland in Delhi, while fage
concentrations from CMAQ at Jodhpur (central westadia; 3.7 ppb) and Nagpur (central India; 8.8)pp

are lower than surface observations of 11.8 antl jgb respectively.

Statistical comparisons between daily modeled ahderwwed N@ concentrations at CPCB monitor
locations (circles) indicate CMAQ has a low spatiatrelation (f=0.27) and an average slight model high
bias (NMBcpcg=115.6%) at these monitor locations. According tio definition of Semi-Urban and Rural
based on a population density threshold of 400 leeper knd, all NO, monitors from the CPCB are in
semi-urban population density locations. Thus mduigth biases are reflective of modeled concentnatio
in high population density regions, and this corgmer may not be representative of concentrationsiae!

of urban areas, or even outside of Delhi where ponity of monitors are located, and therefore model
biases in the rest of India remain uncertain whemgared with CPCB observations. Finally, modelrsrro

are large, with an average daily NME at surfacessif 72.4%.

3.3. Assessing Model Performance in Urban and Riamnsironments for N©

There are apparent inconsistencies in the stastmases between ground level modeled ;NO
concentrations and satellite observations, nantely urban model performance exhibits a slight Higls
compared only to surface observations whereas totainn model comparison against OMI N@CDs
indicates significant low biases in both semi-urbad rural defined grid cells (Figure 5a). Startvith the
low bias in model performance compared to OMI;Nf@pospheric VCDs (NMBw=-63.3%), we note
low model biases at both semi-urban locations (MMB;,=-44.7%) and at rural locations (NMB_ru=-
70.1%), colored in green, as compared to OMI oleems, colored in light blue slash marks (Figuae 5
left two column pairs). The average is heavily vatggl towards the low estimate, considering theee ar
many more grid cells in India marked as “Rural’rthhere are “Semi-Urban.” A similar performance

disparity occurs when comparing model performartceugface monitor locations (Figure 5a, right two
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column pairs). Rural and urban modeled grid cejie€n) corresponding to observation locations ftioen
peer-reviewed literature (solid dark blue) and fribwea CPCB monitor locations (solid light blue) arewn

in the right side of Figure 5 for NOOnly urban CPCB monitors and only rural literatwbservations
exist, and we show comparable surface concentmtimm CMAQ that best correspond with CPCB
observations. The surface concentration comparsiects the slight model high bias of +15.6% atOBP
monitor locations, contradicting the comparisoroasra larger compilation of modeled and OMI-obsérve
semi-urban grid cells. From the CPCB comparisonareeunable to conclude rural model performance at
the surface.

Looking only at extremely population dense urbagiaes with population densities greater than 5000
people per ki Dense-Urban and Rural modeled column VCDs anfeiconcentrations of NQeflect
different biases compared with observations (Fidgibge With this urban-rural specification, only 4idy
cells within India are determined to be urban, espnting Delhi (2 grids), Kolkata, and Mumbai, \&hil
6574 are rural and include cities with relativebwer population densities. Model estimated columns
exhibit large high biases at these locations (NMBom=+57.8%), while rural modeled grid cells exhibit
low biases (NMBw omi=-63.2%) (Figure 5Sb, left two column pairs). Simithvergent biases are exhibited
for modeled and observed surface concentrationgyavbome CPCB monitors are now reflected in the
lower population dense rural grid cell category atidbservations from the literature are in theargrid

cell category (Figure 5b, right two column paifglodeled surface biases averaged across these ROBC
sites reflecting extreme population density are NMBcpcs131.2%, while low biases across other
monitor locations are NMB, cprce=-20.3%. Through this, we find that although medetiense-urban
regions exhibit low biases on average, extremepupied modeled grid cells exhibit both column and
surface overestimates. Separately, discrepancitsede the two different observational datasets are
unreflective of the whole modeled N©oncentration performance for India. Yet, combings analysis
points to the uncertainties in the spatial allamatf existing emissions inventories used for miodeair

quality in India.

