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Introduction

In Hansen and Koopmans [2], it was shown that the
Scarf-Hansen fixed point algorithm may be applied to approx-
imate an optimal invariant caprital stock. They studied an
economy with constant technoclugy and non-reproducible resource
availability, in which an initial capital stock is to be
determined such that maximization of the discounted sum of
future utility flows over an infinite horizon can be achieved
by reconstituting that capital stock at the end of each
‘period.

Despite the similarity in technology, the model differs
from the growth-maximizing case studied by von Neumann [4].

Here the objective is one of maximizing rhe discounted ati'ity
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of consumption. The optimal choices may be affected by the
time preference parameter-- that is, by the utility discount
factor a.

In this paper, we shall analyze the invariant capital
stock problem from the viewpoint of the linear complementarity
algorithm of Lemke [3] and of Cottle and Dantzig [1]. Our
model is the same as that of Hansen and Koopmans except that
we approximate their general concave utility function by one
that is separable and piecewise linear. This assumption and
approach yields a simpler constructive proof of existence 6f
an optimal path than does the fixed point method. Our paper
concludes witn a small example which suggests that the
algorithm may also be advantageous from the computational
viewpoint because it exploits the linear structure of the
system. In a finite number of pivot steps, this method obtains

an exact solution.

Model Formulation

For convenience in the following proofs, the notation
will differ slightly from that employed by Hansen and Koopmans
{(hereafter abbreviated H-K). Moreover, we will include a
straightforward extension-- the non-stationary case in which
there is an exogenously specified exponential rate of growth.
The one-period growth factor g8 will be identical for all m
resources and n activities.! With this modification, the
problem is no longer one of computing an invariant capital

stock, but rather one of computing invariant proportions under



optimization,
For each time period, it is supposed that the following

data are identical:

dimensions

a = utility discount factor; O < a < 1 scalar
B = economy-wide growth factor; O < af < 1 scalar
A = capital and current account input

and output coefficient matrix mxn
B = capital stock carryover

coefficient matrix; B > O mxn
b = initial period's resource availabilities mx 1l
¢ = initial period's utility maximand

coefficients l1xn

Let x denote the nonnegative column vector of activity
levels chosen for the initial time pe: od (t = O). Then, for
all activities to increase by the identical one-period growth
factor B, the activity levels during period t will be xet R
and the resource availabilities will be bBt. To satisfy the
material balance relations for current and capital account

inputs and outputs, the program must then meet the following

conditions:

B [
capital and W i ' W |
current account < capital stocks resources
input requirements| -~ |carried over + |available
(+); or outputs from period during period
produced (-) t-1 t; constant
during period t growth rate

from the initial
period's resource
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t =1,2,.... (2.1.t)



Dividing through by the positive factor Bt and rearrang-
ing terms, we have the following stationary set of technology

and resource constraints?

(A - 87'B)x <

A
o

(2.1)
x>0 . (2.2)

The activity levels x are to be chosen so as to maximize

the discounted sum of future utility flows

I (abe) (x8%) = cx I (aB)t = cx [f‘i-} . (2.3)
t=1 t=1 aB

Since 0 < a B < 1, the maximization of cx is equivalent
to the maximization of (2.3) subject to constraints (2.1) and
programming problem in terms of the primal unknowns x. The
critical difference lies in the fact that the dual variables
in successive time periods are related to each other by the
utility discount factor a. Let the nonnegative row vector y
denote the shadow prices for the initial time period (t = 0).
Then, for relative prices to remain constant, the "present
value" shadow prices for period t must be aty. The dual-

feasibility conditions are then

present value present value present value

of current of capital of utility

acount inputs N stocks carried + received

(+); or outputs | = forward to during

(-) produced period t+l period t

during period t

A J | i L i
(aty)A 2 (at+1y)B + abe (2.4.t)



