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Abstract. We present PCR-GLOBWB 2, a global hy-
drology and water resources model. Compared to previ-
ous versions of PCR-GLOBWB, this version fully inte-
grates water use. Sector-specific water demand, ground-
water and surface water withdrawal, water consumption,
and return flows are dynamically calculated at every time
step and interact directly with the simulated hydrology.
PCR-GLOBWB 2 has been fully rewritten in Python and
PCRaster Python and has a modular structure, allow-
ing easier replacement, maintenance, and development of
model components. PCR-GLOBWB 2 has been imple-
mented at 5arcmin resolution, but a version parameter-
ized at 30arcmin resolution is also available. Both ver-
sions are available as open-source codes on https://github.
com/UU-Hydro/PCR-GLOBWB_model (Sutanudjaja et al.,
2017a). PCR-GLOBWRB 2 has its own routines for ground-
water dynamics and surface water routing. These relatively
simple routines can alternatively be replaced by dynamically
coupling PCR-GLOBWB 2 to a global two-layer groundwa-
ter model and 1-D-2-D hydrodynamic models. Here, we de-

scribe the main components of the model, compare results of
the 30 and 5 arcmin versions, and evaluate their model per-
formance using Global Runoff Data Centre discharge data.
Results show that model performance of the 5 arcmin version
is notably better than that of the 30 arcmin version. Further-
more, we compare simulated time series of total water stor-
age (TWS) of the 5 arcmin model with those observed with
GRACE, showing similar negative trends in areas of preva-
lent groundwater depletion. Also, we find that simulated total
water withdrawal matches reasonably well with reported wa-
ter withdrawal from AQUASTAT, while water withdrawal by
source and sector provide mixed results.

1 Introduction

The last decades saw the development of an increasing num-
ber of global hydrological models (GHMs), e.g. VIC (Liang
et al,, 1994; Nijssen et al.,, 2001), WMB (Fekete et al.,
2002), WaterGAP (Dol et al., 2003), HO8 (Hanasaki et al.,
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2008a, 2018), and Mac-PDM (Gosling and Arnell, 2011)
(see Bierkens et al., 2014, Bierkens, 2015, and Kauffeldt et
al., 2016, for a more extensive list, also including land sur-
face models). GHMs have become essential tools to quan-
tify and understand the global terrestrial water cycle, as they
simulate the distributed hydrological response to weather and
climate variations at higher resolution (typically 0.5° x 0.5°)
than used previously in general circulation models (GCMs),
with more sophisticated run-off generation processes and
river routing. As such, GHMs have been used for medium-
range to seasonal flood forecasting (Bierkens and van Beek,
2009; Alfieri et al., 2013; Candogan Yossef et al., 2013) as
well as for a myriad of water-related global change assess-
ments. Examples include the projection or estimation of fu-
ture flood and drought events (Sperna-Weiland et al., 2012;
Dankers et al., 2013; Prudhomme et al., 2013; Wanders et al.,
2015; Wanders and Wada, 2016), current and future flood
hazard and risk (Pappenberger et al., 2012; Hirabayashi et
al., 2013; Ward et al., 2013; Winsemius et al., 2013, 2016),
global groundwater depletion (Wada et al., 2010; Gleeson
et al., 2012), the contribution of terrestrial water stores to
global sea level change (Konikow, 2011; Wada et al., 2012;
Pohkrel et al., 2013), current and future water scarcity under
climate change and increasing population growth (Hanasaki
et al., 2008b; Wada et al., 2011a, b; Schewe et al., 2014;
Haddeland et al., 2014; Wada and Bierkens, 2014), telecon-
nections between climate oscillations and water availability
(Wanders and Wada, 2015), the impact of land use change on
global water resources (Rost et al., 2008; Sterling et al., 2015;
Bosmans et al., 2017), and trends in surface water tempera-
ture and cooling water potential (van Beek et al., 2012; van
Vliet et al., 2012). More recently, the output from global hy-
drological models has been extended to study socioeconomic
impacts, such as virtual water trade (Konar et al., 2013; Dalin
et al., 2017) and future agricultural production (Elliott et al.,
2013). These applications show that GHMSs have become in-
valuable tools in support of global change research and envi-
ronmental assessments.

PCR-GLOBWB (PCRaster Global Water Balance) (van
Beek and Bierkens, 2009; van Beek et al., 2011) is one of the
recently developed GHMs. PCR-GLOBWRB is a grid-based
global hydrological model developed at the Department of
Physical Geography, Faculty of Geosciences, Utrecht Uni-
versity, the Netherlands. The model, describing the terres-
trial part of the hydrological cycle, was first introduced in a
technical report by van Beek and Bierkens (2009) and then
formally published in a paper of van Beek et al. (2011), fo-
cusing on global water availability issues. PCR-GLOBWB
was originally developed to solve the global daily surface
water balance with a spatial resolution of 30 arcmin (about
50km by 50km at the Equator) and compare the resulting
freshwater availability with monthly sectoral water demand
in order to assess global-scale water scarcity (van Beek et
al., 2011; Wada et al., 2011a, b). In this first version of PCR-
GLOBWB (called PCR-GLOBWB 1 hereafter), similar to
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other global-scale hydrological models, water demand and
water availability are treated independently, i.e. without di-
rect feedback between human water use and other terrestrial
water fluxes (e.g. Dol and Siebert, 2002; Wisser et al., 2010).
Since it was first introduced, PCR-GLOBWB has been ap-
plied extensively in global water resource assessment stud-
ies. For instance, a recent search on Scopus (accessed on
13 April 2018) for the key-word “PCR-GLOBWB” yielded
113 publications with collectively over 2500 citations. Since
the first version, several new model features have been intro-
duced such as a comprehensive water demand and irrigation
module (Wada et al., 2011b, 2014), a scheme for dynamic al-
location of sectoral water demand to available surface water
and groundwater resources, and the associated calculation of
return flow (de Graaf et al., 2014). These features essentially
introduced a two-way interaction among water demand, wa-
ter withdrawal, water consumption, and availability, partic-
ularly over irrigated areas where water demand is large and
return flow is significant. Nevertheless, all of these preceding
studies using PCR-GLOBWB were performed at a relatively
coarse resolution of 30 arcmin, limiting their subregional or
local applications. Additionally, some added functionalities,
such as the possibility to couple the land surface component
of PCR-GLOBWB to a global MODFLOW-based ground-
water model (Sutanudjaja et al., 2011, 2014; de Graaf et al.,
2015, 2017) and an extension to simulate surface water tem-
perature (van Beek et al., 2012), were incorporated in differ-
ent versions based on the original PCR-GLOBWRB 1, leading
to divergent model code development.

The objective of this paper is to summarize and present the
new version of the model, PCR-GLOBWB 2, which consoli-
dates all components that have been developed since the orig-
inal version of the model was first introduced (van Beek et
al., 2011). The new version of the model, PCR-GLOBWB 2,
which is able to simulate the water balance at a finer spa-
tial resolution of 5arcmin, supersedes the original PCR-
GLOBWSB 1, which has a resolution of 30 arcmin onlyl. The
finer resolution of PCR-GLOBWB 2 allows a much better
representation of the effects of spatial heterogeneity in to-
pography, soils, and vegetation on terrestrial hydrological dy-
namics (Wood et al., 2011; Bierkens et al., 2014). Likewise,
it provides a better resolution for visualization that allows
stakeholders and decision makers to assess model simulation
output more easily and directly for the places they are specif-
ically interested in (Sheffield et al., 2010; Beven and Cloke,
2012). To assess the possible improvements, this paper also
presents the first evaluation results from the simulation of
PCR-GLOBWRB 2 at 5 arcmin resolution and compares them
to a 30 arcmin version. As discharge data are commonly used
in hydrological model performance evaluation, the simulated
river discharge of PCR-GLOBWB 2 is compared to in situ

Note that Wada et al. (2016) made a preliminary version of the
model that operates at 6 arcmin.
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discharge observations from the Global Runoff Data Centre
(GRDC, 2014).

The paper is organized as follows. Section 2 provides a
global description of PCR-GLOBWB 2, including its model
structure and the new components and functionalities that
have been added since PCR-GLOBWB 1. In Sect. 3 the
global application of PCR-GLOBWB 2 is demonstrated and
the results from a 58-year simulation (1958-2015) are evalu-
ated against observations of discharge, total water storage,
and reported withdrawal data. Section 4 summarizes and
concludes this paper and discusses possible future develop-
ments. Section 5 provides information about availability of
the model code and the underlying data.

