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Knowledge of the spatial distribution of agricultural abandonment following the collapse of the Soviet Union
is highly uncertain. To help improve this situation, we have developed a new map of arable and abandoned
land for 2010 at a 10 arc-second resolution. We have fused together existing land cover and land use maps at
different temporal and spatial scales for the former Soviet Union (fSU) using a training data set collected from
visual interpretation of very high resolution (VHR) imagery. We have also collected an independent validation
data set to assess the map accuracy. The overall accuracies of the map by region and country, i.e. Caucasus,
Belarus, Kazakhstan, Republic of Moldova, Russian Federation and Ukraine, are 90± 2%, 84± 2%, 92±1%,
78±3%, 95± 1%, 83± 2%, respectively. This new product can be used for numerous applications including
the modelling of biogeochemical cycles, land-use modelling, the assessment of trade-offs between ecosystem
services and land-use potentials (e.g., agricultural production), among others.
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Background & Summary
After the Soviet Union collapsed, abandonment of agricultural land in the former Soviet Union (fSU)
countries occurred as a result of the restructuring of the economy and the adjustment towards open-
market conditions from 1990 to 2010 (refs 1–3). These major land-use changes have had a significant
impact both regionally and globally, e.g. Schiernhorn et al.4, which illustrates impacts beyond the borders
of the fSU.

Unfortunately, we still have limited knowledge of the spatial distribution of abandoned land in the fSU
countries. Accurate spatial information on land abandonment is required for many studies, e.g. as a
benchmark for monitoring cropland expansion and highlighting areas suitable for biomass production,
but also to pinpoint opportunities for increasing ecosystem services, such as carbon sequestration on
abandoned lands and increasing habitats for umbrella species5–9. However, existing global land cover/
land use maps suffer from a high level of uncertainty e.g. refs 10–12 and are not tailored towards the
identification of abandoned land. For example, the global land cover time series from 1992 to 2015,
produced in the framework of the Climate Change Initiative (CCI) of the European Space Agency
(ESA)13, do not account for any losses in cropland over this time period yet the area sown shrank by 42.5
Mha between 1990-2010 according to national Russian statistics14. Usually global mapping initiatives,
such as the ESA CCI, focus on certain types of land cover change to satisfy the needs of one group of
users, addressing the needs of other users only partially. For the development of this recent ESA CCI land
cover product, the CCI community did not prioritize mapping of cropland change but rather focused on
forest loss and gain.

At the same time there have been efforts to map abandoned land of small study plots as well as
regionally15–18. For example, Prischepov et al.15 have developed a map of abandoned arable land at a 30
m resolution for a few study plots in Russia, Poland and Lithuania, covering the period 1990–2000 while
Kraemer et al.17 have mapped a cropland time series for 1990–2010 based on Landsat imagery covering
two study plots in Kazakhstan. Another example is a map of farmland abandonment by Estel et al.18,
which is based on MODIS time series that covers all of Europe for the period 2001–2012. The spatial and
temporal extent of these maps is different, as well as the definitions for abandoned arable land, which
makes it impossible to compare these maps directly. Moreover, these maps do not fully cover Kazakhstan
or the non-European part of Russia. Hence there is a clear need to develop an accurate map of abandoned
land that covers the whole fSU.

This paper presents a state of the art hybrid map of current arable and abandoned land for eight fSU
countries (Armenia, Azerbaijan, Belarus, Georgia, Kazakhstan, Republic of Moldova, Russian Federation
and Ukraine). By fusing the best available, global and regional spatial information together, the map
provides information on land abandonment by 2010. We have used training data in the data fusion
methodology, which were collected by visual interpretation of very high resolution (VHR) imagery using
Geo-Wiki19,20, to increase the quality of the map. With a second independent Geo-Wiki data set, we have
assessed the accuracy of this product.

Methods
In this study, we aimed to collect and fuse existing sources of information, including indicators of land
abandonement derived from remote sensing data. These include abandoned arable land maps that were
produced by classification of Landsat imagery17; classification of MODIS-based time series of Normalized
Difference Vegetation Index (NDVI)18,21; or downscaling of statistical data on abandoned land based on
the calculation of a “so-called” cropland suitability index1. Among different existing data fusion
approaches, e.g. regression, decision trees or neural networks, we have chosen the Naïve Bayes classifier22.
Naïve Bayes is the basic form of a Bayesian Network and, as such, is a direct implementation of the Bayes’
theorem. It is easy to implement, can be updated dynamically, and deals easily with missing data.
Moreover, it has been shown to perform well on most classification tasks and is often significantly better
than other classification methods23,24.

Figure 1 presents a flowchart of the methodology used to create the hybrid map of arable and
abandoned land. We first collected land cover maps from different epochs as well as regional maps of
abandoned land. Moreover, with the help of regional experts using the Geo-Wiki19,20 land cover tool, we
developed a reference (training) data set on arable and abandoned land, using visual interpretation of
VHR historical imagery from Google and Bing. We then integrated the different land cover and
abandoned land maps with the Geo-Wiki reference data set using a data fusion algorithm to produce a
hybrid map of arable and abandoned land. The target resolution of the final product is 10 arc-second (ca
300 m at the equator) to match the geometry and spatial resolution of two input products: the hybrid
global land cover map25 and the ESA CCI land cover 13 products.