This relationship in modeled NMiases at urban and rural grid cells compared @kt NO, tropospheric
columns and largely-urban surface observations fieenCPCB emphasize two things: (1) the need for
better detailed spatial information for griddingttmoepogenic emissions, and (2) the utility providad
using remote sensing observations for model areabysdl evaluation. There are limitations to thisdkarf
comparison. Population density is highly variablighim a 36 km x 36 km grid cell, and our estimates
describe urban as very highly populated grid aghlien in reality there is significant variation iogulation

density and N@across an area. Another limitation is in the obstgonal datasets. Observations from the



375 peer-reviewed literature are meant to be spatrallyesentative of high and low regions concentnatias
they were taken across different seasons betwe®b 3a0d 2010 and do not reflect a true temporal
comparison against our CMAQ simulations. For aditemporal comparison, the CPCB observations are
more suitable, yet there are systemic issues arttwngollection of data including monitor reliabylit
human error with no regular bias correction factamewn or applied, and monitor placement mostly in

380 urban areas. Given this, an urban-rural observaltianalysis is able to inform modelers and emission
inventory developers of geographic variations itiytion trends that can be integrated into spajradding

fields for emissions inventories.

3.4 Urban-Rural Influences for Other Pollutants

385 To determine if there are urban-rural bias diffeesacross pollutants in addition to N@e compare
observations for SPand Q at Semi- and Dense-Urban locations (Figure 6).gémeral, pollutant
concentrations of SQOare lower than those of both M@nd Q. Similar to NQ, at semi-urban CPCB
monitor locations (Figure 6a), CMAQ tends to ovéreate both S@Qand Q, with positive model biases of
16.2% and 4.39% respectively. However, the oppasitaurs at Dense-Urban monitor locations (Figure

390 6b); both modeled SOand Q are under-estimated with respect to surface obtens from the CPCB,
with biases of -7.82% and -84.7% respectively, whame monitor is used for the; @omparison in the

Dense-Urban scenario.

The comparison of surface concentrations acrosarbin monitors in the Semi-Urban scenario and the
395 Dense-Urban monitors indicates the differences ancentrations in these two regions. For instance,
modeled NQ increases substantially between the Semi-Urbari ({i8b) and the Dense-Urban (35.6 ppb)
yet only increases slightly in the surface obséownat from the CPCB from 16.8 ppb to 18.5 ppb in the
Semi- to Dense-Urban respectively. Modeled, $@ncentrations increase slightly from 5.27 in Semi-
Urban to 6.94 ppb in the Dense-Urban, and are thligingh compared to the Semi-Urban observed
400 concentrations (4.87 ppb) at the Dense-Urban manytet are low compared to the Dense-Urban observed
concentrations (7.69 ppb). Modeled concentration®pdecrease from 33.6 ppb to 19.3 ppb between
Semi- and Dense-Urban areas due to modeled tiifation, yet the observations in these regiootera
considerable increase ing@t Dense-Urban areas (from 32.1 ppb to 126 pplscrEpancies in modeled
surface biases of these gas phase pollutants rdenate transport deficiencies in CMAQ at this resioh.
405
4. Discussion and Conclusion
To the best of our knowledge we present the firgtlysis of CMAQ model performance for N@ver

India using three observational datasets meastnapgspheric VCDs from OMI and surface observations
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from two datasets collected from the peer-revieWedature and the CPCB. Annual anthropogenic and
monthly biogenic and biomass burning emissions éoetbwith modeled meteorology for 2010 were used
for four monthly simulations for January, April,lguand October to evaluate CMAQ'’s daily performanc
metrics under seasonally representative conditidMdel evaluation was conducted using tropospheric
VCDs of NG, and HCHO at overpass time and with an averagimgekepplied to model data and limited
ground measurements available across the domaide&by contradictory modeled N®iases compared
to our surface and tropospheric column observatiaisasets, we identify differences in model
performance at urban and rural areas, most noficghb underestimate of NCacross relatively lower
population-dense rural regions (NM®&=-63.3%) compared to very large model high biaseslense
urban regions (NMRByh cpci+131.2%), and suggest these biases result fraye landerestimates in rural

regions of the emissions inventory.

Given inherent limitations in both emission inveige estimates and gridding proxies used for tigeore
model performance informs locations of regionalsbg& Anthropogenic emissions tend to coincide with
regions of high population density or large pomiirge emissions, regions which emit the greateshiify

of pollutants such as NONegative model bias of -63.3% against OMINf@pospheric column densities
are larger than biases found comparing the DOMINX@lpct against output from other regional and dloba
models and ensembles (-9% to -23%Wyijnen et al, 2010]. Limitations to this analysis exist for bdhe
model in the form of a limited number of time stegpsilable for comparison and limitations in thatsg
distribution and quantity of NOemissions, as well as for satellite retrievalthe form of a priori profiles
used to calculate tropospheric N€lumns and uncertainties due to cloud fractidaijnen et al, 2010;
Boersma et al.2011], factors which contribute to the air maastdr calculations. Greatest model low

biases occur in non-urban regions and parts ahthestrial east.