2 PCR-GLOBWB 2 — model description
2.1 General overview

PCR-GLOBWRB 2 is a state-of-the-art grid-based global hy-
drology and water resources model. It is a component-based
model implementation in Python using open-source PCRas-
ter Python routines (Karssenberg et al., 2010, http://pcraster.
geo.uu.nl/, last access: 15 September 2017). The code is
distributed through GitHub. The computational grid covers
all continents except Greenland and Antarctica. Currently
two versions are available: one with a spatial resolution of
5 arcmin in latitude and longitude and one with a coarser res-
olution of 30 arcmin. Typical time steps for hydrology and
water use are 1 day while sub-daily time stepping is used for
hydrodynamic river routing. For all dynamic processes in-
volved, PCR-GLOBWB 2 uses a time-explicit scheme. For
each grid cell and each time step, PCR-GLOBWB 2 sim-
ulates moisture storage in two vertically stacked upper soil
layers (S7+ Sz in Fig. 1), as well as the water exchange
among the soil, the atmosphere, and the underlying ground-
water reservoir (53 in Fig. 1). The exchange with the atmo-
sphere is comprised of precipitation, evaporation from soils,
open water, snow and soils, and plant transpiration, while
the model also simulates snow accumulation and snowmelt.
Sub-grid variability in land use, soils, and topography is in-
cluded and influences the schemes for run-off-—infiltration
partitioning, interflow, groundwater recharge (from $> to S3),
and capillary rise (from S3 to 7). Run-off, generated by
snowmelt, surface run-off, interflow, and baseflow, is routed
across the river network to the ocean or endorheic lakes and
wetlands. Routing can either be simple accumulation, sim-
plified dynamic routing using a method of characteristics, or
kinematic wave routing. In case the kinematic wave routing
is used, it is also possible to use a (simplified) floodplain in-
undation scheme and to simulate the surface water tempera-
ture.

PCR-GLOBWB 2 includes a simple reservoir operation
scheme that is applied to over roughly 6000 human-made
reservoirs, which are progressively introduced according to
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Figure 1. Schematic overview of a PCR-GLOBWB 2 cell and
its modelled states and fluxes. S7, S> (soil moisture storage), S3
(groundwater storage), Qg (surface run-off — from rainfall and
snowmelt), Qgf (interflow or stormflow), Qpr (baseflow or ground-
water discharge), and Inf (riverbed infiltration from to groundwa-
ter). The thin red lines indicate surface water withdrawal, the thin
blue lines groundwater abstraction, the thin red dashed lines re-
turn flows from surface water use, and the thin dashed blue lines
return flows from groundwater use surface. For each sector, with-
drawal — return flow = consumption. Water consumption adds to
total evaporation. In the figure, the five modules that make up PCR-
GLOBWSB 2 are portrayed on the model components.

their construction year, from the GRanD database (Lehner
et al., 2011). Human water use is fully integrated within the
hydrological model, meaning that at each time step (1) wa-
ter demands are estimated for irrigation, livestock, industry,
and households, (2) these demands are translated into actual
withdrawals from groundwater, surface water (rivers, lakes,
and reservoirs), and desalinization, subject to availability of
these resources and maximum groundwater pumping capac-
ity in place, and (3) consumptive water use and return flows
are calculated per sector.

As an option PCR-GLOBWB 2 can be partially or fully
coupled to a two-layer global groundwater model based on
MODFLOW (de Graaf et al., 2017). Recent work (Hoch
et al., 2017a, b) also includes coupling PCR-GLOBWB 2
to either Delft3D Flexible Mesh (Kernkamp et al., 2011)
or LISFLOOD-FP (Bates et al., 2010), which are model
codes that can be used to solve the 1-D-2-D shallow water
equations (or approximations thereof) for detailed inundation
studies.

Geosci. Model Dev., 11, 2429-2453, 2018
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2.2 Model structure and flexibility

PCR-GLOBWB 2 has a flexible modular structure (Fig. 1).
The modular structure of PCR-GLOBWB 2, both in terms of
model concepts and implementation (separate modules are
called from a main program), makes it easy to modify or
replace components according to specific objectives of the
model application, to introduce new modules or components
within the modelling system, and to couple it to existing
codes.

There are currently five main hydrological modules in
PCR-GLOBWB 2 as illustrated in Fig. 1 and briefly de-
scribed in Sect. 2.3: meteorological forcing, land surface,
groundwater, surface water routing, and irrigation and water
use. For an extensive description of the underlying equations
and methods used in each of these modules we refer to the
following sources:

— the meteorological forcing module from van
Beek (2008, http://vanbeek.geo.uu.nl/suppinfo/
vanbeek2008.pdf);

— the land surface module, groundwater module, and
surface water routing module from van Beek and
Bierkens (2009, http://vanbeek.geo.uu.nl/suppinfo/
vanbeekbierkens2009.pdf) and van Beek et al. (2011,
https://doi.org/10.1029/2010WR009791);

— the irrigation and water use module including

— calculation of water demand by Wada et al. (2014,
https://doi.org/10.5194/esd-5-15-2014);

— calculation of water withdrawal, consumption,
and return flows by de Graaf et al. (2014,
https://doi.org/10.1016/j.advwatres.2013.12.002),
Wada et al. (2014, https://doi.org/10.5194/esd-
5-15-2014), and Erkens and Sutanudjaja (2015,
https://doi.org/10.5194/piahs-372-83-2015).

Furthermore, for details about coupling to MOFLOW we re-
fer to

— one-way coupling from
al. (2011, https://doi.org/hess-15-2913-
2011) and de Graaf et al. (2017,
https://doi.org/10.1016/j.advwatres.2017.01.011);

Sutanudjaja et

— two-way coupling from Sutanudjaja et al. (2014,
https://doi.org/10.1002/2013WR013807).

2.3 Description of the modules

Hereafter, we briefly describe the main features of the five
modules. Additionally, a (non-exhaustive) list of the model
state and flux variables is provided in Table A1, whereas Ta-
ble A2 lists the model inputs and parameters, including their
sources.

Geosci. Model Dev., 11, 2429-2453, 2018
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2.3.1 Meteorological forcing module

Meteorological forcing of PCR-GLOBWB 2 uses time se-
ries of spatial fields of precipitation, temperature, and ref-
erence evaporation. Reference potential evaporation can be
prescribed or calculated within the model and is used in the
land surface module to calculate land-cover-specific poten-
tial evaporation based on crop factors of the various land
cover types according to the FAO guidelines (Allen et al.,
1998). There are two options for calculating reference po-
tential evaporation: (1) using Hamon (1963) in case only
daily mean temperature is available, or (2) using Penman—
Monteith following the FAO guidelines (Allen et al., 1998)
if net radiation, wind speed, and vapour pressure deficit are
additionally available. See van Beek et al. (2008) for de-
tails. The resulting land-cover-specific potential evaporation
is subsequently used to compute the actual evaporation for
different land cover types in each cell. Apart from the cal-
culation of evaporation, temperature is also used to partition
precipitation into snow and rain and to drive snowmelt.

2.3.2 Land surface module

This core module of PCR-GLOBWB 2 covers the land-
atmosphere exchange, the vertical flow among soil compart-
ments and the eventual groundwater recharge, snow and in-
terception storage, and the run-off generation mechanisms.
These processes are simulated over a number of land cover
types and aggregated proportionally based on land cover
fractions within a model cell. Users can specify their own
land cover classification and introduce their own land cover
parameterization. The number of land cover types is config-
urable. The standard parameterization of PCR-GLOBWB 2
carries four land cover types consisting of tall natural vegeta-
tion, short natural vegetation, non-paddy irrigated crops, and
paddy irrigated crops (i.e. wet rice). There is also a parame-
terization set for six land cover types (Bosmans et al., 2017),
albeit still at 30 arcmin resolution only, which includes dis-
tinct types for pasture and rain-fed crops. For the standard
four land cover parameterization of PCR-GLOBWRB, applied
in this paper, the land cover types of pasture and rain-fed
crops are integrated into the short natural vegetation type.
For each land cover type, separate soil conditions can be
specified. It should be noted that the soil and vegetation con-
ditions are in any case fully spatially distributed. Thus, veg-
etation properties (e.g. crop factor; leaf area index, LAI) and
soil properties (depth, saturated hydraulic conductivity, etc.)
vary not only among land cover types but may also vary from
cell to cell (e.g. per climate zone). In the standard parame-
terization, vegetation properties vary over the year using a
monthly climatology of phenology and crop calendars (i.e.
for the crop factor and LAI). The application of irrigation
water for paddy and non-paddy irrigation is carried out by
the irrigation and water use module. It is based on the FAO
guidelines of Allen et al. (1998) and is dependent on the
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actual soil water storage (51, Sz) or paddy-inundated water
storages. All fluxes, from and to the land surface module in
Fig. 1, are thus calculated separately per land cover type. The
resulting vertical fluxes for each land cover type are inter-
ception evaporation, bare soil evaporation, snow sublimation,
and vegetation-specific transpiration. In the soil column, ver-
tical fluxes are driven by degrees of saturation of soil layers
and interact with the underlying groundwater store, S3 (see
e.g. van Beek and Bierkens, 2009; Sutanudjaja et al., 2011;
Sutanudjaja, 2012, for detailed explanation). Surface run-off
(Qgr, from precipitation and snowmelt) consists of infiltra-
tion excess run-off and saturation excess run-off following
a sub-grid approach that mimics variable source areas, i.e.
the improved Arno scheme (Todini, 1996; Hagemann and
Gates, 2003). Interflow or stormflow (Qsf), mostly occurring
in regolith soils on hillslopes, is also handled with a sub-grid
approach based on a run-off parameterization by Sloan and
Moore (1984). All fluxes are computed per land cover type
and balanced with the available storage to arrive at the net
flux that is used to update the storages for the next time step.
Also, to report the overall fluxes per cell, and to pass these
to other modules, the land-cover-specific fluxes are subse-
quently averaged (weighted by land cover type fractions).