Map legend and definitions
As one of the inputs, we used land cover maps that include cropland as a land cover class. However,
cropland or arable land is a land use class according to the definition provided by the Food and
Agriculture Organization (FAO) of the United Nations. Therefore, in this paper, we refer to arable and
abandoned as land use classes.

National statistics on land include the following land use classes based on definitions from FAO26 with
specific regional differences:
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● Arable land is land under temporary crops, temporary meadows for mowing or pasture, land under
market or kitchen gardens and land temporarily laid fallow (less than five years). Temporarily fallowed
land is land set aside for one or more years before being cultivated again.

● Sown area refers to the area on which sowing or planting has been carried out for the crop under
consideration on the soil prepared for that purpose. (http://faostat.fao.org/site/375/default.aspx).

● Fallow land (temporary) is the cultivated land that is not sown for one or more growing seasons. The
maximum idle period is usually less than five years. Land remaining fallow for too long may acquire
characteristics requiring reclassification, such as "permanent meadows and pastures" (if used for
grazing), "forest or wooded land" (if overgrown with trees), or "other land" (if it becomes wasteland).

● Agricultural land refers to the land area that is arable, under permanent crops, or under permanent
pastures and hayfields.

The hybrid map developed here consists of three land use classes: arable land in use, abandoned arable
land, and other land uses (e.g. urban, forest, etc.).

1. Arable land includes sown area and bare fallow (cultivated, but not seeded)
2. Abandoned arable land is the land that was previously cultivated (i.e. belongs to the agricultural land

use class) but has not been utilized for more than 5 years1,27,28. “Abandoned arable land” is almost
never reported, and is calculated as the difference between the total arable land and the utilized
arable land.

3. Other land use is the land that is currently not and has never been utilized for agricultural purposes or
it was formerly arable land that is now occupied by infrastructure so it can no longer be considered as
potentially available for agricultural purposes.

Input maps
To be used as input data, we collected maps that provide us with the following information:

1. Abandonment of arable land derived from remote sensing data, such as abandoned land from
Alcantara21, abandoned land from Prishchepov15, etc.

2. Series of annual land cover maps, such as MODIS land cover29 and CCI land cover13. These maps
provide additional information on the transition of land cover from one type to another, e.g. from
cropland to grassland, shrubland or forest.

Figure 1. A flowchart of the methodology used to create the hybrid map of arable and abandoned land.
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Figure 2. Screenshot of the Geo-Wiki interface to collect expert training data.

Data set Mapped classes Spatial and temporal coverage

Arable utilized land Abandoned land Other land

MODIS land cover29 √ √a √ Global, 2001-2010

CCI land cover13 √ - √ Global, 2000, 2010

IIASA-IFPRI cropland12 √ - √ Global, 2005

GLC-SHARE31 √ - √ Global, 2014

GlobeLand3030 √ √b √ Global, 2000, 2010

Abandoned land from Schierhorn1 √ √ √ European Russia, Ukraine

Abandoned land from Prishchepov15

(Data Citation 1)
√ √ √ fragments of European Russia and Belarus

Areas sown from de Beurs16 √ - - fragment of European Russia

Russian land cover32 √ √ √ Russia, 2009

Forest cover from Hansen33 √c - √ Global, 2010

Land cover map from Alcantara21 √ √ √ Belarus, Moldova, European Russia 2009

Cropland from Kraemer17 (Data
Citation 2)

√ √ √ Northern Kazakhstan

Abandoned from Estel18 √ √ Belarus, Moldova, Ukraine, European Russia 2010

Cropland from Bartalev34 √ - √ Russia, 2012

Cropland from Kussul35,36 √ - √ Ukraine, 2010

Table 1. Land use classes and coverage of the input data sets. √data set contains corresponding class.
aproxy for abandoned land, which was estimated based on the area that MODIS land cover classified as
cropland in 2001 and was then changed to a different land cover class, i.e. not cropland in 2010, even though
we recognize that this product was not designed for change analysis. barable land abundance estimated as the
difference between the amount of arable land between 2000 and 2010. cdense forest cover excluding cropland.
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3. Land cover maps and cropland maps for 2010. There are many more land cover maps available for the
year 2010 than for earlier years. Some maps for 2010 are more accurate than the maps for 2000 or
older because it is possible to obtain better training data for the most recent years, e.g. GlobeLand3030

for 2010 compared to 2000. We consider these maps useful for delineating active cropland for 2010
and other land cover classes that are mapped with high accuracies, e.g. water, forest and bare land.

Table 1 lists the land cover and land use maps that we used as inputs to produce the hybrid map and
the correspondence to the land use classes of arable utilized land, arable abandoned land, and other land
uses. We then resampled the input data sets to the target resolution of 10 arc-second. In the first step we
simplified the legends by merging some of the land cover classes that are similar but not relevant to
agriculture, e.g. different types of forest (Supplementary Table S1). We then aggregated those maps at a
lower resolution than 10 arc-seconds to a 10 arc-second resolution: for categorical data, we applied a
majority rule while for continuous data, we calculated the mean. We then resampled all maps to the same
grid by applying the nearest neighbor technique. Finally, we converted continuous variables (e.g.
percentage cropland) to categorical ones by using a 50% threshold. Table 1 also shows the spatial and
temporal coverage of each input data set.