Dividing (2.4.t) by the positive factor ut and rearrang-
ing terms, we obtain the stationary set of dual feasibility

conditions
y(A - aB) > ¢ (2.4)

Before expressing the complementary slackness conditions
for this stationary economy, it is convenient to define the

matrices C and D

1

A-B8 B (2.5)

(9]
"
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o
n

B(B™ -a) >0, (2.6)

and to change the primal and dual inequality constraints
(2.1) and (2.4) into equalities by introducing slack vectors
u> 0 and v > O respectively. Thus (2.1) and (2.4) can be

rewritten

0 ' (2.7
(2.8)

v = b - Cx

v

v
Q

u ==¢ + y(C + D) >

where D > O follows from the assumptions B > O and O < aB < 1.
N.B. TIf D = 0, this may be solved through conventional linear
programming methods. In general, however, D # O,

To find an invariant set of proportions for this economy,
we seek nonnegative vectors u, v, x and y satisfying (2.7),

(2.8) and the complementary slackness conditions
ux + yv = 0 . (2.9)

It is convenient to summarize conditions (2.7) - (2.9)



in the Lemke Complementarity Tableau, Figure 1. To avoid
awkwardness in the subsequent notation, transposition symbols
have been omitted. In the next to rightmost column there is
an artificial variable 6 whose vector of coefficients is de-

fined by

(l,l...,l)T n-vector

(14
'

(2.10)

la}
"

(l,...,l)T m-vector

‘The Lemke algorithm may always be initiated by assigning
a sufficiently high value to 8, setting x = O, y = 0 and
solving for u > 0, 'v > 0, After a finite number of‘iterations,
the algorithm must terminate in one of two ways: (1) a com-
plementary solution with the artificial variable 6 = O; or
(2) an unbounded "ray" solution. In our principal theorem,
it will be shown that -- given a certain "key" hypothesis
regarding the existence of bounded optima for the primal and
dual systems -- the Lemke algorithm cannot terminate in a ray,
and that it therefore may be employed to find a solution
corresponding to invariant proportions for this economy.

The set {(u,v,x,y,6) > 0 : u = y(C + D) + e~ c,
v=-Cx+ f6 + b} forms an unbounded convex polyhederal set

which we will refer to as the set of feasible solutions. A

solution will be called almost-complementary if ux + yv = O,

If in addition 6 = O, it will be called complementary. We *

seek a feasible complementary solution by iteratively moving
from one extreme (basic) almost-complementary feasible solu-

tion to a neighboring one.



Complementary Variables Artificial
(slack) Primal Dual variable
variables
X y 3] Constant
column
u = o] cC+D e - c
v = - C 0 £ b
Notes:
1) D > 0.

2) For a complementary solution, & = 0; ux + yv = O;

that is, for each i, u;x; =0 and for each j, yvs = 0.

Along an almost-complementary path, 6 > O; ux + yv

"
Q

Figure 1. Complementarity Tableau.

Termination in a Ray

Before stating the key hypothesis and the complementarity
construction theorem, we will list a series of propositions
related to termination along a ray. Note that the Lemke algo-
rithm may always be initiated along an extreme ray [x = 0,y = O,
u = ed’ - ¢,v = rof + b,0 =er] by assigning a sufficiently high
value to the artifiecial variable 8, (e.g. 8 = +») and then
letting 6 > O decrease until an extreme point solution is
obtained. The algorithm will generate a path of almost-
complementary solutions moving along edges of the polyhederal
set from one extreme point to the next, stopping if 6 = O or
if on a pivot step an unbounded edge is generated (an extreme

ray). If the algorithm terminates in a ray, then let



(x*,y*,u*,v*,0*) denote the finite (extreme-point) end of
the ray. It corresponds to an almost-complementary solution.
Let (xh,yh,uh,vh,eh) > 0 denote the homogeneous part of the
ray solution, and let the scalar A denote the value of the
incoming variable that can be increased indefinitely to