For the standard parameterization of the land surface mod-
ule the following data sets are combined (see Table A2):
the cell fractions of various non-irrigation land cover types
are based on the map of Global Land Cover Characteris-
tics Database (GLCC) version 2.0 (Loveland et al., 2000)
with the land cover classification following Olson (1994a, b)
and the parameter sets from Hagemann et al. (1999) and
Hagemann (2002). Irrigation land cover types (i.e. paddy
and non-paddy), including their crop calendars and growing
season lengths, are parameterized based on the data set of
MIRCA2000 (Portmann et al., 2010) and the Global Crop
Water Model of Siebert and D6ll (2010). We refer to van
Beek et al. (2011) for detailed descriptions.

2.3.3 Groundwater module

The groundwater module calculates groundwater storage dy-
namics subject to recharge and capillary rise (calculated by
the land surface module), groundwater discharge (Qyt, in
case of a positive groundwater storage), and riverbed infiltra-
tion (Inf). Groundwater discharge (assumed to be the same
as groundwater baseflow here) depends on a linear storage—
outflow relationship (Qpr = S3/J) in which the proportional-
ity constant J is calculated following the drainage theory of
Kraijenhoff van de Leur (1958) based on drainage network
density and aquifer properties. Riverbed infiltration occurs
only in the case that Q¢ becomes 0 by groundwater with-
drawal. Under persistent groundwater withdrawal (calculated
with the irrigation and water use module) that is larger than
the sum of recharge and riverbed infiltration, the groundwa-
ter storage S3 is allowed to become negative. In this case,
the part of the withdrawn groundwater in excess of the input
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(recharge and riverbed infiltration) is seen as non-renewable
groundwater withdrawal leading to groundwater depletion
(permanent loss of groundwater from storage). In case with-
drawal becomes smaller than the input, the remaining input is
used to first fill the negative storage to zero, before baseflow
Oy commences again. As an alternative, it is also possible
to limit the maximum volume of non-renewable groundwater
that can be extracted.

It is possible to use a full-fledged groundwater flow model
based on MODFLOW (Harbaugh et al., 2000) coupled to
PCR-GLOBWRB 2 in order to calculate groundwater heads
and flow paths. This can be performed as a one-way cou-
pling in which PCR-GLOBWB 2 is first run with the standard
groundwater module (reservoir S3 with only vertical fluxes)
to yield time series of net groundwater recharge (recharge
— capillary rise) and surface water levels. These fluxes and
inputs are subsequently used to force the groundwater flow
model (see e.g. Sutanudjaja et al., 2011; de Graaf et al.,
2017). Another possibility is to use a two-way coupling in
which the groundwater module of PCR-GLOBWB 2 is re-
placed by the groundwater flow model. In this case, at each
time step fluxes are exchanged between the groundwater
model and the land surface module, and the groundwater
model and the surface water routing module (Sutanudjaja et
al., 2014).

2.3.4 Surface water routing module

Following an eight-point steepest-gradient algorithm across
the terrain surface (local drainage direction), all cells of
the modelled domain are connected to a strictly convergent
drainage network that together makes up the river basins and
sub-basins of the model domain. The lowermost cell is either
connected to the ocean or to an endorheic basin. Per cell,
the sum of the three daily run-off fluxes (Fig. 1) is aggre-
gated and routed along the drainage network until passing
the lowermost cell and being removed from the model. Rout-
ing can be carried out in three ways of increasing complexity:
(1) simple accumulation of the fluxes over the drainage net-
work, (2) a travel-time characteristic solution (Karssenberg
et al., 2007), and (3) the kinematic wave solution.

The first method is typically aggregated over longer time
steps (e.g. month or year) that are larger than the travel times
of water along the longest river length. The second routing
method includes an estimation of cell flow velocity based on
average discharge from the last 5 years and Manning’s equa-
tion, which assumes the energy slope to be equal to the bed
slope. This estimated velocity is used to move the volume
of water in the channel of a cell the corresponding distance
within one daily time step along the drainage network. This
method works reasonably well for relatively steep rivers in
humid climates for which the friction slope is close to the bed
slope and the rivers are equally filled with water throughout
the year. The third method is the kinematic wave approxi-
mation of the Saint-Venant equations with flow described by
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Manning’s equation. Also, here, it is assumed that friction
slope and bed slope are equal, which makes it valid for rivers
without backwater effects. The kinematic wave is solved us-
ing a time-explicit variable sub-time stepping scheme based
on the minimum Courant number. Of these methods, the
kinematic wave solution simulates the propagation of the
flood wave more realistically while the others provide an ex-
pedient means to approximate discharge over longer periods.

Using the kinematic wave method, it is possible to model
floodplain inundation, which occurs if the discharge exceeds
the bankfull capacity of a channel. The excess discharge vol-
ume is spread over the entire cell from the lowest part of
the cell (based on a higher-resolution sub-grid DEM) yield-
ing a flooded area with an approximated flood depth. In case
of flooding, the simulated river flow is impacted by adjust-
ing the wetted area and wetted perimeter and calculating a
weighted Manning coefficient from the individual Manning
coefficients of the floodplains and the channel.

Lakes and reservoirs are part of the drainage network.
Lakes and reservoirs can extend over multiple cells, in which
case the storage is subdivided by area to ensure that lake and
reservoir levels are the same across their extent. The active
storage of lakes and the actual storage of reservoirs are dy-
namically updated; for the lake outflow a standard storage—
outflow relationship based on a rectangular cross section
over a broad-crested weir (Bos, 1989) is used, while reser-
voirs follow a release strategy. This strategy is, by default,
aimed at passing the average discharge, while maintaining
levels between a minimum and maximum storage (Wada et
al., 2014), but more elaborate strategies that take account
of downstream water demand are possible (e.g. van Beek
et al., 2011). Lakes and reservoir areas change based on
global volume-area relationships. All surface water areas,
which can be classified into several water types including
river channels, inundated floodplains, lakes and reservoirs,
are subject to open water evaporation calculated from refer-
ence potential evaporation multiplied with factors depending
on water types and depths. Moreover, surface waters are sub-
ject to surface water withdrawal calculated with the irrigation
and water use module.

If the kinematic wave approach is used, it can also be aug-
mented with an energy routing scheme to simulate surface
water temperature (van Beek et al., 2012). Finally, it should
be noted that it is possible to run the routing routine from
PCR-GLOBWRB 2 as a stand-alone routine, which allows it
to be fed with the specific discharge from other land surface
models.

The routing methods that are available in PCR-
GLOBWB 2 will yield significant errors for wide lowland
rivers in which backwater effects are important. In this case,
it is possible to replace the surface water module for part
of the modelling domain with hydrodynamic models solving
the shallow water equations (Hoch et al., 2017a). Hoch et
al. (2017b) developed a generic coupler for this purpose that
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enables coupling to multiple hydrodynamic modelling codes
(https://doi.org/10.5281/zenodo.597107).

Although any data set can be used to define the drainage
network and locate the lakes and reservoirs, the standard
parameterization of PCR-GLOBWB 2 that runs globally
uses the drainage network derived from the high-resolution
30 arcsec HydroSHEDS (Lehner et al., 2008) combined with
30arcsec GTOPO30 (Gesch et al., 1999) and 1km Hy-
drolk (Verdin and Greenlee, 1996; USGS EROS Data Cen-
ter, 2006), lakes taken from the Global Lakes and Wetlands
Database (GLWD) (Lehner and Doll, 2004) and reservoirs
obtained from GRanD (Lehner et al., 2011).

2.3.5 Irrigation and water use module

In PCR-GLOBWB 1 water demand was calculated sepa-
rately from the hydrology and water availability calculated
as a post-processing step by subtracting upstream demand
(Wadaetal., 2011a, b). In PCR-GLOBWB 2 water use (with-
drawal and consumption) is fully integrated. Hereafter, the
main features of the irrigation and water use module are de-
scribed in the following order: water demand, water with-
drawal, water consumption, and return flows.