In contrast, model biases in comparison to surfaloservations suggest a modeled ;N@gh bias of
NMB cpcg=+15.6%. Differences in average model bias whertuated with OMI NQ tropospheric VCDs

or surface observations arise due to spatial vanstin biases. In particular, NGhigh biases appear
predominantly in and downwind of densely populaidaan areas, often where there are surface monitors
and low biases occur everywhere else across tha broader rural areas. Urban-rural differencesasds
have been reported befotdijnen et al, 2010;Allen et al, 2012;Kemball-Cook et a].2015], where low
model biases against OMI NQOWCDs across rural regions may result from a misggntation of NQ
transport @Gilliland et al., 2008] or lifetimes of organic nitrates in the GB&hemical mechanisnCanty et

al., 2015]. Geographic differences in model biasesuodor SQ and Q as well, though in less of a
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coherent urban and rural sense as,NfDggesting emissions inventory improvementsties¢ gas phase

species and relevant precursors are needed.

Many of these discrepancies between modeled arehadzsconcentrations exist as a result of unceigsin

in emissions inventories. Emissions inventorie®iporate regional combustion and activity inforroati
often at a coarse resolution, such as at the svatdistrict-level. Issues can arise in the griddprocess
when coarse data must be allocated to a higheldateso domain. At present, spatial proxies follogin
EDGAR v4 described ihamarque et al[2010] for individual emission sectors are usedtid emissions
from GAINS, including population distribution, stadocations, and detailed emissions factors for
particular combustion process. In this case, eomssiend to be allocated in highly populated regjicuch

as across the Indo-Gangetic Plain and in Delhi witeere are more people, leading to greater ambient
concentrations in this region as compared to otbeally populous and polluted areas across the
subcontinent including cities such as Jodhpur aagpNr and electricity generating facilities in #aest. As

our results indicate, this in turn leads to lowavd@led concentrations across rural regions whi¢énof
remain unmonitored at the surface, making it diffico measure pollution in the region. Model base
satellite-derived N@ columns shown in this study suggest that the aunaton of NQ emissions in
extremely urban environments as opposed to rumhlnaany lower population dense urban areas may be
too high in the ECLIPSE gridded emissions, pointtogpossible lack of information on urban-rural
distribution of modes of transportation or domestenbustion, a significant source of uncertaintyoam
emissions inventorieSpikawa et a).2017]. Furthermore, the results demonstraterthiséing or outdated
information on the location of large point soursesh as power or industrial plants can lead tangtfocal

underestimation of Ngevels, as seen across industrial regions in eabidia.

Informed by contradictory modeled N®iases between evaluation with satellite VCDs (NIMB-63.3%)
and surface observations at urban monitoring lonati(NMBcpcg=+15.6%) for a population density
threshold of approximately 400 people per?kmwe find that there are unique differences in nhode
performance between our Dense Urban classificatioth all other grid cells, defined as exceeding a
population density threshold of 5000 people pef.Km particular, there are large negative Nfiases at
rural locations compared in the tropospheric colMMBowm_=-63.2%) and large positive NDiases at
surface urban areas (NMBsc_ui-+131.2%), with similar urban and rural bias dipemgcies in modeled
SO, and Q compared to observations. Considering much ofitveain is classified as “rural” (6574 rural
grid cells to 4 Dense Urban grid cells), this estenthereby excludes sub-grid variations in pojurat

density across urban sprawl. This analysis is éichlty the coarse resolution of CMAQ at 36 km bkB6
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which can encompass a broad variety of populatesities with highly varying localized effects tlzae

diminished at most regional resolutions.

Further work to improve model performance incluide tecommendation of using higher resolution model
simulations to differentiate across high-resolutiarban and rural regions. In addition, emissions
inventories allocated to a grid using region speacttivity and population information, particukarfor
highly uncertain sectors, will lead to improved alletd for spatially distributing state or countmgvél
inventory totals. Higher levels of emissions detaill in turn support high-resolution CMAQ modeling
over India where there remains limited observafiamwverage, research which is useful for assessing

region-specific questions pertaining to air quadihd related implications.