generate the ray. For the almost-complementary solution

corresponding to the finite end of the ray, we have

u* = -c + y*(C + D) + e0* (3.1)
g% > 0

b - Cx* + ros ’ (3.2)

v*

The homogeneous part of the ray solution may be written

h
u

y2(C + D) + ed" (3.3)

vB oz —cxP + fol' (3.4)

r

‘Points (xr,yr,u ,vr,er) along the ray are then given

parametrically in terms of X > O by

of = g* + agh
ur = u* + Auh
r h
v oz v* + AV (3.5)
xr = x* + Axh

IR AN VA

where eh, uh, vh, xh, yh > 0, but are not all equal to zero

because the homogeneous solution to generate a ray must be
non-trivial. It will now be shown that along the ray, either
ex > 0 or y™ < 0, but not both. This will be established

through a series of six propositions.



Proposition 1. Along a ray,
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Proof. Almost-complementarity implies that for all X > O

¥ = (u* + th) (x* + Axh)

)
o

and
yIVE = (y* o+ ay?) (v o+ VD)

n
(@]

Each of the above terms is nonnegative, and their sum

is zero.

Proposition 2. Along a ray,

thxh =0 ,

ol [_‘exh + yhf] = 0
Proof. By proposition 1,

[yh(C + D) + ep” ]xh =

u'x = 0

v = yP TeexP s e®] =0 .
Adding terms,

thxh + [exh + yhfj o =0 .

Each of the above terms is nonnegative, and their sum

is zero.

Proposition 3. Along a ray, eh =0 .
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Proof. From proposition 2, we already know that at least one

of the two following statements holds:

h .o

h . oanay? =0 .

a) 6

b) x

If both a) and b) hold, there would be a contradiction
for, from (3.3) and (3.4), this would imply that (uh,vh) = 0,
We would then have a trivial homogeneous solution which could
not be used to generate a ray.

Now we shall show that if (b) is true and not (a), there
is also a contradiection, for then (3.3) and (3.4) would imply
that (uh,vh) > 0. In turn, proposition 1 would imply that
(x*,y*) = (xh,yh) = 0. We now show that the final ray
(ur,vr,xr,yr,er) would then be identical with the initial
ray, for these facts, together with (3.1) - (3.5), imply that

the final extreme ray is of the form [x" = 0,y* = o,u”

r

v = fer

+b,0 = 67] where 6F = [6* + 26"], 0 < 2 < ». But
this is the same parametric format that defines the initial
ray--a contradiction, for Lemke's algorithm cannot return to
the initial ray along an almost-comﬁlementary path. Hence

oP = 0.

Proposition 4. Along a ray,

"
(@)

a) yh ¢ xP
b) y* C =0
c) yh(C + D) x' =0

d) yh(c + D) x* =0 .

= eB” - C,
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Proof. Since 6P = 0, from (3.,4),
a) thxh = yh [th - rol ]= -yhvh =0
b) y*Cx® = y* [ex - o ]z y=vP = 0

Similarly, from (3.3),

1]
=
"
[
(@)

c) yh(C + D) xh

4) yPc + D) x*

n
=
»
*
1]
(@)

Proposition 5. Along a ray,

h

either (v ,xh) =0 or (uh,yh) = 0 , but not both.

Proof. In proposition 3, we have already noted that both
statements cannot hold, for if (xh,yh,eh) = 0, this would
imply a trivial homogeneous solution and not a ray.

The next step will be an argument based upon a simplex

tableau for the homogeneous system of (3.3) and (3.4):

unknowns v X u y eh constant
column
0 0 I - (C + D) -e =0
I c 0 o - -f =0

From proposition 3, recall that eh = 0. Hence if the

incoming basic variable is a component of v or of x, the

representation of its column can only have non-zero weights
on basic columns corresponding to basic variables among the
components of v or x (there is a zero weight on the eh

column). Thus there are no non-zero weights among u and y,
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i.e. (uh,yh) = 0. Similarly, if the incoming variable i3 a

component of the u or y vectors, its "representatiaon"

h

(v ,xh) = 0.