Water demand

Irrigation water demand is calculated based on the crop
composition (which changes per month and includes multi-
cropping) and the irrigated area per cell. As stated above,
these are obtained from MIRCA2000 (Portmann et al., 2010)
and the Global Crop Water Model (Siebert and Doll, 2010).
In the standard PCR-GLOBWB 2 parameterization the ir-
rigated areas change over time. In want of detailed data,
fractions of paddy and non-paddy irrigation, as well as the
crop composition per month, stay fixed (as obtained from
MIRCA2000), while the total irrigated area per cell changes
over time and is based on the FAOSTAT (http://www.fao.org/
faostat/en/#home, last access: 15 September 2017) reported
irrigated areas. Irrigation water demand is computed using
the FAO guidelines (Doorenbos and Pruit, 1977; Allen et
al., 1998): in case of non-paddy irrigation, water is applied
whenever soil moisture falls below a pre-set value and then
the soil column is replenished up to field capacity. In case of
paddy irrigation, the water level is kept at a water depth of
5 cm above the surface until the late crop development stage
(~ 20 days) before the harvest. After that, no irrigation is ap-
plied anymore such that the water level is allowed to drop to
zero under infiltration and evaporation (Wada et al., 2014).
The net irrigation demand is augmented to account for lim-
ited irrigation efficiency and losses. In order to obtain irriga-
tion water demand including losses, i.e. gross irrigation de-
mand, net irrigation water demand is multiplied with (14 f7),
with f7 as a country-specific loss factor obtained from Ro-
hwer et al. (2007).
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Non-irrigation water demand covers three sectors: indus-
try, households, and livestock. For each of these sectors, the
gross demand and net demand are prescribed to the model.
The calculation of net non-irrigation water demand, which
varies with time, follows methods developed by Wada et
al. (2014). We refer to Wada et al. (2014) for an extensive
description. Trends in water demand are prescribed on an an-
nual basis as a function of population, electricity demand,
and gross domestic product (GDP) per capita. In addition,
domestic water demand exhibits a seasonal variation on the
basis of temperature. Domestic and industrial gross water de-
mand is calculated from net water demand using a country-
specific recycling ratio (RC) (based on development stage or
GDP per capita and additionally access to domestic water
demand): gross =net / (1 —RC). This takes into account that
much of the domestic and industrial water is not consumed
but returned as surface water. For livestock, the return flow is
assumed to be zero, meaning all water is consumed.

Water withdrawal

The water withdrawal estimation is based on the work by
de Graaf et al. (2014) and Wada et al. (2014). In PCR-
GLOBWB 2 water withdrawal is set equal to gross water
demand (summed over all the sectors) unless sufficient wa-
ter is not available. In that case, water withdrawal is scaled
down to the available water and then allocated proportion-
ally to gross water demand per sector. Thus, no allocation
preference is available in the standard parameterization of
PCR-GLOBWB 2.

Water can be abstracted from three sources: surface wa-
ter, groundwater (fossil and non-fossil), and desalinated wa-
ter. The latter is prescribed (Wada et al., 2011a), while the
fractions of the other two sources are determined as a func-
tion of their relative abundance. Groundwater and surface
water availability are determined based on 2-year running
means of groundwater recharge and river discharge respec-
tively, thus keeping track of the prevalence of local resources
and their temporal change (de Graaf et al., 2014). These frac-
tions determine, on a monthly basis, from which source water
is abstracted. Surface water withdrawal is ceased if river dis-
charge falls below 10 % of the long-term average yearly dis-
charge under naturalized flow conditions (determined by run-
ning the model without withdrawal). If, for some reason, the
surface water amount is insufficient, the model falls back on
groundwater to meet the resulting gap. Groundwater is first
abstracted from the renewable groundwater storage, and if
this is not present, non-renewable groundwater is abstracted.
The amount of groundwater that can be abstracted is, how-
ever, capped by the groundwater pumping capacity, which
is based on data from the IGRAC GGIS database. The de-
scribed dynamic allocation scheme is not always in line with
local preferences or the infrastructure. However, there is a
possibility to use fractions of groundwater and surface water
withdrawal reported in the literature. For urban areas, we rely
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on the data set of McDonald et al. (2014) that states whether
a surface water distribution infrastructure is available. If this
is the case, industrial and domestic water withdrawals are
mainly taken from surface water before abstracting ground-
water. If surface water infrastructure is limited, groundwater
source is prioritized (see e.g. Erkens and Sutanudjaja, 2015).
For urban areas that are not in the McDonald (2014) data set,
we give preference to the dynamic allocation scheme. For ir-
rigation, we use the ratios supplied by Siebert et al. (2010) in
regions where they are said to be reliable. In regions where
they are not fully reliable, we take the average ratio pro-
vided by Siebert et al. (2010) and the one provided by the
dynamic allocation scheme. For regions where the data of
Siebert (2010) are not reliable (i.e. extrapolated data), we
give preference to the dynamic allocation scheme.

Moreover, we cannot assume that all the water demand is
supplied from surface water and groundwater resources in
the same cell. Ideally, data about local water redistribution
networks and inter-basin transfers should be used to define
surface water and groundwater service areas. Unfortunately,
this information is not available at the global scale. There-
fore, in our current parameterization of PCR-GLOBWB 2,
we pool water availability of desalinated and surface water
over zones of approximately 1arcdeg by 1arcdeg size that
are truncated by country borders if applicable. For ground-
water, 0.5 arcdeg zones are used. The downside of the current
scheme is that a cell does not always have access to its near-
est water resource if this lies outside its prescribed service
area.

Water consumption and return flows

In case of irrigation, all the withdrawn water is applied to
the soil (non-paddy) or the water level on the field (paddy).
Part of that water is lost by transpiration and part by soil
and open-water evaporation. Transpiration and evaporation
together make up the irrigation water consumption. The re-
maining part of irrigated water is lost by percolation and con-
tributes to groundwater recharge as return flow. Irrigation ef-
ficiency (not including conveyance losses) could also be cal-
culated after the fact by the difference between withdrawal
and transpiration. In the case of domestic and industrial wa-
ter use, water consumption depends on the RC and equals
withdrawal x (1 — RC), while withdrawal x RC constitutes
return flow. All return flow is added to the surface water. For
livestock, the consumption is set equal to the withdrawal and
no return flow is assumed.

2.4 Model code

The original PCR-GLOBWB version 1 (van Beek et al.,
2011) was written in the PCRaster scripting language.
PCRaster (Wesseling et al., 1996) is a high-level program-
ming language that started as a dynamic raster-based Geo-
graphical Information System (GIS) and is tailored to spa-
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tiotemporal modelling for environmental and earth science
applications. The generic nature of PCRaster with its many
pre-existing built-in hydrological functions and its syntax
that reads like pseudo-code generally results in concise
model codes, short development times, and limited program-
ming errors. Karssenberg et al. (2010) developed a PCRaster
Python package such that PCRaster functions, implemented
in C++, can also be called via Python (http://www.python.
org/). Using PCRaster Python makes it possible for students
and beginner modellers to contribute to the model quickly,
while it allows experts to be more productive and focus on
the science rather than on the programming language syntax.
Realizing the aforementioned advantages, PCR-GLOBWB,
particularly starting from this version 2, has been rewritten
in the Python scripting language.

To allow for exchanges of model components and there-
fore evaluate different model configurations, a component-
based development approach (e.g Argent, 2004; Castronova
and Goodall, 2010) was followed while developing the PCR-
GLOBWB 2 model code. Each of the PCR-GLOBWB sci-
entific modules described in Sect. 2.3 is implemented in a
separate Python class that needs to implement initialization
and update methods. The latter designates changes of states
and fluxes per time step. Each module is initialized and ex-
ecuted by iteratively calling the update method via a main
model script.

To run the model, a so-called initialization file or config-
uration file is used (with extension .ini). In this file the fol-
lowing aspects are defined: the spatial and temporal domain,
the time step, the settings of the different modules (e.g. with
surface water routing, human water use, or not), and the lo-
cations and names of the parameter files and forcing files.
PCR-GLOBWRB 2 uses NetCDF files for most input and all
output, thus making it easier to exchange data with other sci-
entists and use existing tools to analyse their output.

PCR-GLOBWB 2 generally runs best under Linux. In or-
der to run PCR-GLOBWRB the following additional software
needs to be installed: PCRaster version 4, Python version 2.7
with Python packages NumPy and netCDF4, and GDAL ver-
sion 1.8 or higher.

2.5 Differences between PCR-GLOBWB 1 and 2

PCR-GLOBWRB 2 has the following new capabilities com-
pared to PCR-GLOBWRB 1 (see van Beek et al., 2011; Wada
etal., 2011):

— the model was completely rewritten in PCRaster Python
and now has a modular structure;

— the inputs and outputs are in the form of NetCDF files
and output can be reported for daily monthly and yearly
time steps;

— parameterizations are available at 30 and 5 arcmin reso-
lutions;
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— water use (demand, withdrawal, consumption, and re-
turn flow) is fully integrated;

— distinction is made between paddy and non-paddy irri-
gation and irrigation follows FAO guidelines;

— three different options for surface water routing are
available and a surface water temperature module is
fully integrated with the routing scheme;

— it is possible to run surface water routines separately
with specific discharge from other sources (e.g. other
land surface models);

— PCR-GLOBWRB 2 can be coupled to a two-layer tran-
sient groundwater model (Sutanudjaja et al., 2014; de
Graaf et al.,, 2017) and to the hydrodynamic mod-
els Delft3D Flexible Mesh (Kernkamp et al., 2011) or
LISFLOOD-FP (Bates et al., 2010; Hoch et al., 2017b).