Acknowledgements

The authors would like to thank Markus Amann fasjpct guidance and Wolfgang Schoepp for providing
ancillary data. A.K. and T.H. were supported by N&SA Air Quality Applied Sciences Team (AQAST,

NASA Grant #NNX11AI50G). A.K. received additionaupport from the Wisconsin Space Grant
Consortium Graduate Research Fellowship and paated in the IIASA Young Scientists Summer
Program through a grant from the National AcadeniySoiences Board on International Scientific
Organizations, funded by the National Science Fatiod (Grant #OISE-1148655).

References

Aggarwal, P., and S. Jain (2015), Impact of aitygahts from surface transport sources on humaltithea
A modeling and epidemiological approaé&mviron. Int, 83, 146-157,
doi:10.1016/j.envint.2015.06.010.

Akagi, S. K., R. J. Yokelson, C. Wiedinmyer, MAlvarado, J. S. Reid, T. Karl, J. D. Crounse, an®P
Wennberg (2011), Emission factors for open and dtimbiomass burning for use in atmospheric
models Atmos. Chem. Phyd4.1(9), 4039-4072, doi:10.5194/acp-11-4039-2011.

Allen, D. J., K. E. Pickering, R. W. Pinder, B. Henderson, K. W. Appel, and a. Prados (2012), bhpa
lightning-NO on eastern United States photochesniiiring the summer of 2006 as determined using
the CMAQ modelAtmos. Chem. Phyd.2(4), 1737-1758, doi:10.5194/acp-12-1737-2012.

Amann, M. et al. (2011), Cost-effective controlaif quality and greenhouse gases in Europe: Moglelin
and policy applicationgnviron. Model. Softw26(12), 1489-1501,
doi:10.1016/j.envsoft.2011.07.012.

Amann, M. et al. (2017), Managing future air qualit megacities: A case study for DelAtmos.
Environ, 161, doi:10.1016/j.atmosenv.2017.04.041.



510

515

520

525

530

535

540

Apte, J. S., T. W. Kirchstetter, A. H. Reich, SD&shpande, G. Kaushik, A. Chel, J. D. Marshalt| &h
W. Nazaroff (2011), Concentrations of fine, ultrefj and black carbon particles in auto-rickshaws in
New Delhi, India Atmos. Environ.4%26), 4470-4480, doi:10.1016/j.atmosenv.2011.05.028

Boersma, K. F. et al. (2011), An improved troposghO2 column retrieval algorithm for the Ozone
Monitoring InstrumentAtmos. Meas. Tech}(9), 1905-1928, do0i:10.5194/amt-4-1905-2011.

Byun, D., and K. L. Schere (2006), Review of thev&aing Equations, Computational Algorithms, and
Other Components of the Models-3 Community Multisdsr Quality (CMAQ) Modeling System,
Appl. Mech. Rey59(2), 51, d0i:10.1115/1.2128636.

Canty, T. P., L. Hembeck, T. P. Vinciguerra, D Adderson, D. L. Goldberg, S. F. Carpenter, D. Jledl
C. P. Loughner, R. J. Salawitch, and R. R. Dicker@915), Ozone and NOx chemistry in the eastern
US: Evaluation of CMAQ/CBO05 with satellite (OMI) @gaAtmos. Chem. Phy4.5(19), 10965-10982,
doi:10.5194/acp-15-10965-2015.

Carmichael, G. R. et al. (2009), Asian aerosolsr&u and year 2030 distributions and implicatitms
human health and regional climate charigeyiron. Sci. Technql43, 5811-5817,
doi:10.1021/es8036803.

Census-India (2012%ensus of India, 201 New Delhi, India.

Central Pollution Control Board (2003), Guidelifes Ambient Air Quality MonitoringNatl. Ambient Air
Qual. Monit, NAAQMS 2003-4.

Central Pollution Control Board (2008 nvironmental Assessment of Industrial Clusters

Chambliss, S. E., R. Silva, J. J. West, M. Zeiraid R. Minjares (2014), Estimating source-attializ
health impacts of ambient fine particulate mattgrasure: global premature mortality from surface
transportation emissions in 20@xviron. Res. Lett9(10), 104009, doi:10.1088/1748-
9326/9/10/1040009.

Chatani, S. et al. (2014), Photochemical rolesapid economic growth and potential abatement sfiede
on tropospheric ozone over South and East Asi®80 Atmos. Chem. Phyd.4(17), 9259-9277,
doi:10.5194/acp-14-9259-2014.