Proposition 6. Along a ray,

either a) ex > 0
or b) y' < O , but not both.
Proof.

a) Suppose that (uh,yh) = 0, but that (vh,xh) £ 0.

Then (b) cannot hold. To prove that ex > 0, note that (3.1)

and (3.6) imply.

hzog=[-c+y*(C+D)+e0*]1x" .

u*x
By proposition 4, y*th = 0. Because D > O,
ex = y*th + exlo* >0 ,

where strict inequality must hold because equality
=;exl'l = O:xh = 0 and [by proposition 4 and (3.14)]»vh = 0, a

trivial homogeneous solution--a contradiction.

b) Similarly, suppose that (vh,xh) = 0, but that

(uh,yh) # 0. Now (a) cannot hold. To prove (b):

ylvs = 0 = yP [b - ox* 4+ for]
By proposition 4, thx* = -thx*. Hence

yPb = -yPpx* - yPre* <0 .

where again strict inequality must hold by an argument similar

to that given in (a) above.
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Key Hypothesis and Complementarity Construction Theorem

To ensure that the Lemke algorithm will not terminate

along a ray, we shall make the following plausible

3

key hypothesis: The set of linear programming solutions to

the two following problems is each non-empty and bounded:

(P) maximize cx
subject to Cx < Db
x>0
(D) minimize yb
subject to y(C+4D) > ¢
y 2 .

Call these optimal solutions, respectively, X and y.

Complementarity Construction Theorem. If the key hypothesis

holds, the Lemke algorithm cannot terminate in a ray. The
algorithm will therefore construct a complementary solution

satisfying (2.7)-(2.9).

Proof. Assume on the contrary termination in a ray, then

according to proposition 6, either

ex? >0 or y™ <0, but not both.

In the first case, we may obtain an unbounded solution
to P by setting x = X + Axh, where again X > 0,

In the second case, we may obtain an unbounded solution
to D by setting y = § + th, where again X > 0,

In either case, we contradict the key hypothesis of
bounded linear programming solutions. Hence the algorithm

cannot terminate in a ray.
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Numerical Results

In order to apply the Lemke algorithm to the numerical
example studied by Hansen and Koopmans, it was necessary to
modify the problem formulation. The log of their maximand
turned out to be a sum of concave functions which are replaced
by piecewise linear approximations. Their one-period utility

function is:

[ — R Y]

u(y) = (y;0%% (5.1)

i=1

where (in their notation) i denctes the quantity consumed of
item i-= 1,2,3. Taking logarithms -- and recalling that the
logarithmic function is monotone increasing-- we maximize
log u(y) in place of the maximand (5.1) and write it as a
sum of separable concave functions ‘
3
log u(y) = I (0.2) logy, . (5.2)
i=1 1
Next, suppose we have sufficient prior information about
the problem so that it is known tha§ an optimal value of ¥4
will lie between some lower 1limit §il and an upper limit §iJ'

Moreover, let there be J grid points §ij such that

yil S yiz L Y E yij a0 0 5 yiJ .

For each grid point, we introduce a nonnegative unknown xij

to denote the interpolation weight placed upon the j th level

of demand for item i. That is, the unknown yi is replaced by
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the linear funection

Teo Xe: 5 io=1,2,3 (5.3)

The problem is formulated so that the interpolation

weights will add up to unity:
2 4
I x;. =1 i=1,2,3 (5.4)
js1 M ’
Finally, the original utility function (5.1) is replaced
by the following piecewise linear approximation
3 J
2 I
i=1 Jj=

log u(y) = (log §ij) Xe: . (5.5)

1 1

Since the logarithm is a strictly concave function, it is
guaranteed that in an optimal solution, there will be a positive
intensity assigned to no more than two of the unknown xij for
each item i. Moreover, the optimal grid points will be adjacent
to each other. For an application of this technique to devel-
opment planning, see e.g. Westphal [5, p.61].