Geo-Wiki reference data on abandoned land
We collected reference data on abandoned land through the Geo-Wiki platform (http://geo-wiki.org),
which allows users to classify Google Earth and Bing VHR imagery. An example of the interface is
provided in Figure 2. The blue box corresponds to a 10-sec pixel; in the top left corner is a time slider to
view available historical imagery at this location while the user chooses the classes from the right
hand panel.

Twenty experts from the IIASA Geo-Wiki network along with partners from the AGRICISTRADE
project took part in an imagery classification campaign; together they collected information at ca 15K
points. These expert data were then used for training a Bayesian network to fuse the input data sets into a
hybrid product.

As part of the data collection process, we asked the experts to determine if each pixel had greater than
50% arable land, 50% abandoned arable land or 50% other land. When it was impossible to define a
unique class, the experts had the option to choose “Not Sure” (see Figure 2). We excluded “Not sure”
locations in training the Bayesian network. The experts examined both historical imagery at each location
and historical profiles of NDVI. Figure 3 provides an example of how historical VHR imagery in Geo-
Wiki was used to identify abandoned land in two different cases. In particular, the increased number of
shrubs over time, which is clearly visible in Figure 3, is a visual sign of abandonment. Abandoned land
may include not only abandoned arable land but also abandoned pastures.

Bayesian network
We combined the input data sets with the Geo-Wiki reference data set using a Bayesian network to
produce a hybrid map of arable and abandoned land. The Naïve Bayes classifier has been shown to
perform well in classification problems e.g. refs 38,39. One of the advantages of this method is the ease
with which it incorporates input data sources that have differing classifications. This means that there is
no need to translate land cover classes into the same legend, e.g. the forest gain map by Hansen can
indicate areas where forest gains have taken place on formerly cultivated agricultural lands39. In addition,
some of the input data sets provide information for only part of the fSU region e.g. 1,15,21 but the Naïve
Bayes classifier can handle missing data. Finally, this approach allows us to use input data with different
temporal extents. We considered the Geo-Wiki reference data set as the truth.

We have applied the Naïve Bayes classifier as follows. Let Gi be the truth in location i, and
Sf g ¼ fS1i; S2i; ¼ ; Skig be the readings of the k satellites in that location. In general, one can
partition the set of satellite observations (input maps) into conditionally independent subsets: Sf g ¼

S 1ð Þ� �
; S 2ð Þ� �

; ¼ ; S Jð Þ� �� �
; where J�K is the number of such subsets. The Bayes’ formula used is:

Pr G9 Sf g� � ¼ PrðfSg9GÞ
Prð Sf gÞ ¼

Q
jPr fSðjÞg9G� �

PrðGÞ
P

g

Q
jPr fSðjÞg9G ¼ g

� �
PrðG ¼ gÞ ð1Þ

We estimated the conditional probabilities PrðfS jð Þg9GÞ from the contingency tables for the classifications
obtained through Geo-Wiki and the kth input map classification. The region-specific prior probabilities
PrðGÞ were assumed to be equal.

If the data are only available for a subset {S*} of {S} and missing for the rest, denoted here as fSg, then
the probability becomes:

Pr G9 S�f g� � ¼
P

S

Q
SPr S9G

� �
PrðGÞ

P
g

P
S

Q
SPr S9G ¼ g

� �
PrðG ¼ gÞ ¼

Q
S�Pr S9G

� �
PrðGÞ

P
g

Q
S�Pr S9G ¼ g

� �
PrðG ¼ gÞ ð2Þ

because
P

Pr S9G
� � ¼ 1: Thus, if no information is available from a given input data source, the

corresponding terms are simply omitted from the model.
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Usually after abandonment, agricultural land transforms into another land cover class, either
grassland, shrubland or forest. This transformation depends on human impact, bioclimatic zone, altitude,
and other factors. Therefore, the Naïve Bayes classifier was run at the ecozone level40 in order to delineate
different transformation processes that follow after land is abandoned. For example, abandoned
croplands in forested regions in Ukraine and Belarus will be afforested over years, while abandoned
croplands in the steppe regions of Siberia and in Kazakhstan will revert to grasslands. Note that we
initially ran a series of tests with different strata, such as the whole study region or with national
boundaries. However, this resulted in massive ovestimation of abandoned land and was therefore
abandoned in favour of the ecozone stratification.

Figure 3. Examples (Geo-Wiki screenshots) of abandoned land. (a1) Coordinates 55.18 N 83.04 E. The

image from 2004 shows cropland. (a2) Coordinates 55.18 N 83.04 E. The image from 2013 is abandoned land.

(b1) Coordinates 56.02 N 37.88 E. The image from 2007 shows cropland. (b2) Coordinates 56.02 N 37.88 E.

The image from 2016 and the ground truth photo from 2015 confirms that it is now abandoned land.