Chaudhuri, S., and D. Dutta (2014), Mann-Kendalhtr of pollutants, temperature and humidity over an
urban station of India with forecast verificatiosing different ARIMA modelsEnviron. Monit.
Assess.1868), 4719-4742, doi:10.1007/s10661-014-3733-6.

Chowdhury, Z., M. Zheng, J. J. Schauer, R. J. Sages. G. Salmon, G. R. Cass, and A. G. Russell
(2007), Speciation of ambient fine organic carbartiples and source apportionment of PM2.5 in
Indian cities J. Geophys. Res. Atmps1215), D15303, doi:10.1029/2007JD008386.

Dong, X., J. S. Fu, K. Huang, and D. Tong (2015pd&l development of dust emission and heterogeneous

chemistry within the Community Multiscale Air Quglimodeling system and its application over East



Asia, Atmos. Chem. Phys. Discuysky(24), 35591-35643, doi:10.5194/acpd-15-35591-2015.
Duncan, B. N. B. N,, L. N. Lamsal, A. M. Thompsdh,Yoshida, Z. Lu, D. G. Streets, M. M. Hurwitz,
545 and K. E. Pickering (2015), A space-based, higbtut®n view of notable changes in urban NOx
pollution around the world (2005-2014),Geophys. Res. AtmoB21(X), 976-996,
doi:10.1002/2015JD024121.Received.
Eder, B., and S. Yu (2006), A performance evalumatibthe 2004 release of Models-3 CMAMmos.
Environ, 40(26), 4811-4824, doi:10.1016/j.atmosenv.2005.08.045
550 Fioletov, V. E., C. a. McLinden, N. Krotkov, M. Moran, and K. Yang (2011), Estimation of SO2
emissions using OMI retrieval§eophys. Res. LetB8(21), 1-5, doi:10.1029/2011GL049402.
Fu, J. S., N. C. Hsu, Y. Gao, K. Huang, C. Li, N.Lth, and S. C. Tsay (2012), Evaluating the infloes
of biomass burning during 2006 BASE-ASIA: A regiboaemical transport modelingtmos. Chem.
Phys, 12(9), 3837-3855, do0i:10.5194/acp-12-3837-2012.
555 Garg, A., P. R. Shukla, S. Bhattacharya, and \D&dhwal (2001), Sub-region (district) and sectoele
S02 and NO(x) emissions for India: Assessmentw#rnitories and mitigation flexibilityatmos.
Environ, 35(4), 703-713, d0i:10.1016/S1352-2310(00)00316-2.
Garg, A., P. R. Shukla, and M. Kapshe (2006), Tdetaal trends of multigas emissions inventory of
India, Atmos. Environ.40(24), 4608-4620, doi:10.1016/j.atmosenv.2006.03.045
560 Ghude, S. D., G. G. Pfister, C. Jena, R. J. VanMdr. K. Emmons, and R. Kumar (2013), Satellite
constraints of nitrogen oxide (NOx) emissions friowiia based on OMI observations and WRF-Chem
simulations Geophys. Res. Lett0(x), 423—-428, doi:10.1029/2012GL053926.
Gilliland, A. B., C. Hogrefe, R. W. Pinder, J. Mo@owitch, K. L. Foley, and S. T. Rao (2008), Dynami
evaluation of regional air quality models: Assegsthanges in O3 stemming from changes in
565 emissions and meteorologd¢mos. Environ.42(20), 5110-5123,
doi:10.1016/j.atmosenv.2008.02.018.
Gulia, S., A. Kumar, and M. Khare (2015), Perforecaevaluation of CALPUFF and AERMOD
dispersion models for air quality assessment ohdustrial complexJ. Sci. Ind. Res74(May), 302—
307.
570 Gupta, M., and M. Mohan (2013), Assessment of doumtion to PM10 concentrations from long range
transport of pollutants using WRF/Chem over a saiatial urban airshedtmos. Pollut. Res4, 405—
410, doi:10.5094/apr.2013.046.
Guttikunda, S. K., and G. Calori (2013), A GIS lsenissions inventory at 1 km x 1 km spatial reotu
for air pollution analysis in Delhi, Indi&tmos. Environ.67, 101-111,
575 doi:10.1016/j.atmosenv.2012.10.040.
Guttikunda, S. K., and P. Jawahar (2012), Applazadbf SIM-air modeling tools to assess air quality



580

585

590

595

600

605

610

Indian cities Atmos. Environ.62, 551-561, doi:10.1016/j.atmosenv.2012.08.074.