The numerical efficiency of this interpolation weight
technique will depend upon the goodness of the initial choice
of grid points. If hundreds of grid points are specified,
there will be hundreds of unknowns xij for each item i, and
this will lead to hundreds of rows and columns in the comple-
mentarity matrix of Figure 1. For purposes of this numerical
experiment, we selected only four grid points for each of the
three consumption goods. For example, with a = .7, H~K calcu~-

lated the stationary value of y, ® .215. Making use of this
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prior information, our grid values were chosen as follows:

y = .18 ; ¥y = ,20 ; ¥y = .22 ; ¥ = 24
11 12 13 14

With this approximation, the complementarity tableau con-
tained 32 rows and 32 columns, excluding the artificial and
constant columns shown in Figure 1. Charles Engles applied
the Lemke algorithm for three different values of a. Since
both the primal and dual solutions were in close agreement
with those reported by Hansen and Koopmans, Table 1 contains
only the numerical values of the one-period maximand. The
linear complementarity method required 2.5 - 3.0 seconds on
an IBM 360/67 —- excluding the time required to compile the
program. Hansen and Koopmans reported that to obtain a ter-
minal primitive set, the computing time was 14 minutes on an
IBM 1130, and that this would be equivalent to about one min-
ute on an IBM 360/50. In itself, this experiment is incon-
clusive, for we made use of the H-K results in our selection
of utility function grid points.u Nonetheless, the results
are sufficiently promising so that further work seems warran-
ted in comparing the fixed-point and the linear complementarity

algorithms on this class of models.
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Table 1. Comparison of Numerical Results

One-period utility

discount factor, 0.7 0.8 0.9
One-~ Obtained by Hansen
period and Koopmans,
utility | applying the fixed- . 48855 .52216 .55935

attained | point algorithm

Obtained by Charles

Engles, applying the U890l .52209 .55939
linear complementarity '

algorithm



-18-

Footnotes

1For labor or for renewable natural resources such as
forests, it might be appropriate to postulate a growing
availability -- or perhaps a constant future level. In this
case, B > 1. For non-renewable natural resources such as
petroleum, the earth contains only a finite stock. If such
resources are essential, the economy could decline exponent-

ially, and we would then have B« 1,

2This one-period problem corresponds to constraints
(3.14A)-(3.1D) in H-K. Similarly, the dual conditions (2.4)

will correspond to (3.2b) and (3.3).

3 The key hypothesis is analogous to those underlying

H~-K Theorem 1 and Lemma 1.

uTo avoid use of prior information, we could have solved
one complementarity problem with a coarse grid, a second

with a fine grid, a third with a still finer grid, etec.



[1]

(2]

[3]
(4]

[5]

-19..

References

Cottle, R.W. and Dantzig, G.B. "Complementary Pivot
Theory of Mathematical Programming." Linear Algebra
and its Appliecations, 1 (1968), 103-125,

Hansen, T. and Koopmans, T.C. "On the Definition and
Computation of a Capital Stock Invariant under
Optimization." Journal of Economic Theory, 5 (1972),
487-523.

Lemke, C.E. "™Bimatrix Equilibrium Points and Mathematical
Programming.”" Management Science, 11 (1965), 681-689.

von Neumann, J. " Model of General Equilibrium.” Review
of Economic Studies, 13 (1945-46), 10~18, Translated
from the German original, Ergebnisse eines
Mathematischen Kolloquims, 8 (1935-36, published 1937),
(Karl Menger, ed.).

Westphal, L. "An Intertemporal Model Featuring Economies
of Scale." In H.B. Chenery, ed., Studies in
Development Planning, Cambridge, Massachusetts,
Harvard University %ress, 1971.