3 Model demonstration and evaluation

To test and evaluate the performance of PCR-GLOBWB 2,
we ran the model at both 30 and 5 arcmin resolution over the
period 1958-2015. We compared the results of both simula-
tions with discharge data from the Global Runoff Data Cen-
tre (GRDC, 2014), with total basin water storage estimates
from GRACE (Gravity Recovery and Climate Experiment;
Wiese, 2015) and with water withdrawal data from the FAO
AQUASTAT database (FAO, 2016).

3.1 Model run setup
3.1.1 Parameterization

We used the standard parameterization (parameters, forcing,
and their sources in Table A2) of PCR-GLOBWB 2 at 30
and 5 arcmin spatial resolutions to simulate global hydrology
at daily resolution over 1958-2015. Outputs were reported
as monthly averages. The parameterization was mostly un-
changed from that given in van Beek and Bierkens (2009),
but newer data sets, such as the GRAND (Lehner et al., 2011)
data set for reservoirs and MIRCA (Portmann et al., 2010)
for crop areas, were used if available. We stress that no cali-
bration was performed. We ran the model with human water
use options turned on and used the travel-time characteristic
solution routing option.

3.1.2 Forcing

The forcing data set is based on time series of monthly pre-
cipitation, temperature, and reference evaporation from the
CRU TS 3.2 data set of Harris et al. (2014) downscaled to
daily values with ERA40 (1958-1978, Uppala et al., 2005)
and ERA-Interim (1979-2015, Dee et al., 2011). CRU is
specified at 30 arcmin spatial resolution and directly usable.
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We used ERA40 and ERA-I results that had been resampled
by ECMWF’s resampling scheme from their original resolu-
tions (~ 1.2 and ~ 0.7°) to 30 arcmin first. Here, resampling
means a form of spatial downscaling whereby the values of
the larger ERA40 and ERA-I grid cells are assigned to the
cell centres and then spatially interpolated onto 30 arcmin
grids. Precipitation was temporally downscaled by first ap-
plying a threshold of 0.1 mm day~! to the ERA daily time se-
ries to estimate the number of rain days for ERA. The amount
of rainfall below this threshold was proportionally allocated
to the rain days. Next, the daily rainfall totals were scaled
in order to reproduce the CRU monthly precipitation total
using multiplicative scaling. Equally, monthly reference po-
tential evaporation, computed with Penman—Monteith from
the CRU data set, was scaled using multiplicative scaling and
downscaled to daily data proportional to Hamon (1967) evap-
oration calculated from daily ERA temperatures. We elected
not to calculate Penman—Monteith reference evaporation di-
rectly from the ERA40 and ERA-I data, in order to avoid the
large calculation times needed to process the required mete-
orological values. For the air temperature, an additive scal-
ing factor was used. To better simulate snow dynamics for
the 5 arcmin model, the temperature values from CRU were
further spatially downscaled to 5 arcmin using a temperature
lapse rate derived from the higher-resolution CRU CL 2.0
climatology (New et al., 2002). For areas in which the num-
ber of stations underlying the CRU data set was found to be
small, preference was given to directly using the meteorolog-
ical data from ERA. The method used to create the forcing
data set is described more extensively in van Beek (2008).

3.1.3 Spin-up

The large groundwater response times for certain regions
(e.g. Niger and Amazon) requires substantial spin-up for the
groundwater volumes to be in equilibrium with the current
climate. To reach this equilibrium, the model was spun up
using the average climatological forcing over the years 1958—
2000 back to back for 150 years to reach a dynamic steady
state. This spin-up was executed under naturalized condi-
tions, which means no reservoirs and no human water use.

3.1.4 Computation time and parallelization

The models were run on Cartesius, the Dutch national super-
computer (https://userinfo.surfsara.nl/systems/cartesius, last
access: 15 September 2017). Without parallelization, the wall
clock time for a 1-year global simulation run of the 30 arcmin
model was about 1 h. This entails that a 1-year global simu-
lation run with the 5 arcmin model might result in wall clock
times of at least 36 h. Hence, to speed up computation, the
5 arcmin model domain was divided into 53 groups of river
basins such that it could be run as 53 separate processes. With
this simple parallelization technique, the wall clock time for
a 1-year simulation run of the 5 arcmin model was reduced
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to about 1 h again. Note that these computation times were
obtained for simulations with the travel-time characteristic
routing option. Calculation times would have been signifi-
cantly longer if the kinematic wave routing had been used
(e.g. about 6 h for a 1-year 5 arcmin global run including par-
allelization).

3.2 Data used for comparison
3.2.1 River discharge

We used discharge stations from GRDC (2014) to compare
simulated discharge from PCR-GLOBWB 2 with monthly
reported discharge. From all the globally available stations
in the database, we selected a subset of stations using the
following criteria: (1) allowing a not-more-than 15 % differ-
ence in the catchment area between PCR-GLOBWB 2 and
the area reported with the GRDC discharge station, (2) not
more than 1 cell distance between the station location and
the nearby location of a river in PCR-GLOBWB 2, and (3) at
least 1 year of discharge data. This yielded 5363 stations for
the 5 arcmin simulation, 3910 stations for the 30 arcmin sim-
ulation, and 3597 stations fulfilling the criteria for both res-
olutions. The minimum, median, and maximum catchment
sizes for the GRDC stations at the 5 arcmin resolution are re-
spectively 29, 2730, and 4.68 x 10%km? and 31, 6560, and
4.68 x 10°km? at the 30 arcmin resolution. As we jointly
compared the performance of both simulations, we used the
set of 3597 locations throughout. The average time series
length of these stations is equal to 36 years.

3.2.2 Total water storage

We compared total water storage (TWS) as simulated by
PCR-GLOBWB 2 with the TWS estimated from GRACE
(Gravity Recovery and Climate Experiment) gravity anoma-
lies. We used the JPL GRACE Mascon product RLOSM
(Wiese, 2015; Watkins et al., 2015; Wiese et al., 2016). Scan-
lon et al. (2016) suggest that recent developments in mascon
(mass concentration) solutions for GRACE have significantly
increased the spatial localization and amplitude of recovered
terrestrial TWS signals. They also claim that one of the ad-
vantages of using the mascon solutions relative to traditional
SH (spherical harmonic) solutions is that it makes it much
easier for non-geodesists to apply GRACE data to hydro-
logic problems. Note that although the data of JPL RLOSM
are represented on a 30 arcmin lat-long grid, they represent
the 3 x 3 arcdeg equal-area zones, which is the actual reso-
Iution of JPL RLO5SM. We compared trends on a pixel-by-
pixel basis. Given the coarse resolution of GRACE products
of about 300 km by 300 km, we compared correlations only
for major river basins with an area of 900 000 km? and up.
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Table 1. Global water balance components and human water withdrawal (km3 yt:ar_l and mm year_l) over the period 2000-2015 as ob-
tained from the 30 and 5 arcmin simulations. The numbers are shown to high significance to show the water balance closure. This does not
mean that we pretend to know global discharge with a cubic-kilometre accuracy (actual accuracy of the large fluxes is more on the order of

10° km?).
30 arcmin ‘ 5 arcmin
km? year_1 mm year_1 ‘ km? year_1 mm year_1
Global water ~ Precipitation 107 452 808 107 495 811
balance Desalinated water use 3 0.02 2 0.01
Run-off 42393 319 43978 332
Evaporation™ 65754 494 63974 483
Change in total water storage —693 -5 —455 -3
Groundwater ~ Groundwater recharge 27756 209 25521 193
budget Groundwater withdrawal 737 6 632 5
Non-renewable groundwater withdrawal 173 1 171 1
(groundwater depletion)
Renewable groundwater withdrawal 564 4 460 3
Withdrawal Agricultural water withdrawal 2735 21 2309 17
by sector (irrigation + livestock)
Domestic water withdrawal 380 3 314 2
Industrial water withdrawal 798 6 707 5
Withdrawal Total water withdrawal 3912 29 3330 25
by source Surface water withdrawal 3172 24 2697 20
Desalinated water use 3 0.02 2 0.01
Groundwater withdrawal 737 6 632 5

* Includes consumptive water use for livestock, domestic, and industrial sectors.

3.2.3 Water withdrawal

The water withdrawal for a large number of countries is taken
from FAO’s AQUASTAT database (FAO, 2016). These data
are on average reported every 5 years. We compared simu-
lated water withdrawal per sector and per water source (sur-
face water and groundwater) with reported values per country
and per reporting period, whenever available.