Classes A1 A2 A3

G1 0.8 0.2 0.0

G2 0.1 0.6 0.3

G3 0.1 0.3 0.6

Table 2. Satellite A: Conditional Probabilities of observing classes A1, A2, and A3 for arable land
(G1), abandoned arable(G2), and other land(G3) respectively.
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From the application of the Bayesian approach, we obtained a probability map of cropland, abandoned
arable land, and other land (summing to 1 in each pixel). Then we selected the class with the highest
probability in each pixel to produce the final hybrid map product.

Example of applying the Naïve Bayes classifier at the pixel level
The following provides an example of how the Naïve Bayes classifier operates at the pixel level using a a
simple situation where observations of only two satellites SA and SB are available. The satellite SA classifies
observations into 3 classes, A1, A2, and A3, whereas the satellite SB classifies observations into 2 classes, B1
and B2. The conditional probabilities of observing each of the classes in arable land, or abandoned arable,
or other land are given in Table 2 and Table 3, respectively G1, G2, G3. Thus, for example, the satellite SA
will assign the abandoned land to classes A1, A2, and A3 with probabilities 0.8, 0.2, and 0.0 respectively,
and these probabilities will sum to one. These probabilities are calculated from the Geo-Wiki reference
data on abandoned land.

Suppose now, that we want to estimate the probability that a cell assigned to classes A1 and B2 by
satellites SA and SB respectively, is arable. Assuming that the prior probabilities of each class (G1, G2, G3)
are equal to 1/3 (we rounded it to 0.3), then:

Pr G19A1;B2
� � ¼

¼ Pr G19C1ð ÞPr B29G1ð ÞPr G1ð Þ
Pr A19G1ð ÞPr B29G1ð ÞPr G1ð ÞþPr A19G2ð ÞPr B29G2ð ÞPr C2ð ÞþPr A19G3ð ÞPr B29G3ð ÞPr G3ð Þ

¼ 0:8�0:4�0:3
0:8�0:4�0:3þ0:1�0:8�0:3þ0:1�0:5�0:3 ¼ 0:86;

Note that the classes for the two satellites do not need to be in any way compatible, nor do they need to
correlate strongly with the variable of interest G In terms of the estimator performance. The best results
are achieved when, for any source and class C, Pr(C|G1) differs substantially from Pr(C|G2) or Pr(C|G3).
On the other hand, one can see that when Pr(C|G1)=Pr(S|G2)= Pr(C|G3) for any class, the posterior
distribution Pr(G1| S�f g) will always equal the prior distribution Pr(G1). Thus, the observations will be
completely uninformative.

Recommendation for mapping abandoned land in other regions of the world
The methodology presented here could be used for mapping abandoned land in other
regions of the world. Two components are needed: (i) the input maps of land cover, cropland
and abandoned arable land (if available) corresponding to the regions of interest; and (ii) the
reference data set on abandoned arable land. The latter data set can be collected from field data or
from very high resolution satellite data using an application such as Geo-Wiki or Collect Earth
(http://www.openforis.org/tools/collect-earth.html). The spatial resolution of the map produced using the
methodology outlined here should be dependent on the size of the abandoned fields.

Data Records
The two data records are provided in zipped files (.zip):

● a 10 arc-second raster in GeoTiff format (the legend is presented in Table 4) (Data Citation 3);
● the validation data set as a .csv table with 5782 records (see Table 5 for the data set structure) (Data

Citation 4).

Classes B1 B2

G1 0.6 0.4

G2 0.2 0.8

G3 0.5 0.5

Table 3. Satellite B: Conditional Probabilities of observing classes B1 and B2 for arable land (G1),
abandoned arable(G2), and other land(G3) respectively.

Raster value Class

1 Arable land

2 Abandoned land

3 Other land

Table 4. Legend of the hybrid map.
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Figure 4 shows the hybrid map of arable and abandoned land in the fSU countries, presented in
this paper.

The map is also available from the Geo-Wiki Agricistrade page, where we overlaid it on top of Google
Maps and Bing satellite imagery using Open Layers. Users can examine the map by zooming into specific
locations or gain an overview of the map by panning around the region.

Technical Validation
We have validated the hybrid map by following the procedure set out in Olofsson et al.41, which allows
for the estimation of confidence intervals and adjusted areas based on confusion matrices. The validation
sample design follows a two-step random stratified approach:

1. The first stratum is by country/region: Russia, Belarus, Moldova, Kazakhstan and Ukraine as
individual countries and Armenia, Azerbaijan and Georgia grouped together as the “Caucasus” region;

2. The second stratum is by mapped class: arable utilized, abandoned land and other land cover types.

The final sample consists of 5972 pixels at a 10 arc-second resolution by country/region as follows:
1504 sample pixels in Russia; 911 in Belarus; 923 in Moldova; 915 in Kazakhstan; 922 in Ukraine; and 797

Field Description

Id Unique id

Lat Latitude

Lon Longitude

Class_id Land use class:
1 – arable land
2 - abandoned land
3 - other land
12 - can be either arable or abandoned land
13 - can be either arable or other land
23 - can be either abandoned land or other land

Class_name Class names that correspond to the Class_id above

Table 5. Validation data set structure.