Guttikunda, S. K., and P. Jawahar (2014), Atmosplenissions and pollution from the coal-fired thet
power plants in IndiagAtmos. Environ.92, 449-460, doi:10.1016/j.atmosenv.2014.04.057.

Guttikunda, S. K., and D. Mohan (2014), Re-fuelingd transport for better air quality in Indigergy
Policy, 68, 556-561, doi:10.1016/j.enpol.2013.12.067.

Guttikunda, S. K., R. V. Kopakka, P. Dasari, andM.Gertler (2013), Receptor model-based source
apportionment of particulate pollution in Hyderabhulia, Environ. Monit. Assessl8%7), 5585—
5593, doi:10.1007/s10661-012-2969-2.

Guttikunda, S. K., R. Goel, and P. Pant (2014)uiabf air pollution, emission sources, and managgm
in the Indian citiesAtmos. Environ.95, 501-510, doi:10.1016/j.atmosenv.2014.07.006.

Harkey, M., T. Holloway, J. Oberman, and E. Sc@2y15), An evaluation of CMAQ NO2 using observed
chemistry-meteorology correlationk,Geophys. Res. Atmo&), 1-19,
doi:10.1002/2014JD022994.Received.

Hilboll, A., A. Richter, and J. P. Burrows (201 R)O2 pollution over India observed from space ar th
impact of rapid economic growth, and a recent de¢htmos. Chem. Phys. Discys)2), 1-18,
doi:10.5194/acp-2017-101.

Huijnen, V. et al. (2010), Comparison of OMI NOr@gospheric columns with an ensemble of global and
European regional air quality modefgmos. Chem. Phy<d.0(7), 3273-3296, doi:10.5194/acp-10-
3273-2010.

Kemball-Cook, S., G. Yarwood, J. Johnson, B. Daxsét, and M. Estes (2015), Evaluating NOx emission
inventories for regulatory air quality modeling mgisatellite and air quality model dafdmos.

Environ, 117, 1-8, doi:10.1016/j.atmosenv.2015.07.002.

Klimont, Z., K. Kupiainen, C. Heyes, P. PurohitCbfala, P. Rafaj, J. Borken-Kleefeld, and W. Sghop
(2016), Global anthropogenic emissions of partiuraatter including black carboAtmos. Chem.
Phys. Discuss(October), 1-72, doi:10.5194/acp-2016-880.

Kumar, A., and P. Goyal (2014), Air Quality Predhct of PM10 through an Analytical Dispersion Model
for Delhi, Aerosol Air Qual. Res(2009), 1487-1499, doi:10.4209/aaqr.2013.07.0236.

Lamarque, J. F. et al. (2010), Historical (1850@0dridded anthropogenic and biomass burning eonssi
of reactive gases and aerosols: Methodology anlicatipn, Atmos. Chem. Phy4.0(15), 7017-7039,
doi:10.5194/acp-10-7017-2010.

Li, M. et al. (2014), Mapping Asian anthropogeniigsions of non-methane volatile organic compounds
to multiple chemical mechanism&tmos. Chem. Phyd4.4(11), 5617-5638, doi:10.5194/acp-14-5617-
2014.

Lim, S. S. et al. (2012), A comparative risk asses# of burden of disease and injury attributablé#



615

620

625

630

635

640

risk factors and risk factor clusters in 21 regidt®90-2010: a systematic analysis for the Global
Burden of Disease Study 201&ncet 380(9859), 2224-2260, doi:10.1016/S0140-6736(12)613.66-

Lu, Z., and D. G. Streets (2012), Increase in N@ussions from Indian thermal power plants durin§@.9
— 2010 : unit-based inventories and multi-satellite observati&mwiron. Sci. Techngl46(x), 7463—
7470, doi:dx.doi.org/10.1021/es300831w.

Lu, Z., D. G. Streets, B. De Foy, and N. A. Krot@013), Ozone Monitoring Instrument Observatiohs o
Interannual Increases in SO 2 Emissions from In@aal-Fired Power Plants during 2002012,
Environ. Sci. Technol.

Mallik, C., and S. Lal (2014), Seasonal charactiesof SO2, NO2, and CO emissions in and arouad th
Indo-Gangetic PlairEnviron. Monit. Assessl86(2), 1295-1310, doi:10.1007/s10661-013-3458-y.