3.3 The global water balance simulated at 30 and
5 arcmin

We calculated the main global water balance components
from the 30 and 5 arcmin simulations over the period 2000-
2015. The results in Table 1 show that there are some dif-
ferences between the two model runs, but values are on the
same order of magnitude. The small difference in precipita-
tion is due to the fact that the area of the land cells is slightly
different at the two resolutions. Differences in evaporation
and run-off show that the run-off and evaporation parameter-
ization of PCR-GLOBWB 2 is not entirely scale consistent.
Differences in evaporation may also be causing the differ-
ences in irrigation water demand, which in turn may explain
the differences in water withdrawal. Recently, Samaniego et
al. (2017) applied their multiscale parameter regionalization
(MPR; creating spatially variable parameter fields) technique
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to PCR-GLOBWRB 2 for the Rhine basin, showing that pa-
rameterizations that yield the same hydrological fluxes at
different resolutions are possible. However, a global appli-
cation of this method to all PCR-GLOBWB 2 parameters is
not possible yet. Nonetheless, when comparing the results of
both model runs with data reported in the literature, it shows
that the global water balance components are similar to re-
cent assessments (e.g. by Rodell et al., 2015), and groundwa-
ter withdrawal and total withdrawal estimates match those of
previous studies (see Table 2).

From Table 1, it can also be seen that there is a nega-
tive change in total terrestrial water storage in both model
runs. Table 1 shows that this can only be partly explained by
groundwater depletion, which is localized to certain regions
(see also Sect. 3.4.2). Further analysis shows that this change
can also be attributed to the trends in precipitation forcing
used, particularly over the tropics.

3.4 Evaluation of the 30 and 5 arcmin simulations

34.1 Discharge

When evaluating the simulated discharge with discharge ob-
servations from GRDC, we used the monthly values and cal-

culated three different measures. The first one is the corre-
lation coefficient between monthly simulated and observed
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Table 2. Groundwater withdrawal and total water withdrawal compared to other studies (km3 year_l).

Source Year Value (km3 year_l)
Groundwater  Wada et al. (2010) (from the IGRAC database) 2000 734 (£ 87)
withdrawal Doll et al. (2012) 1998-2002 571
Doll et al. (2014) (their Table 2) 2003-2009 690-888
Déll et al. (2014) (their Table 6) 20002009 665
Pokhrel et al. (2015) 1998-2002 570 (£ 61)
Hanasaki et al. (2018) 2000 789 (£ 30)
This study (5 arcmin) 2000-2015 632
Total water Vorosmarty et al. (2005) 1995-2000 3560
withdrawal Oki and Kanae (2006) contemporary 3800
Doll et al. (2012) 1998-2002 4340
Déll et al. (2014) (their Table 2) 2003-2009 3000-3700
FAO (2016) 2010 3583
Hanasaki et al. (2018) 2000 3628 (£75)
This study (5 arcmin) 20002015 3330
GRDC time series, which is a measure of reproducing cor- (a) Correlation with observations (5 min)
rect timing of high and low discharge. A correlation coef- Lo
ficient of 1 indicates perfect timing. The second measure is 2':
the Kling—Gupta efficiency coefficient or KGE (Gupta et al., 0:4
2009), which equally measures bias, differences in ampli- 0o
tude, and differences in timing between monthly simulated 0.0
and observed GRDC time series. The KGE varies between 02
1 and minus infinity, where 1 means a perfect fit in terms of o4
bias, amplitude and timing. The last metric is the anomaly “06
correlation, i.e. the correlation among monthly time series _o08
after the seasonal signal (climatology) has been removed. 1.0
This statistic measures the ability of the model to correctly
simulate timing of seasonal and inter-annual anomalies from (b) o )
. .. . . Correlation difference 5-30 min
the yearly climatology. This is to test if the model is able 05
to capture the monthly-scale and inter-annual anomalies in 04
discharge (i.e. on the monthly scale) when the dominant sea- 03
sonal trend is removed from observations and simulations. 02
An anomaly correlation of 1 indicates perfect characteriza- 01
tion of inter-annual anomalies and values below 0 indicate a 00
lack thereof. ot
Figure 2 shows maps of the correlation coefficients for the o2
GRDC stations considered and Fig. 3 shows histograms of :z'j
correlation and KGE values. Both figures show that the eval- _0:5

uation results of the 5arcmin simulation are generally bet-
ter than those of the 30 arcmin simulation. For the 30 arcmin
model, the number of catchments with KGE > 0, 0.3, and 0.6
are equal to 48, 26, and 7 % of the total catchments respec-
tively. For the 5 arcmin model, these values are respectively
equal to 63, 40, and 12 % of the total catchments. Note that
for both runs the standard parameterization was used. Possi-
ble explanations for the better performance of the 5 arcmin
run are a better delineation of the shape of the basins, par-
ticularly the smaller ones, a better characterization of basin
relief and the drainage network, more accurate sub-grid pa-
rameterization of soil and land cover due to a smaller scale
gap that needs to be overcome, better estimates of the basin
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Figure 2. Maps of correlation between simulated and observed dis-
charge time series for 3597 GRDC discharge stations; (a) results
for the 5 arcmin simulation; (b) difference between results for 5 and
30 arcmin simulations.

storage, and better snow dynamics due to the downscaling of
temperature to 5 arcmin resolution. The KGE values are less
favourable than the correlation coefficients. This is mostly
due to biases in run-off caused by incorrect meteorological
forcing. It is difficult to exactly assess which of these factors
are most important in determining the improvement. Inspect-
ing the histograms of correlation and KGE (Fig. 3) shows
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(a) Correlation with observations (30 min)
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(b) Correlation with observations (5 min)
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Figure 3. Histograms of evaluation statistics showing the correlation and Kling—Gupta efficiency (KGE) values for the simulated discharge
for the 30 and 5 arcmin simulations based on 3597 GRDC discharge stations, (a) correlation 30 arcmin simulation, (b) correlation 5 arcmin
simulation, (¢) KGE 30 arcmin simulation, and (d) KGE 5 arcmin simulation. Note that the percentage catchments with KGE < —1 are 21

and 12 % for 30 and 5 arcmin respectively.

that the improvement is mostly apparent for the smaller sized
catchments, which supports the notion that a better delin-
eation of the catchments’ shape, topography, and drainage
network could be the cause. However, disentangling these
individual effects would require further study. To investi-
gate the possible effects of better snow dynamics, we clas-
sified the GRDC stations into stations below 1000 m altitude
(above mean sea level) and those above 1000 m. The GRDC
stations above 1000 m are expected to experience precipita-
tion falling as snow during periods of the year. The results
in Fig. 4 clearly show that the improvement is larger for
the higher GRDC stations. This supports the explanation that
better snow dynamics due to temperature lapsing in combina-
tion with a better resolved digital elevation model is partly re-
sponsible for the superior results at 5 arcmin. We also investi-
gated if improvements were notably different among climate

Geosci. Model Dev., 11, 2429-2453, 2018

zones, by separately calculating KGEs for GRDC stations in
the Koppen—Geiger zones A (tropical), B (desert), C (temper-
ate), and D (continental). The results (not shown) show that
the improvement is equally visible for climate zones A, B,
and C and less so for D (continental). Without further anal-
ysis this is difficult to explain. Note, however, that the con-
tinental climate zone is somewhat under-represented in the
GRDC data set due to the low measurement densities over
Russia, although it is well represented in the US. Thus, it
may be that the global improvements shown in Fig. 3 are
somewhat positively biased.

The maps of correlations (Fig. 2) show the best results in
Europe and North America where the meteorological forcing
is generally more accurate as a result of more data used in the
reanalysis products and higher station availability in the CRU
data set. Also, monsoon-dominated basins are well simulated

www.geosci-model-dev.net/11/2429/2018/
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Figure 4. Cumulative frequency distributions of Kling—Gupta efficiency (KGE) values for GRDC stations that are positioned below (a) and
above (b) 1000 m a.m.s.1. It can be expected that for the stations above 1000 m, the upstream area is influenced by snow dynamics.

(a)

Catchment size (km?)
<10+10°
<25+10°
<50%10°
<100+10*
<250+10°
>250+10°

Anomaly correlation with observations (30 min)

700

600

500

oy
< 400}
[
2 ]
Q
£ ]
300}
200 - =
100) |
L]
0 S— I 1
-1.0 —05 0.0 0.5 1.0
Value

(b) Anomaly correlation with observations (5 min)

Catchment size (km?)
<10s10°
<25+10°
<50%10°
<100+10*
<250#10*
>250#10°

700

600

500

N
o
o

Frequency

300

200

100

0.0 OLS

Value

-1.0 1.0

Figure 5. Histograms of evaluation statistics showing the anomaly correlation for the simulated discharge for the 30 and 5 arcmin simu-
lations based on 3597 GRDC discharge stations, (a) anomaly correlation half-arc-degree simulation, and (b) anomaly correlation 5 arcmin

simulation.

due to the strong seasonal nature of both forcing and related
discharge. The improvement of the 5 arcmin simulation over
the 30 arcmin simulation in Europe is mostly seen in the Alps
and the Norwegian mountains. This reflects the fact that to-
pography and thus snow dynamics is better represented at
higher resolution as shown in Fig. 4. The least accurate re-
sults are obtained for some of the African rivers, in particular
the Niger, where the groundwater recession coefficients are
probably overestimated and inland delta evaporation is un-
derestimated, for some rivers in the Rocky Mountains, which
may be the result of errors in snow dynamics, and for conti-
nental eastern Europe, which is most likely explained by an
overestimation of the groundwater recession constants.

www.geosci-model-dev.net/11/2429/2018/

The histograms of the anomaly correlation are shown in
Fig. 5. The anomaly correlations are generally lower than
the correlations, showing that seasonality explains part of
the skill in many regions where seasonal variation is domi-
nant when compared to intra-annual or inter-annual variabil-
ity. Clearly, the 5 arcmin results are much better than those
of the half-degree simulation, indicating a higher skill with
regard to capturing inter-annual anomalies. Figure 6 shows a
map of the difference between the anomaly correlation and
the correlation for the Sarcmin case. This map shows that
there are some regions where the anomaly correlation is bet-
ter than the correlation (blue colours), e.g. snow-dominated
regions in Canada and the Niger basin. These are catchments
where the model has difficulty reproducing the correct sea-

Geosci. Model Dev., 11, 2429-2453, 2018
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Figure 6. Map showing for the 5 arcmin run the difference between
the correlation and the anomaly correlation between simulated and
observed discharge time series for 3597 GRDC discharge stations;
negative values mean that the correlation is higher than the anomaly
correlation.

sonality as a result of errors in snow dynamics (Canada) or
groundwater dynamics (Niger). Also, in the case of the Niger
River, not representing the inner delta flooding and resulting
high evaporation may be the cause of poor seasonal timing
of discharge.