Figure 4. Spatial distribution of arable and abandoned land in the fSU. Legend items: 1- arable land, 2-

abandoned land, 3-other land.
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in the Caucasus. We randomly distributed the pixels across the countries with an increased number of
samples in rare classes, i.e. utilized arable and abandoned land. We invited regional experts from Ukraine
and Russia to classify the sample by visual interpretation of VHR historical imagery available from
Google and Bing in Geo-Wiki. The experts were asked to identify the dominant land use in each sample
pixel, i.e. arable utilized, abandoned land or other land. If it was difficult to determine a unique class, the
experts were asked to select one of the following classes: “not sure if arable or abandoned land”, “not sure
if arable or others”, “not sure if abandoned land or other land”. These “not sure” sample sites were used in
the accuracy assessment. For example, if a validation site was classified as “not sure if arable utilized or
abandoned land” and the mapped class was arable, then a value of 0.5 was added to the cell of the
confusion matrix in the row mapped class “arable” and column reference class “arable” while the other
0.5 was added to the cell in the row mapped class “arable” and column reference class “abandoned land”
(Table 6).

There are many challenges in mapping abandoned land, which are difficult to tackle and which result
in low user accuracies for this land use class, for example:

● In Moldova and Caucasus, the fields are much smaller than a 10 arc-second grid, and there are many
orchards that are confused with abandoned land from remote sensing;

● In the forest-steppe and forest zones of Ukraine and Belarus, where the majority of abandoned lands
are allocated in these countries, the landscapes are very fragmented and therefore difficult to map from
remote sensing;

● In Kazakhstan, abandoned lands change from arable to grassland, which is the land cover transition
type that is very difficult to map in the steppe zone with a very dry climate;

Map/Validation dataset Arable land Abandoned land Other land

(a)

Arable land 0.5 0.5

Abandoned land

Other land

(b)

Arable land 0 1

Abandoned land

Other land

Table 6. Example of counting for “not sure” validation points in confusion matrices. Mapped class is
“arable”: (a) a validation pixel identified as “not sure if arable utilised or abandoned land”; (b) a validation pixel
identified as “abandoned land”.

Caucasus Belarus Kazakhstan Moldova Russia Ukraine Total

Country statistics
Adjusted area of abandoned land

A
re

a,
 M

ha

0

20

40

60

80

0.52 0.81 0 0.75

7.25

15.22

0.18 0.22

31.6

39.06

2.7 2.92

42.24

58.99

Figure 5. Area estimates for abandoned land.
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● In Russia, due to its large territory, there are abandoned lands in the forest zone with high
fragmentation, and there are abandoned fields in the steppe.

Figure 5 presents the area estimates for abandoned land (95% confidence interval). We calculated the
country statistics based on official country reports as the difference between the arable and cultivated
area42–49. The adjusted areas were calculated based on the confusion matrices (Supplementary Table S2,
Supplementary Table S3, Supplementary Table S4, Supplementary Table S5, Supplementary Table S6,
Supplementary Table S7) by following the procedure set out in Olofsson et al.41 In Figure 5, for
Kazakhstan, the error bar from the map is not within the official estimates so it indicates underestimation
by the official statistics. The overall error bar is also outside the total abandoned land area, indicating that
the overall abandoned land area in the fSU is underestimated by the statistics. In comparing the estimates
across the fSU countries, the widespread underestimation of abandoned land in the official national
statistics due to deliberate manipulation for administrative reasons e.g. ref. 50 should be considered.

In addition to the accuracy assessment presented above, we compared the hybrid map produced here
with the latest ESA CCI land cover maps51 covering the period 1992–2012. To undertake this
comparison, we first generated a derivative ESA CCI product containing information on cropland gain
and loss over the period 1992–2012. From this derivative product, the cropland loss and gain for fSU
countries was estimated to be approximately 2.3 and 5.4%, respectively. Thus the overall trend based on
ESA CCI is cropland expansion (especially in Kazakhstan) rather than an increase in the area of
abandoned land. This is contrary to what has been published in all other studies1,17,21 and according to
the official statistics reported by each country.

Usage Notes
The hybrid map reported in this paper represents a novel arable and abandoned land product, which
covers more than 90% of all agricultural lands across the fSU, and has many potential uses. For example,
the map can be used for assessment of the biogeochemical cycles (e.g., carbon dynamic) on abandoned
and cultivated fields1,8,52,53, for the analysis of the patterns and proximate causes of greening (vegetation
recovery) and browning (vegetation degradation)54–57, for investigation into the drivers of land
abandonment and the implications for ecosystem services and biodiversity. The product can be used at
the original resolution (10 arc-second with pixel size of approximate 4–7 ha) or aggregated to a coarser
resolution such as 1 to 10 km. We envision a good alignment with and improvement of global land-use
data sets such as HYDE 3.1 (ref. 58), KK11 (ref. 59), and the SAGE Global Land-Use Database60.

The hybrid map can serve as an input to a regional or country level analysis since we have achieved
reasonable accuracies.

References
1. Schierhorn, F. et al. Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Glob.
Biogeochem. Cycles 27, 1175–1185 (2013).