Mallik, C., D. Ghosh, D. Ghosh, U. Sarkar, S. laald S. Venkataramani (2014), Variability of SO2,,CO
and light hydrocarbons over a megacity in Eastednat Effects of emissions and transpéityiron.
Sci. Pollut. Res21(14), 8692-8706, doi:10.1007/s11356-014-2795-x.

Mishra, D., and P. Goyal (2015), Quantitative Assaant of the Emitted Criteria Pollutant in Delhibddn
Area,Aerosol Air Qual. Res15(4), 1601-1612, doi:10.4209/aaqr.2014.05.0104.

Muntaseer Billah Ibn Azkar, M. A., S. Chatani, Kud®, and M. Ibn Azkar (2012), Simulation of urban
and regional air pollution in Bangladesh,Geophys. Res. Atmps17D7), n/a-n/a,
doi:10.1029/2011JD016509.

National Aeronautics and Space Administration (3002one Monitoring Instrument (OMI) Data User's
Guide

Park, S.-U. (2015), Spatial distributions of aetdsadings and depositions in East Asia duringytbar
2010,Atmos. Environ.107, 244—-254, doi:10.1016/j.atmosenv.2015.02.046.

Pouliot, G., T. Pierce, W. Benjey, S. M. O. Nedlhd S. A. Ferguson (2005), Wildfire Emission Modegti
Integrating BlueSky and SMOKHA4th Int. Emiss. Invent. Conf. “Transforming Emissent. Meet.
Futur. Challenges Today'(2001), 1-8.

Ramachandran, A., J. Pallipad, S. a. Sharma, aikd Jain (2013), Recent trends in tropospheric NO2
over India observed by SCIAMACHY: Identification bt spotsAtmos. Pollut. Res4(4), 354-361,
doi:10.5094/APR.2013.040.

Ramachandran, S. (2007), Aerosol optical depthfimednode fraction variations deduced from Moderate
Resolution Imaging Spectroradiometer (MODIS) owrrrfurban areas in Indid, Geophys. Res.
Atmos, 112(16), 1-11, doi:10.1029/2007JD008500.

Randerson, J. T., Y. Chen, G. R. Van Der Werf, BRdgers, and D. C. Morton (2012), Global burned
area and biomass burning emissions from small, fireSeophys. Res. Biogeosciendds(4),
doi:10.1029/2012JG002128.



645

650

655

660

665

670

Reddy, M. S., and C. Venkataraman (2002), Inventberosol and sulphur dioxide emissions fromdndi
I—Fossil fuel combustiomtmos. Environ.36(4), 677-697, doi:10.1016/S1352-2310(01)00463-0.

Saikawa, E. et al. (2017), Uncertainties in emissiestimates of greenhouse gases and air pollutants
India and their impacts on regional air qualEyviron. Res. Lettl2, doi:10.1088/1748-9326/aa6cb4.

Saini, R., P. Singh, B. B. Awasthi, K. Kumar, andTAaneja (2014), Ozone distributions and urban air
quality during summer in Agra — a world heritage shtmos. Pollut. Res5(4), 796804,
doi:10.5094/APR.2014.089.

Sharma, S., A. Goel, D. Gupta, A. Kumar, A. Misi8aKundu, S. Chatani, and Z. Klimont (2015),
Emission inventory of non-methane volatile orgasompounds from anthropogenic sources in India,
Atmos. Environ.102x), 209-219, doi:10.1016/j.atmosenv.2014.11.070.

Sharma, S., S. Chatani, R. Mahtta, A. Goel, andunar (2016), Sensitivity analysis of ground level
ozone in India using WRF-CMAQ modeitmos. Environ.131, 29-40,
doi:10.1016/j.atmosenv.2016.01.036.

Simpson, D. et al. (2012), The EMEP MSC-W chemisport model &ndash; Technical description,
Atmos. Chem. Phyd.2(16), 7825-7865, doi:10.5194/acp-12-7825-2012.

Surendran, D. E., S. D. Ghude, G. Beig, L. K. Ems&h Jena, R. Kumar, G. G. Pfister, and D. M. €hat
(2015), Air quality simulation over South Asia ugiHemispheric Transport of Air Pollution version-
2 (HTAP-v2) emission inventory and Model for Ozarel Related chemical Tracers (MOZART-4),
Atmos. Environ.122 357-372, doi:10.1016/j.atmosenv.2015.08.023.