3.4.2 Total water storage

Figure 7 compares the trends in 5arcmin simulated TWS
with those from GRACE, estimated as the average change
in metres per year over the period 2003-2015. Generally,
the PCR-GLOBWB 2 simulation is able to capture major
groundwater-depleted regions as suggested by GRACE, such
as those in the Central Valley aquifer, the High Plains aquifer,
the North China Plain aquifer, and parts of the Middle East,
Pakistan, and India. For these regions, the absolute rates of
TWS change (i.e. TWS declines) of PCR-GLOBWB 2 are
generally larger, while the spatial pattern in the GRACE map
tends to be smoother. This is mainly due to the lower reso-
lution and spatial averaging used in the GRACE product, as
well as the fact that the current PCR-GLOBWB 2 simulation
does not include lateral groundwater flow among cells. In the
polar regions where GRACE estimates mass loss due to melt-
ing glaciers and ice sheets, PCR-GLOBWB 2 simulates ac-
cumulation as a result of a lack of glacier parameterization.
Finally, there are some clear differences over the Amazon
and some parts of Africa. A possible explanation are errors
in meteorological forcing data, which are not very accurate
in these parts, but also problems with the over-estimation of
PCR-GLOBWRB’s groundwater response times in these re-
gions, which therefore fail to be sufficiently sensitive to re-
cent changes in terrestrial precipitation.

Further analyses were conducted at basin-scale resolution,
for which both TWS time series of PCR-GLOBWB 2 and
GRACE JPL RLO5M were averaged over a river basin area
map derived from the 5 arcmin PCR-GLOBWB drainage net-
work. We identified all river basins with sizes larger than
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900 000 km?, which is similar to the GRACE resolution.
Smaller river basins were merged to the nearest river basins
or grouped together. For the remaining map of large basins,
the correlations between PCR-GLOBWB 2 and GRACE
basin-average monthly and annual TWS time series were
calculated. Monthly correlation provides information about
PCR-GLOBWRB’s ability to correctly time TWS seasonal
variability (with a value equal to 1 for perfect timing), while
the correlation for annual time series measures inter-annual
variability.

The results in Fig. 8 show that PCR-GLOBWB 2 is able to
capture GRACE’s TWS seasonality for most basins around
the world, with the exception of some cold regions in high
latitudes (e.g. the Yukon River basin, Iceland). This short-
coming is most likely due to the lack of a proper represen-
tation of glacier and ice processes in PCR-GLOBWB 2. As
expected, the correlation values for inter-annual time series
are generally lower than the ones for monthly time series.
There are some areas with negative correlation values, such
as the Amazon, Niger, and Nile river basins. Apart from the
uncertainty in the GRACE signal, these deficiencies may be
related to errors in model forcing and structural errors such
as errors in the groundwater response time and the effects of
wetlands that have not been represented sufficiently well.

3.4.3 Water withdrawal

We compared simulated water withdrawal data from PCR-
GLOBWRB 2 with reported withdrawal data per country from
AQUASTAT (FAQO, 2016). The results are shown subdivided
per source (Fig. 9) and per sector (Fig. 10). Total water with-
drawal and surface water withdrawal are simulated reason-
ably well (R? between 0.84 and 0.96 and regression slopes
between 0.70 and 1.08). However, groundwater withdrawal is
underestimated for the smaller water users. A likely explana-
tion for this is occasional groundwater withdrawal by farmers
during dry periods in areas that have not been mapped as ir-
rigated crops in MIRCA, such as grasslands in Germany and
the Netherlands, for example, while this groundwater with-
drawal is reported in AQUASTAT.

When looking at water withdrawal per sector, results are
mixed. The largest agricultural water users are well captured,
but the smaller ones are clearly underestimated. This is re-
lated to the fact that in many regions of the smaller water
use countries, water is used for irrigation only occasionally
during dry summers, while these areas are not mapped as ir-
rigated crops in MIRCA. Also, many of these countries use
irrigation technology that is not part of MIRCA, e.g. subsur-
face drainage by artificially high surface water levels such as
in a number of developed delta regions in the world. How-
ever, even though these smaller countries are not well repre-
sented, PCR-GLOBWRB 2 is still able to capture the big water
users, which have a significant impact on the water cycle and
are most important for global-scale analyses.

www.geosci-model-dev.net/11/2429/2018/
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Figure 7. Comparison of PCR-GLOBWB 2 total water storage trends (m year_l) with those estimated with GRACE over the period 2003—
2015. (a) TWS trends simulated with PCR-GLOBWB at 5 arcmin resolution (~ 10km at the Equator). Negative values indicate declining
TWS (e.g. groundwater-depleted regions). (b) TWS trends obtained based on the GRACE JPL RLO5M Mascon product. The GRACE data
were resampled to the resolution of 30 arcmin, but they actually represent the 3 x 3 arcdeg (~300km x 300 km) area, which is the native

resolution of the GRACE signal.

Correlation PCR-GLOBWB 2.0 and Grace
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Figure 8. (a) Correlation between monthly TWS time series simulated by PCR-GLOBWB 2 and the GRACE JPL RLOSM Mascon product
over the period 2003-2015. (b) Comparison of annual TWS series (inter-annual variability). Comparison is only performed for the larger
basins over 900 000 km?, conforming to the 3 x 3 arcdeg resolution of GRACE.

Both industrial and domestic water withdrawals are un-
derestimated. The underestimation of industrial water with-
drawal is partly caused by the fact that we do not include
water withdrawal for thermoelectric cooling of power plants.
The underestimation of domestic water withdrawal comes
from the fact that we assume that the priority of water al-
location is proportional to demand. This means that in times
of shortage, water withdrawal is reduced with an equal per-
centage for agriculture, industry, and domestic use. In many
countries, however, there is a priority series, whereby domes-
tic demand is first met, industrial demand next, and agricul-
tural demand comes last. As a result, we underestimate do-
mestic water withdrawal and it also partly causes the under-

www.geosci-model-dev.net/11/2429/2018/

estimation of industrial water withdrawal. This is corrobo-
rated by plotting gross water demand (which would be with-
drawal if no shortage would occur) against AQUASTAT data.
These plots (not shown here) result in a regression slope of
0.68-0.75 for industrial demand and 0.78-0.92 for domestic
demand. These results thus reveal that the water allocation
scheme of PCR-GLOBWB 2 should be further improved.

4 Conclusions and future work
We presented the most recent version of the open-source

global hydrology and water resource model PCR-GLOBWB.
This version, PCR-GLOBWB 2, has a global coverage at

Geosci. Model Dev., 11, 2429-2453, 2018
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Figure 9. Country water withdrawal (km? year_l) by source and evaluation of simulations with PCR-GLOBWB 2 with reported values in
AQUASTAT (FAO, 2016). The scatter plots on the left (a, c, e) are for the period 1968—1992, while the right ones (b, d, f) are 1993-2015.
The uppermost plots (a, b) are for total water withdrawal, the middle ones (c, d) are groundwater withdrawal, and the lowermost charts (e, f)
are surface water withdrawal. The regression coefficient is based on regression to non-log-transformed data with the intercept kept at zero.
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(a) Country withdrawal for agricultural sector(km3 yr'l) in 1968-1992  (b) Country withdrawal for agricultural sector (kmj yr’l) in 1993-2015
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(e) Country withdrawal for domestic demand (km3 yr’l) in 1968-1992 (f) Country withdrawal for domestic demand (km3 yr'l) in 19932016
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Figure 10. Country water withdrawal (km? yearfl) by sector and evaluation of simulations with PCR-GLOBWB 2 with reported values in
AQUASTAT (FAO, 2016). The scatter plots on the left (a, ¢, e) are for the period 1968—1992, while the right ones (b, d, f) are 1993-2015.
The uppermost plots (a, b) are for withdrawal for agricultural purposes, the middle ones (¢, d) are industrial withdrawal, and the lowermost
charts (e, f) are domestic. The regression coefficient is based on regression to non-log-transformed data with the intercept kept at zero.
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5arcmin resolution. Apart from the higher resolution, the
new model has an integrated water use scheme, i.e. every
day sector-specific water demand is calculated, resulting in
groundwater and surface water withdrawal, water consump-
tion, and return flows. Dams and reservoirs from the GRanD
database (Lehner et al., 2011) are added progressively ac-
cording to their year of construction. PCR-GLOBWB 2 has
been rewritten in Python and uses PCRaster Python functions
(Karssenberg et al., 2007). It has a modular structure, which
makes the replacement and maintenance of model parts eas-
ier. PCR-GLOBWRB 2 can be dynamically coupled to a global
two-layer groundwater model (de Graaf et al., 2017; Su-
tanudjaja et al., 2014, 2011), and a one-way coupling to
hydrodynamic models for large-scale inundation modelling
(Hoch et al., 2017b) is also available.