2. Kurganova, I., de Gerenyu Lopes, V., Six, J. & Kuzyakov, Y. Carbon cost of collective farming collapse in Russia. Glob. Change
Biol. 20, 938–947 (2014).

3. Henebry, G. M. Global change: Carbon in idle croplands. Nature 457, 1089–1090 (2009).
4. Schierhorn, F. et al. The dynamics of beef trade between Brazil and Russia and their environmental implications. Glob. Food Sec.
11, 84–92 (2016).

5. Bragina, E. V. et al. Rapid declines of large mammal populations after the collapse of the Soviet Union: Wildlife Decline after
Collapse of Socialism. Conserv. Biol. 29, 844–853 (2015).

6. Kamp, J., Urazaliev, R., Donald, P. F. & Hölzel, N. Post-Soviet agricultural change predicts future declines after recent recovery in
Eurasian steppe bird populations. Biol. Conserv. 144, 2607–2614 (2011).

7. Kamp, J. Land management: Weighing up reuse of Soviet croplands. Nature 505, 483–483 (2014).
8. Kurganova, I., de Gerenyu V., Lopes & Kuzyakov, Y. Large-scale carbon sequestration in post-agrogenic ecosystems in Russia and
Kazakhstan. CATENA 133, 461–466 (2015).

Accuracy indicators Countries

Caucasus Belarus Kazakhstan Moldova Russia Ukraine

Overall accuracy %: 90± 2 84± 2 92± 1 78± 3 95± 1 83± 2

Arable: User accuracies,% 68± 7 86± 4 86± 6 81± 3 86± 4 86± 3

Producer accuracies,% 86± 5 88± 3 78± 6 94± 1 78± 6 97± 1

Abandoned land: User accuracies,% 33± 9 22± 7 46± 9 18± 8 33± 7 31± 9

Producer accuracies,% 55± 16 65± 15 76± 11 35± 14 47± 14 62± 13

Other land: User accuracies,% 98± 1 95± 2 98± 1 91± 4 98± 1 96± 3

Producer accuracies,% 91± 1 82± 2 95± 1 49± 4 97 64± 3

Table 7. Accuracy measures for the hybrid map. These presents the results of the accuracy assessment.
Supplementary Tables S2 to S7 contain the confusion matrices for individual countries and the Caucasus
region.

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180056 | DOI: 10.1038/sdata.2018.56 10



9. Meyfroidt, P., Schierhorn, F., Prishchepov, A. V., Müller, D. & Kuemmerle, T. Drivers, constraints and trade-offs associated with
recultivating abandoned cropland in Russia, Ukraine and Kazakhstan. Glob. Environ. Change 37, 1–15 (2016).

10. Fritz, S. et al. Downgrading recent estimates of land available for biofuel production. Environ. Sci. Technol. 47, 1688–1694
(2013).

11. Fritz, S. et al. Cropland for sub-Saharan Africa: A synergistic approach using five land cover data sets. Geophys. Res. Lett. 38
(2011).

12. Fritz, S. et al. Mapping global cropland and field size. Glob. Change Biol. 21, 1980–1992 (2015).
13. Defourny, P. et al. Land Cover CCI. Product user guide. V.2 87 (UCL-Geomatics, 2014).
14. ROSSTAT. Regions of Russia. Social-economic indicators 2014 (2015).
15. Prishchepov, A. V., Radeloff, V. C., Baumann, M., Kuemmerle, T. & Müller, D. Effects of institutional changes on land use:

agricultural land abandonment during the transition from state-command to market-driven economies in post-Soviet
Eastern Europe. Environ. Res. Lett. 7, 024021 (2012).

16. de Beurs, K. M. & Ioffe, G. Use of Landsat and MODIS data to remotely estimate Russia’s sown area. J. Land Use Sci 9,
377–401 (2013).

17. Kraemer, R. et al. Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin Lands area
of Kazakhstan. Environ. Res. Lett. 10, 054012 (2015).

18. Estel, S. et al. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sens.
Environ. 163, 312–325 (2015).

19. See, L. et al. Harnessing the power of volunteers, the internet and Google Earth to collect and validate global spatial information
using Geo-Wiki. Technol. Forecast. Soc. Change 98, 324–335 (2015).

20. Fritz, S. et al. Geo-Wiki: An online platform for improving global land cover. Environ. Model. Softw 31, 110–123 (2012).
21. Alcantara, C. et al. Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series

satellite data. Environ. Res. Lett. 8, 035035 (2013).
22. Domingos, P. & Pazzani, M. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Mach. Learn. 29,

103–130 (1997).
23. Friedman, J. H. On Bias, Variance, 0/1—Loss, and the Curse-of-Dimensionality. Data Min. Knowl. Discov. 1, 55–77 (1997).
24. Frank, E., Trigg, L., Holmes, G. & Witten, I. H. Technical Note: Naive Bayes for Regression. Mach. Learn. 41, 5–25 (2000).
25. See, L. et al. Building a hybrid land cover map with crowdsourcing and geographically weighted regression. ISPRS J. Photogramm.