World Health Organization (2014), Burden of disefisen Ambient Air Pollution for 2012, , (1), 2012—
2014.

Yarwood, G., S. Rao, M. Yocke, and G. Z. Whitte@(®2),Updates to the Carbon Bond chemical
mechanism: CBO5 Final Report to the US EPA, RT-6480

Zia ul-Hagq, S. Tariq, and M. Ali (2015), TropospieelO 2 Trends over South Asia during the Last
Decade (2004 — 2014 ) Using OMI Datalv. Meteorol.20152), 1-29, d0i:10.1155/2015/959284.



675

680

685

690

695

700

705

710

Tableand Figure Captions

Table 1 Spatial correlations, normalized mean biases, anchalized mean errors for CMAQ and OMI
NO; tropospheric columns annually and for JanuaryjlApuly, and October monthly averages.
Correlations differ across seasons due to metegyalo changes in non-anthropogenic emission
inventories. A land mask has been applied to bathsits, and statistics are only take for gricsagith
land cover.

Figure 1 Annual total emissions for total (a) NO(b)SOx, and (c) PM; in tons per krh Population
density (people per Kinis shown for comparison in (d) and overlaid vstirface observation locations
from the Central Pollution Control Board (CPCB)lindiia for 2010 (circles) and at locations from peser-
reviewed literature for 2005-2010 (triangles).

Figure 2 Meteorology from MCIP: PBL, Temperature, Total iall. January (top), July (bottom), and
observed precipitation for January and July fronMIRon the right.

Figure 3 (a) 4-month average (January, April, July, Octdbepospheric vertical column densities of NO
from the Ozone Monitoring Instrument (OMI) ¢£Gnolecules per cfit (b) 4-month average NO/CDs
from CMAQ, taken at OMI overpass time and processitll a vertical averaging kernel; (c) modeled
surface concentrations of N©verlaid with observations from the Central PatintControl Board (hollow
circles) and from the literature (hollow triangles)

Figure 4 Total valid pixel counts per domain grid cell f80, tropospheric vertical column densities
(VCDs) from the Ozone Monitoring Instrument (OMbaard the Aura satellite. OMI overpasses at about
2PM each day and retrievals can be obscured bylslouextremely high levels of pollution. Here we
show the difference in quantity of valid pixels gable in January (top) and July (bottom). Notet tiodal
valid pixel counts exceed 31, the number of day&imuary and July, because of oversampling techsiqu
in WHIPS to apply OMI observations to the modetgri

Figure5 (a) Average (January, April, July, October) CMA@NVCDs (green) in urban and rural areas
compared with OMI N@VCDs (blue slash) on the left, and on the rigletthe urban and rural surface
concentration splits for annual average CMAQ-N@een), observations from the CPCB (light blug] a
from the peer-reviewed literature (dark blue). Urltiareshold defined as greater than 400 peopl&mer
Discrepancies between biases in surface and satiservation evaluation are due to variations in
modeled urban and rural concentrations. Only liteeaobservations are categorized as rural, hénese t
are zero instances of CPCB or comparable CMAQ natales. (b) Same as (a) except for a population
threshold of 5,000 people per km

Figure 6 Bar charts comparing concentrations in (a) seinaarand (b) dense-urban grid cells forANNO
(left), SG (middle), and @(right) from CMAQ (green), observations from ther@@ral Pollution Control
Board (CPCB) of India (light blue), and observasidrom the peer-reviewed literature (blue). Modeled
concentrations of gas-phase species exhibit higbelsicompared to observations from the CPCB.



NO; | Annual | January | April July | October

r 0.63 0.65 0.68 0.39 0.55
NMB | -63.3% | -46.9% | -713% | -71.1% | -59.8%
NME | 68.9% | 65.6% | 732% | 76.0% 68.0%

Table 1
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Valid Pixel Count, OMI NO2
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Highlights for the manuscript titled “Constraining the uncertainty in emissions over India with a
regional air quality model evaluation,” authored by Alexandra Karambelas, Tracey Holloway, Gregor
Kiesewetter, and Chris Heyes.

e This is one of the earliest uses and evaluation of CMAQ for investigating India’s air quality.

e Tropospheric and surface observations are used to evaluate CMAQ across urban and rural
regions.

¢ Rural model-estimated NO, concentrations exhibit low biases compared to observations.

e Dense-urban regions exhibit large model high biases.

e Evaluating with OMI data exposes region-specific biases hidden by limited surface
observations.