Comparing the 5 arcmin with 30 arcmin simulations using
discharge data, we clearly find an improvement in the model
performance of the higher-resolution model. We find a gen-
eral increase in correlation, anomaly correlation, and KGE,
indicating that the higher-resolution model is better able to
capture the seasonality, inter-annual anomalies, and the gen-
eral discharge characteristics. Also, PCR-GLOBWB 2 is able
to reproduce trends and seasonality in total water storage
as observed by GRACE for most river basins. It simulates
the hotspots of groundwater decline that abound in GRACE
as well. Simulated total water withdrawal matches reason-
ably well with reported water withdrawal from AQUASTAT,
while water withdrawal by source and sector provide mixed
results.

Geosci. Model Dev., 11, 2429-2453, 2018
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Future work will concentrate on further improving the wa-
ter withdrawal and water allocation scheme, developing a
full dynamic (two-way) coupling with hydrodynamic mod-
els, developing 5 and 1 km resolution (or higher) parameter-
izations of PCR-GLOBWRB 2 using scale-consistent parame-
terizations (e.g. using MPR; Samaniego et al., 2017), incor-
porating a crop growth model, and solving the full surface
energy balance. Other foreseeable developments are using
the model in probabilistic settings and in data-assimilation
frameworks.

Code and data availability. PCR-GLOBWB 2 is open source and
distributed under the terms of the GNU General Public License
version 3, or any later version, as published by the Free Software
Foundation. The model code is provided through a GitHub repos-
itory: https://github.com/UU-Hydro/PCR-GLOBWB_model (Su-
tanudjaja et al., 2017a, https://doi.org/10.5281/zenodo.595656).
This keeps users and developers immediately aware of any new
revisions. Also, it allows developers to easily collaborate, as they
can download a new version, make changes, and suggest and up-
load the newest revisions. The configuration INI files for the global
30 and 5 arcmin models and the associated model parameters and
input files are provided at https://doi.org/10.5281/zenodo.1045338
(Sutanudjaja et al., 2017b). Development and maintenance of the
official version (main branch) of PCR-GLOBWB 2 is conducted
at the Department of Physical Geography, Utrecht University. Yet,
contributions from external parties are welcome and encouraged.
For news on the latest developments and papers published based on
PCR-GLOBWB 2, we refer to http://www.globalhydrology.nl and
for the underlying PCRaster Python code to http://pcraster.geo.uu.
nl.
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Appendix A

Table A1l. List (non-exhaustive) of state and flux variables defined in PCR-GLOBWB.

www.geosci-model-dev.net/11/2429/2018/

Description Symbol Unit
Interception storage Sint m

Snow cover/storage in water equivalent thickness (excluding liquid part Sgq) ~ Sswe m
Liquid/meltwater storage in the snowpack Sslq m
Upper and lower soil storages S1 and Sy m
Surface water storage (lakes, reservoirs, rivers, and inundated water) Swat m
Groundwater storage (renewable part) S3 m
Fossil groundwater storage (non-renewable) Snrw m

Total groundwater storage = S3 + Snrw Sowt m

Total water storage thickness = Sin¢ + Sswe + Ssiq + 51 + 52 + Sgwt TWS m
Potential evaporation Epot mday™ 1
Evaporation flux from the intercepted precipitation Eint m day_1
Evaporation from meltwater stored in the snowpack Eqq mday~!
Bare soil evaporation Eqoil mday~!
Transpiration from the upper and lower soil stores Ty and Tp m day~!
Total land evaporation = Eijy + Eglq + Esoil + 71+ T2 Eiand mdayfl
Surface water evaporation Ewat m day_l
Total evaporation = Ejyng + Ewat Eot mdayf1
Direct run-off Qdr m dayfl
Interflow, shallow sub-surface flow O mday_1
Baseflow, groundwater discharge Obt m day_l
Specific run-off from land Oloc m dayfl
Local change in surface water storage Owat mday_1
Total specific run-off Otot m day_l
Routed channel (surface water) discharge Ochn m3s~!
Net fluxes from the upper to lower soil stores 012 m dayf1
Net groundwater recharge, fluxes from the lower soil to groundwater stores RCH= Q73 mday‘l
Surface water infiltration to groundwater Inf m day_1
Desalinated water withdrawal Waal m dayf1
Surface water withdrawal Wwat m day_1
Renewable groundwater withdrawal W3 m day_l
Non-renewable groundwater withdrawal (groundwater depletion) Wharw m dayfl
Total groundwater withdrawal = W3 + Wyrw Wowt mday_1
Water withdrawal allocated for irrigation purposes Ajpr m day_1
Water withdrawal allocated for livestock demand/sector Aliy mday~!
Water withdrawal allocated for agricultural sector = Aj. + Ajiy Aagr m dayf1
Domestic water withdrawal Adom mday~!
Industrial water withdrawal Aind m day_1
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Table A2. List of model inputs and parameters.

E. H. Sutanudjaja et al.: PCR-GLOBWB 2

Description Symbol Unit References/sources

Upper and lower soil store parameters FAO (2007) soil map;
van Beek and Bierkens (2009)

— Soil thickness Zy and Z» m

— Residual soil moisture content 0r-1 and 6, m?m3

— Soil moisture at saturation 051 and 65 o m3m~3

— Soil water storage capacity per soil layer: SC= Z/(6s — 6;) SCj and SCy m

— Soil matric suctions at saturation Vs.1 and Yo m

— Exponent in the soil water retention curve B1 and By dimensionless

— Saturated hydraulic conductivities of upper and lower soil stores K| and K» m day_1

— Total soil water storage capacities = SCypp + SCjow Wmax m

Land cover fraction: land cover areas (including Sficov m? m~2 GLCC v2.0 map (USGS, 1997);

extent of irrigated areas) over cell areas Olson (1994a, b); MIRCA2000 data set
(Portmann et al., 2010); FAOSTAT (2012)

Topographical parameters DEM m HydroSHEDS (Lehner et al., 2008);
Hydrolk (Verdin and Greenlee, 1996);
GTOPO30 (Gesch et al., 1999)

— Cell-average DEM DEMayg m

— Floodplain elevation DEMyp m

Root fractions per soil layer Rfypp & Rfjoy ~ dimensionless ~ Canadell et al. (1996);
van Beek and Bierkens (2009)

Arno scheme (Todini, 1999; Hagemann and Gates, 2003) Barno dimensionless ~ Canadell et al. (1996);

exponents defining soil water capacity distribution Hagemann et al. (1999); Hagemann (2002);

van Beek (2008); van Beek and Bierkens (2009)

Ratio of cell-minimum soil storage to Wiax fwmin mm~! van Beek (2008);
van Beek and Bierkens (2009)

Ratio of cell-maximum soil storage to Wiax fwmax mm™! van Beek (2008);
van Beek and Bierkens (2009)

Parameters related to phenology Hagemann et al. (1999);
Hagemann (2002); van Beek (2008);
van Beek and Bierkens (2009)

— Crop coefficient K¢ dimensionless

— Interception capacity Sint-max m

— Vegetation cover fraction Cy m? m—2

Groundwater parameters GLHYMPS map (Gleeson et al., 2014);
van Beek (2008); van Beek and Bierkens (2009)

— Aquifer transmissivity KD m? day_1

— Aquifer specific yield Sy m3m—3

— Groundwater recession coefficient J1 day*1

Meteorological forcing van Beek (2008); CRU (Harris et al., 2014);
ERAA40 (Uppala et al., 2005);
ERA-Interim (Dee et al., 2011)

— Total precipitation P m day*1

— Atmospheric air temperature Tair °CorK

— Reference potential evaporation and transpiration E'ef pot m day_1

Others

— Non-irrigation sectoral water demand m day*1 Wada et al. (2014)

(i.e. livestock, domestic, and industrial)
— Desalinated water m day*1 Wada et al. (2011a); FAO (2016)

— Lakes and reservoirs

GLWDI1 (Lehner and Déll, 2004);
GRanD (Lehner et al., 2011)
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