Remote Sens 103, 48–56 (2015).
26. FAO. FAOSTAT. (2015). Available at http://faostat3.fao.org/mes/glossary/E (Accessed: 10th January 2016).
27. Ioffe, G., Nefedova, T. & Zaslavsky, I. From Spatial Continuity to Fragmentation: The Case of Russian Farming. Ann. Assoc. Am.

Geogr 94, 913–943 (2004).
28. Saraykin, V., Yanbykh, R. & Uzun, V. in The Eurasian Wheat Belt and Food Security,

155–175 (Springer: Cham, 2017). doi:10.1007/978-3-319-33239-0_10.
29. Friedl, M. A. et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote

Sens. Environ. 114, 168–182 (2010).
30. Jun, C., Ban, Y. & Li, S. China: Open access to Earth land-cover map. Nature 514, 434–434 (2014).
31. FAO. Global Land Cover-SHARE (GLC-SHARE) (2015).
32. Schepaschenko, D. et al. A new hybrid land cover dataset for Russia: a methodology for integrating statistics, remote sensing and

in situ information. J. Land Use Sci 6, 245–259 (2011).
33. Hansen, M. C. et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 342, 850–853 (2013).
34. Bartalev, S. A., Plotnikov, D. E. & Loupian, E. A. Mapping of arable land in Russia using multi-year time series of MODIS data

and the LAGMA classification technique. Remote Sens. Lett 7, 269–278 (2016).
35. Kussul, N. N., Lavreniuk, N. S., Shelestov, A. Y., Yailymov, B. Y. & Butko, I. N. Land Cover Changes Analysis Based on Deep

Machine Learning Technique. J. Autom. Inf. Sci 48, 42–54 (2016).
36. Lavreniuk, M., Kussul, N., Skakun, S., Shelestov, A. & Yailymov, B. in 2015 IEEE International Geoscience and Remote Sensing

Symposium (IGARSS) 3965–3968 (2015). doi:10.1109/IGARSS.2015.7326693.
37. Rish, I. An empirical study of the naive Bayes classifier. 6 (IBM Research Division, Thomas J. Watson Research Center,

2001).
38. Zhang, H. The Optimality of Naive Bayes, in (AAAI Press, 2004).
39. Potapov, P. V. et al. Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive. Remote

Sens. Environ. 159, 28–43 (2015).
40. Isachenko, A. G. Landscape map of USSR. Scale 1:4 M. (1988).
41. Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148,

42–57 (2014).
42. Agriculture ... Agriculture Census of Georgia 2004. (2005).
43. NSSArmenia. Statistical Yearbook of Armenia. 293–313 (National Statistical Service of the Republic of Armenia, 2013).
44. SSCAzerbaijan. The agriculture of Azerbaijan. Statistical yearbook. 608 (State Statistical Committee of the Republic of Azerbaijan,

2017).
45. Kostevich, I. A. Agriculture of the Republic of Belarus 2009-2013. (National Statistical Committee of the Republic of Belarus

(Belstat), 2014).
46. Kazakhstan. Kazakhstan in figures. (Commitee on Statistics. Ministry of National economy of the Respublic of Kazakhstan, 2016).
47. NBSMoldova. Main indicators in Agriculture. Statistical Yearbook of Moldova. 425–477 (National Bureau of Statistics, 2016).
48. FACRE’RF. State (national) report about the state and use of lands of Russian Federation in 2010. (2011).
49. Regions. Regions of Ukraine. 2 (State Statistics Service of Ukraine, 2013).
50. Lyuri, D. I., Goryachkin, S. V., Karavaeva, N. A. & Nefedova, T. G. Dynamics of agricultural land in Russia and postagrogenic

restoration of plants and soils (GEOS, 2010).
51. 300 m annual global land cover time series from 1992 to 2015 | ESA CCI Land cover website. Available at https://www.esa-

landcover-cci.org/?q= node/175 (Accessed: 10th January 2018).
52. Mukhortova, L., Schepaschenko, D., Shvidenko, A., McCallum, I. & Kraxner, F. Soil contribution to carbon budget of Russian

forests. Agric. For. Meteorol 200, 97–108 (2015).
53. Schepaschenko, D. G., Mukhortova, L. V., Shvidenko, A. Z. & Vedrova, E. F. The pool of organic carbon in the soils of Russia.

Eurasian Soil Sci. 46, 107–116 (2013).
54. Horion, S. et al. Revealing turning points in ecosystem functioning over the Northern Eurasian agricultural frontier. Glob. Change

Biol. 22, 2801–2817 (2016).
55. de Jong, R., Verbesselt, J., Zeileis, A. & Schaepman, M. E. Shifts in Global Vegetation Activity Trends. Remote Sens 5,

1117–1133 (2013).
56. Zhou, Y. et al. Climate Contributions to Vegetation Variations in Central Asian Drylands: Pre- and Post-USSR Collapse. Remote

Sens 7, 2449–2470 (2015).

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180056 | DOI: 10.1038/sdata.2018.56 11

http://faostat3.fao.org/mes/glossary/E
http://dx.doi.org/10.1007/978-3-319-33239-0_10
http://dx.doi.org/10.1109/IGARSS.2015.7326693
https://www.esa-landcover-cci.org/?q�=�node/175
https://www.esa-landcover-cci.org/?q�=�node/175


57. Schaphoff, S., Reyer, C. P. O., Schepaschenko, D., Gerten, D. & Shvidenko, A. Tamm Review: Observed and projected climate
change impacts on Russia’s forests and its carbon balance. For. Ecol. Manag 361, 432–444 (2016).

58. Klein Goldewijk, K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global
land-use change over the past 12,000 years: HYDE 3.1 Holocene land use. Glob. Ecol. Biogeogr 20, 73–86 (2011).

59. Kaplan, J. O. et al. Holocene carbon emissions as a result of anthropogenic land cover change. The Holocene 21, 775–791
(2011).

60. Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem.
Cycles 13, 997–1027 (1999).

Data Citations
1. Prishchepov, A. V., Radeloff, V. C., Baumann, M., Kuemmerle, T. & Moeller, D. PANGAEA https://doi.org/10.1594/PAN-
GAEA.880143 (2012).

2. Kraemer, R. et al. PANGAEA https://doi.org/10.1594/PANGAEA.869442 (2016).
3. Lesiv, M. et al. PANGAEA https://doi.org/10.1594/PANGAEA.880057 (2017).
4. Lesiv, M. et al. PANGAEA https://doi.org/10.1594/PANGAEA.880117 (2017).

Acknowledgements
This study has been partly supported by the following EC-funded 7th Framework Programme projects:
AGRICISTRADE (612755), HERCULES (603447), SIFCAS (627481), SIGMA (603719), and VOLANTE
(265104), as well as the ERC project CrowdLand (617754). Funding was also provided via the OpenLab
initiative under the Russian Government Program of Competitive Growth of the Kazan Federal
University and the Volkswagen Foundation Germany (project BALTRAK). Finally, we would like to
thank Volker Radeloff from the University of Wisconsin-Madison for valuable comments on the paper.
Myroslava Lesiv and Dmitry Schepaschenko had full access to all the data in the study and take
responsibility for the integrity of the data and the accuracy of the data analysis.

Author Contributions
M.L. drafted the manuscript, developed the data processing algorithm, performed the data fusion,
contributed to the reference data collection and was involved in the technical validation of the map. D.S.
contributed to the writing of the manuscript, the data collection and pre-processing and the technical
validation of the map. E.M. was involved in the development of the data processing algorithm and
provided comments on the manuscript. L.S., A.S., F.K., P.H. and S.F. contributed to the writing of the
manuscript and methodological discussions. R.B., M.S., O.K., O.M., and V.K. helped to collect the
reference data set. M.D. developed the AGRICISTRADE Geo-Wiki branch for reference data collection
and the dissemination of the results. A.P., F.S., S.E., T.K. C.A., N.K., and V.C.R. provided input data sets
for the hybrid product and contributed to the writing.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/sdata

Competing interests: The authors declare no competing interests.

How to cite this article: Lesiv, M. et al. Spatial distribution of arable and abandoned land across former
Soviet Union countries. Sci. Data 5:180056 doi: 10.1038/sdata.2018.56 (2018).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/
zero/1.0/ applies to the metadata files made available in this article.

© The Author(s) 2018

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180056 | DOI: 10.1038/sdata.2018.56 12

https://doi.org/10.1594/PANGAEA.880143
https://doi.org/10.1594/PANGAEA.880143
https://doi.org/10.1594/PANGAEA.869442
https://doi.org/10.1594/PANGAEA.880057
https://doi.org/10.1594/PANGAEA.880117
http://www.nature.com/sdata
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

	Spatial distribution of arable and abandoned land across former Soviet Union countries
	Background & Summary
	Methods
	Map legend and definitions
	Input maps

	Figure 1 A flowchart of the methodology used to create the hybrid map of arable and abandoned�land.&#x02003;
	Figure 2 Screenshot of the Geo-Wiki interface to collect expert training�data.&#x02003;
	Table 1 
	Geo-Wiki reference data on abandoned land
	Bayesian network

	Figure 3 Examples (Geo-Wiki screenshots) of abandoned land.(a1) Coordinates 55.18 N 83.04 E.
	Table 2 
	Example of applying the Na&#x000EF;ve Bayes classifier at the pixel level
	Recommendation for mapping abandoned land in other regions of the world

	Data Records
	Table 3 
	Table 4 
	Technical Validation
	Table 5 
	Figure 4 Spatial distribution of arable and abandoned land in the fSU.Legend items: 1- arable land, 2-abandoned land, 3-other�land.
	Table 6 
	Figure 5 Area estimates for abandoned�land.&#x02003;
	Usage Notes
	REFERENCES
	Table 7 
	REFERENCES
	This study has been partly supported by the following EC-funded 7th Framework Programme projects: AGRICISTRADE (612755), HERCULES (603447), SIFCAS (627481), SIGMA (603719), and VOLANTE (265104), as well as the ERC project CrowdLand (617754). Funding was a
	ACKNOWLEDGEMENTS
	Supplementary information accompanies this paper at http://www.nature.com/scidata)Design Type(s)data integration objective &#x02022; image analysis objectiveMeasurement Type(s)land�coverTechnology Type(s)image analysisFactor Type(s)&#x02003;Sample Charact
	Additional information




